HIGH POWER CONVERTERS
Evaluation of DPWM schemes for Si/SiC three-level hybrid active NPC inverters
H. Zhuge · L. Zhang · X. Lou · Z. Lei · Y. Zou 1825

New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current
J.-Y. Cha · E.-J. Lee · B. Han · K.-B. Lee · B. M. Han 1836

MOTOR DRIVES
Design of a fault-tolerant system for a multi-motor drive with multiple inverter leg faults
Y. Song · J. Zhao · J. Sun 1848

Simplified model prediction current control strategy for permanent magnet synchronous motor
H. Zhang · S. Zhu · J. Jiang · Q. Wang · A. Wang · D. Jin 1860

On-line identifying stator winding short-circuit approach for a submersible motor based on faulty current monitoring
L. Wang · M. Feng · Z. Tian · Y. Bai · J. Xue · Z. Wang 1872

Robust model predictive current control for six-phase PMSM with virtual voltage vectors
M. Yao · J. Peng · X. Sun 1885

Torque ripple reduction for switched reluctance motors using global optimization algorithm
T. Ben · H. Nie · L. Chen · L. Jing · R. Yan 1897

Vibration reduction method of switched reluctance motors with amorphous alloy cores based on inverse-magnetostriction effect
T. Ben · J. Wang · L. Chen · L. Jing · R. Yan 1908

Robust three-vector model predictive torque and stator flux control for PM-SMM drives with prediction error compensation
Q. Zhou · F. Liu · H. Gong 1917

ENERGY MANAGEMENT SYSTEMS
Joint prediction of internal and external temperatures for cylindrical Li-ion batteries
S. Yu · L. Zhang · A. Wang · L. Ni 1938

CONSUMER POWER ELECTRONICS
Online voltage phase synchronization in receiving coils of multi-input wireless power transfer
Y. Zhao · S. Yang 1947

Simplified DC voltage sensorless control of single-phase PFC converters in EV chargers
N. V. Anand · A. V. J. S. Praneeth · N. Yalla · V. K. Sood 1956

EMERGING POWER ELECTRONICS
Residual current fault type recognition based on SVM and RNN cooperative training
X. Zhang · Y. Wang · Z. Dou · W. Wang · Y. Bai 1966

Characterization of wireless power transfer system with aligned 4-transmitters and 1-receiver

Further articles can be found at link.springer.com

Indexed in Astrophysics Data System (ADS), Baidu Scholar, CLOCKSS, CNKI, CNPIEC, Dimensions, EBSCO Discovery Service, Elsevier, Google Scholar, Journal Citation Reports/Science Edition, Korea Citation Index (KCI), Naver, Norwegian Register for Scientific Journals and Series, OCLC WorldCat Discovery Service, ProQuest, ProQuest Galileo Prime, ProQuest Galileo Summoner, SCOPUS, Science Citation Index Expanded (SCI), TD Net Discovery Service, UGC-CARE List (India)

Instructions for Authors for J. Power Electron. are available at www.springer.com/43236
Journal of Power Electronics

Editor-in-Chief
Kyo-Beum Lee, Ajou University, Suwon, Korea

Editors
Wook-Jin Lee, Publication Editor, Chungnam National University, Daejeon, Korea
Young-Do Yoon, Publication Editor, Hanyang University, Seoul, Korea
Sung-Jin Choi, University of Ulsan, Ulsan, Korea
Jee-Hoon Jung, UNIST, Ulsan, Korea

