Untitled Document
Untitled Document
You may need to enable or update / install Adobe Flash Player Plug-in to display JPE e-Book in your device properly. If you use Google Chrome, please find information here
> Archives > Current Issues
JPE, Vol. 18, No. 5, September 2018
SynRM Servo-Drive CVT Systems Using MRRHPNN Control with Mend ACO
Jung-Chu Ting and Der-Fa Chen
Area Adjustable Speed Drives
Abstract Compared with classical linear controllers, a nonlinear controller can result in better control performance for the nonlinear uncertainties of continuously variable transmission (CVT) systems that are driven by a synchronous reluctance motor (SynRM). Improved control performance can be seen in the nonlinear uncertainties behavior of CVT systems by using the proposed mingled revised recurrent Hermite polynomial neural network (MRRHPNN) control with mend ant colony optimization (ACO). The MRRHPNN control with mend ACO can carry out the overlooker control system, reformed recurrent Hermite polynomial neural network (RRHPNN) control with an adaptive law, and reimbursed control with an appraised law. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the RRHPNN and the appraised law of the reimbursed control are established. Furthermore, to help improve convergence and to obtain better learning performance, the mend ACO is utilized for adjusting the two varied learning rates of the two parameters in the RRHPNN. Finally, comparative examples are illustrated by experimental results to confirm that the proposed control system can achieve better control performance.
Keyword Ant colony optimization,Continuously variable transmission,Lyapunov stability,Recurrent Hermite polynomial neural network,Synchronous reluctance motor
Untitled Document