Untitled Document
Untitled Document
You may need to enable or update / install Adobe Flash Player Plug-in to display JPE e-Book in your device properly. If you use Google Chrome, please find information here
> Archives > Current Issues
JPE, Vol. 18, No. 6, November 2018
Harmonic Current Compensation Using Active Power Filter Based on Model Predictive Control Technology
Misbawu Adam, Yuepeng Chen, Xiangtian Deng
Area Power Quality and Utility Application
Abstract Harmonic current mitigation is vital in power distribution networks owing to the inflow of nonlinear loads, distributed generation, and renewable energy sources. The active power filter (APF) is the current electrical equipment that can dynamically compensate for harmonic distortion and eliminate asymmetrical loads. The compensation performance of an APF largely depends on the control strategy applied to the voltage source inverter (VSI). Model predictive control (MPC) has been demonstrated to be one of the effective control approaches to providing fast dynamic responses. This approach covers different types of power converters due to its several advantages, such as flexible control scheme and simple inclusion of nonlinearities and constraints within the controller design. In this study, a finite control set-MPC technique is proposed for the control of VSIs. Unlike conventional control methods, the proposed technique uses a discrete time model of the shunt APF to predict the future behavior of harmonic currents and determine the cost function so as to optimize current errors through the selection of appropriate switching states. The viability of this strategy in terms of harmonic mitigation is verified in MATLAB/Simulink. Experimental results show that MPC performs well in terms of reduced total harmonic distortion and is effective in APFs.
Keyword Active power filter,Model predictive control,Total harmonic distortion,Voltage source inverters
Untitled Document