Associate Editors
Dukju Ahn, Incheon National University, Incheon, Korea
Seon-Ju Ahn, Chonnam National University, Daejeon, Korea
Jong-Bok Baek, Korea Institute of Energy Research, Daejeon, Korea
Kaushik Basu, Indian Institute of Science, Bengaluru, India
Honnyong Cha, Kyungpook National University, Daegu, Korea
Wu Chen, Southeast University, Nanjing, China
Chun-An Cheng, I-Shou University, Kaohsiung, Taiwan
Younghoon Cho, Konkuk University, Seoul, Korea
Uimin Choi, Seoul National University of Science and Technology, Seoul, Korea
Pooya Davari, Aalborg University, Aalborg, Denmark
Anton Dianov, Samsung Electronics, Suwon, Korea
Xiaoqiang Guo, Yanshan University, Qinhuangdao, China
Zhiqiang Guo, Southeast University, Nanjing, China
Minh-Khai Nguyen, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
Young-Ho Park, Soongsil University, Seoul, Korea
N. Prabaharan, SASTRA Deemed University, Thanjavur, India
Mattia Riceo, Alma Mater Studiorum University of Bologna, Bologna, Italy
Subham Sahoo, Aalborg University, Aalborg, Denmark
Ariya Sangwongwanich, Aalborg University, Aalborg, Denmark
Gab-Su Seo, Power Systems Engineering Center, National Renewable Energy Laboratory, Golden, USA
Jongwon Shin, Chung-Ang University, Seoul, Korea
Kai Song, Harbin Institute of Technology, Harbin, China
Kai Sun, Tsinghua University, Beijing, China
Xiaodong Sun, Jiangsu University, Zhenjiang, China
Gaolin Wang, Harbin Institute of Technology, Harbin, China
Wei Wang, Southeast University, Nanjing, China
Vijay Wang, Harbin Institute of Technology, Harbin, China
Huiqing Wen, Xi’an Jiaotong-Liverpool University, Suzhou, China
Hongfei Wu, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Kang-Hyun Yi, Daegu University, Gyeongsan, Korea
Zhonggang Yin, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Xueguang Zhang, Harbin Institute of Technology, Harbin, China
Yun Zhang, Tianjin University, Tianjin, China

Advisory Board
Subhashish Bhattacharya, North Carolina State University, North Carolina, USA
Frede Blaabjerg, Aalborg University, Aalborg, Denmark
Dushan Boroyevich, Virginia Polytechnic Institute and State University, Blacksburg, USA
Liuchen Chang, University of New Brunswick, New Brunswick, Canada
Po-Tai Cheng, National Tsing Hua University, Hsinchu, Taiwan
Bo-Hyung Cho, Seoul National University, Seoul, Korea
Jae Ho Choi, Chungbuk National University, Cheongju, Korea
Ilhami Colak, Nisantasi University, Istanbul, Turkey
Jung-Ik Ha, Seoul National University, Seoul, Korea
Dong-Seok Hyun, Hanyang University, Seoul, Korea
Atsuo Kawamura, Yokohama National University, Yokohama, Japan
Marian P. Kazmierkowski, Warsaw University of Technology, Warsaw, Poland
Ralph Kennel, Technical University of Munich, Munich, Germany
Johan W. Kolar, Swiss Federal Institute of Technology, Zurich, Switzerland
Fujiro Kurokawa, Nagasaki Institute of Applied Science, Nagasaki, Japan
Dong-Choon Lee, Yeungnam University, Gyeongsan, Korea
Tsorng-Juu Liang, National Cheng-Kung University, Tainan City, Taiwan
Jinjun Liu, Xi’an Jiaotong University, Xi’an, China
Sanjib Kumar Panda, National University of Singapore, Singapore
Fang Z. Peng, Florida State University, Tallahassee, FL, USA
John Shen, Illinois Institute of Technology, Chicago, USA
Toshihisa Shimizu, Tokyo Metropolitan University, Tokyo, Japan
Seung-Ki Sul, Seoul National University, Seoul, Korea
Jian Sun, Rensselaer Polytechnic Institute, New York, USA
Pat Wheeler, University of Nottingham, Nottingham, UK
Dehong Xu, Zhejiang University, Hangzhou, China

Managing Editor
Sejin Jung, The Korean Institute of Power Electronics Administrative Office, Seoul, Korea
Journal of Power Electronics

Aims and Scope
The Journal of Power Electronics (JPE) publishes papers of a high technical standard with a suitable balance of practice and theory. It covers a wide range of applications and apparatus in the power electronics field. The scope of the JPE includes the following:

- Low Power Converter
- High Power Converters
- Motor Drives
- Grid and Power Quality
- Energy Management Systems
- Devices and Components
- Consumer Power Electronics
- Emerging Power Electronics

The official abbreviation is J. Power Electron.

Copyright Information

For Authors
As soon as an article is accepted for publication, authors will be requested to assign copyright of the article (or to grant exclusive publication and dissemination rights) to the publisher (respective the owner if other than Springer Nature). This will ensure the widest possible protection and dissemination of information under copyright laws.

More information about copyright regulations for this journal is available at www.springer.com/43236

For Readers
While the advice and information in this journal is believed to be true and accurate at the date of its publication, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may have been made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, on video disks, etc., without first obtaining written permission from the publisher (respective the copyright owner if other than Springer Nature). The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

Springer Nature has partnered with Copyright Clearance Center’s RightsLink service to offer a variety of options for reusing Springer Nature content. For permission to reuse our content please locate the material that you wish to use on link.springer.com or on springerimages.com and click on the permissions link or go to copyright.com and enter the title of the publication that you wish to use. For assistance in placing a permission request, Copyright Clearance Center can be contacted directly via phone: +1-855-239-3415, fax: +1-978-646-8600, or e-mail: info@copyright.com
© The Korean Institute of Power Electronics 2022

Journal Website
www.jpels.org
www.springer.com/43236
For the actual version of record please always check the online version of the publication.

Subscription Information
Journal of Power Electronics is published every month (12 times per year). Volume 22 (12 issues) will be published in 2022.
ISSN: 1598-2092 print
ISSN: 2093-4718 electronic
For information on subscription rates please contact Springer Nature Customer Service Center: customerservice@springernature.com

Advertisements
E-mail contact: anzeigen@springer.com

Disclaimer
Springer Nature publishes advertisements in this journal in reliance upon the responsibility of the advertiser to comply with all legal requirements relating to the marketing and sale of products or services advertised. Springer Nature and the editors are not responsible for claims made in the advertisements published in the journal. The appearance of advertisements in Springer Nature publications does not constitute endorsement, implied or intended, of the product advertised or the claims made for it by the advertiser.

Office of Publication
Springer Nature Singapore Pte Ltd. / Springer Singapore
Springer is part of Springer Science+Business Media

Funding
This work was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education)

Co-Publisher
The Korean Institute of Power Electronics
Journal of Power Electronics
Volume 22 · Number 11 · November 2022

HIGH POWER CONVERTERS
Evaluation of DPWM schemes for Si/SiC three-level hybrid active NPC inverters
H. Zhuge · L. Zhang · X. Lou · Z. Lei · Y. Zou 1825
New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current
J.-Y. Cha · E.-J. Lee · B. Han · K.-B. Lee · B.-M. Han 1836

MOTOR DRIVES
Design of a fault-tolerant system for a multi-motor drive with multiple inverter leg faults
Y. Song · J. Zhao · J. Sun 1848
Simplified model prediction current control strategy for permanent magnet synchronous motor
H. Zhang · S. Zhu · J. Jiang · Q. Wang · A. Wang · D. Jin 1860
On-line identifying stator winding short-circuit approach for a submersible motor based on faulty current monitoring
L. Wang · M. Feng · Z. Tian · Y. Bai · J. Xiu · Z. Wang 1872
Robust model predictive current control for six-phase PMSMS with virtual voltage vectors
M. Yao · J. Peng · X. Sun 1885
Torque ripple reduction for switched reluctance motors using global optimization algorithm
T. Ben · H. Nie · L. Chen · L. Jing · R. Yan 1897
Vibration reduction method of switched reluctance motors with amorphous alloy cores based on inverse-magnetostriction effect
T. Ben · J. Wang · L. Chen · L. Jing · R. Yan 1908
Robust three-vector model predictive torque and stator flux control for PMSM drives with prediction error compensation
Q. Zhou · F. Liu · H. Gong 1917

ENERGY MANAGEMENT SYSTEMS
Joint prediction of internal and external temperatures for cylindrical Li-ion batteries
S. Yu · L. Zhang · A. Wang · L. Ni 1938

CONSUMER POWER ELECTRONICS
Online voltage phase synchronization in receiving coils of multi-input wireless power transfer
Y. Zhao · S. Yang 1947
Simplified DC voltage conscious control of single-phase PFC converters in EV chargers
N. V. Anand · A. J. S. Praneeth · N. Yalla · V. K. Sood 1956

EMERGING POWER ELECTRONICS
Residual current fault type recognition based on SVM and KNN cooperative training
X. Zhang · Y. Wang · Z. Dou · W. Wang · Y. Bai 1966
Characterization of wireless power transfer system with aligned 4-transmitters and 1-receiver
J. S. An · P. H. So · B. H. Lee 1978

Further articles can be found at link.springer.com

Indexed in Astrophysics Data System (ADS), BFI List, CLOCKSS, CNKI, CNPIEC, Dimensions, EBSCO Discovery Service, EI Compendex, Google Scholar, Journal Citation Reports/Science Edition, Korea Citation Index (KCI), Naver, Norwegian Register for Scientific Journals and Series, OCLC WorldCat Discovery Service, ProQuest-ExLibris Primo, ProQuest-ExLibris Summon, SciVerse, SCOPUS, Science Citation Index Expanded (SCI), TD Net Discovery Service, UGC-CARE List (India)

Instructions for Authors are available at www.springer.com/43236
Table of Contents

Journal of Power Electronics Vol. 22, No. 11 November 2022

High Power Converters

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of DPWM schemes for Si/SiC three-level hybrid active NPC inverters</td>
<td>Huizi Zhuge, Li Zhang, Xiutao Lou, Zhengzi Lei, Yuhang Zou</td>
<td>1825</td>
</tr>
<tr>
<td>New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current</td>
<td>Jee-Yoon Cha, Eui-Jae Lee, Byeol Han, Kyo-Beum Lee, Byung-Moon Han</td>
<td>1836</td>
</tr>
</tbody>
</table>

Motor Dives

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of a fault-tolerant system for a multi-motor drive with multiple inverter leg faults</td>
<td>Yujin Song, Jin Zhao, Jiajiang Sun</td>
<td>1848</td>
</tr>
<tr>
<td>Simplified model prediction current control strategy for permanent magnet synchronous motor</td>
<td>Housheng Zhang, Shengjie Zhu, Junjie Jiang, Qingzhung Wang, Ao Wang, Duo Jin</td>
<td>1860</td>
</tr>
<tr>
<td>On-line identifying stator winding short-circuit approach for a submersible motor based on faulty current monitoring</td>
<td>Liguo Wang, Mingliang Feng, Zhenteng Tian, Yang Bai, Jianxin Xu, Zongjie Wang</td>
<td>1872</td>
</tr>
<tr>
<td>Robust model predictive current control for six-phase PMSMS with virtual voltage vectors</td>
<td>Ming Yao, Jingyao Peng, Xiaodong Sun</td>
<td>1885</td>
</tr>
<tr>
<td>Torque ripple reduction for switched reluctance motors using global optimization algorithm</td>
<td>Tong Ben, Heng Nie, Long Chen, Libing Jing, Rongge Yan</td>
<td>1897</td>
</tr>
<tr>
<td>Vibration reduction method of switched reluctance motors with amorphous alloy cores based on inverse-magnetostriction effect</td>
<td>Tong Ben, Jin Wang, Long Chen, Libing Jing, Rongge Yan</td>
<td>1908</td>
</tr>
<tr>
<td>Robust three-vector model predictive torque and stator flux control for PMSM drives with prediction error compensation</td>
<td>Qixun Zhou, Fan Liu, Hao Gong</td>
<td>1917</td>
</tr>
</tbody>
</table>

Grid and Power Quality

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite passivity-based control of DC/DC boost converters with constant power loads in DC Microgrids</td>
<td>Weipeng Liu, Xiaofeng Cui, Jiayao Zhou, Zehua Zhang, Mingxuan Hou, Shengqi Shan, Shang Wu</td>
<td>1927</td>
</tr>
</tbody>
</table>

Energy Management Systems

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint prediction of internal and external temperatures for cylindrical Li-ion batteries</td>
<td>Suoqing Yu, Liping Zhang, Aobing Wang, Liyong Ni</td>
<td>1938</td>
</tr>
</tbody>
</table>

Consumer Power Electronics

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online voltage phase synchronization in receiving coils of multi-input wireless power transfer</td>
<td>Yu Zhao, Shiyou Yang</td>
<td>1947</td>
</tr>
<tr>
<td>Simplified DC voltage sensorless control of single-phase PFC converters in EV chargers</td>
<td>Nidumolu Vijaya Anand, Ammanamananchi Venkata Jaya Sai Praneeth, Naveen Yalla, Vijay K. Sood</td>
<td>1956</td>
</tr>
</tbody>
</table>

Emerging Power Electronics

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual current fault type recognition based on S3VM and KNN cooperative training</td>
<td>Xiangke Zhang, Yajing Wang, Zhenhai Dou, Wei Wang, Yunpeng Bai</td>
<td>1966</td>
</tr>
<tr>
<td>Characterization of wireless power transfer system with aligned 4-transmitters and 1-receiver</td>
<td>Ji-Su An, Pyoung-Ho So, Byoung-Hee Lee</td>
<td>1978</td>
</tr>
</tbody>
</table>