LOW POWER CONVERTERS

Boost-type push–pull converter with reduced switches
A. Gu, W. Sun, G. Zhang, S. Chen, Y. Wang, L. Yang, Y. Zhang 645

Dynamic enhancement of interleaved step-up/step-down DC–DC converters using passive damping networks
E. Geetha, M. Maddah, M.M. Khorasani, A. Rokabi, V. Samavati 657

Soft-switching and low conduction loss current-fed isolated bidirectional DC–DC converter with PWM plus dual phase-shift control
Z. Zhang, S. Xie, Z. Wu, J. Xu 664

HIGH POWER CONVERTERS

Flexible cascaded multilevel inverter with multiple operation modes
Y. Wang, G. Du, J. Liang, M. Qin 675

MOTOR DRIVES

Three vector-based model predictive current control with disturbance feedforward compensation
Y. Xu, H. Li, J. Ren, Y. Zhang 687

Mathematical model and vector control of a six-phase linear induction motor with the dynamic end effect
Y. Han, Z. Nie, J. Xu, J. Zha, J. Sun 698

SV-PWM technique for common-mode voltage elimination of dual-winding fault-tolerant permanent magnet motor drives
J.H. Baik, S.W. Yun, D.S. Kim, C.K. Kwon, J.Y. Yoo 710

Novel modulation method for torque ripple suppression of brushless DC motors based on SIMO DC–DC converter
S. Sun, H. Guo, Y. Zhang, Y. Jia, H. Lv, Q. Song, X. Tang, Y. Zhang 720

GRID AND POWER QUALITY

Fault-tolerant control strategy for open-circuit fault of two-parallel-connected three-phase AC–DC two-level PWM converter
H.K. Ku, J.H. Jung, J.W. Park, J.M. Kim, Y.D. Son 731

Sliding mode and predictive current control strategy of the three-phase Vienna rectifier
X. Feng, Y. Yao, X. Cui, K. Shao, Y. Wang 743

Two-level fault diagnosis RBF networks for auto-transformer rectifier units using multi-source features
Y. Lin, H. Ge, S. Chen, M. Pecht 754

Sensorless vector control of SCIG-basedsmall wind turbine systems using cascaded second-order generalized integrators
A.T. Nguyen, D.-C. Lee 764

Characteristic analysis of parallel-rotor hybrid generator based on exciter types
H.M. Woo, D.-H. Lee 774

Real-time test-bed system development using power hardware-in-the-loop (PHIL) simulation technique for reliability test of DC nano-grid
K.W. Heo, H.J. Choi, J.H. Jung 784

Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL
S.-H. Hwang, S.-W. Seo 794

ENERGY MANAGEMENT SYSTEMS

Isolated three-port DC–DC converter employing ESS to obtain voltage balancing capability for bipolar LVDC distribution system

Cell equalizer for recycling batteries from hybrid electric vehicles
T. Bat-Orgil, B. Dugarjav, T. Shimizu 811

Effective algorithms of a power converter for tidal current power generation system

Contents continued on inside back cover
Aims and Scope

The *Journal of Power Electronics (JPE)* publishes papers of a high technical standard with a suitable balance of practice and theory. It covers a wide range of applications and apparatus in the power electronics field. The scope of the JPE includes the following:

- Low Power Converter
- High Power Converters
- Motor Drives
- Grid and Power Quality
- Energy Management Systems
- Device, Modeling, and Control
- Consumer Power Electronics
- Emerging Power Electronics

The official abbreviation is *J. Power Electron.*

Copyright Information

For Authors

As soon as an article is accepted for publication, authors will be requested to assign copyright of the article (or to grant exclusive publication and dissemination rights) to the publisher (respective the owner if other than Springer Nature). This will ensure the widest possible protection and dissemination of information under copyright laws.

More information about copyright regulations for this journal is available at www.springer.com/43236

For Readers

While the advice and information in this journal is believed to be true and accurate at the date of its publication, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may have been made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, on video disks, etc., without first obtaining written permission from the publisher (respectively the copyright owner if other than Springer Nature). The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

Springer Nature has partnered with Copyright Clearance Center’s RightsLink service to offer a variety of options for reusing Springer Nature content. For permission to reuse our content please locate the material that you wish to use on link.springer.com or on springerimages.com and click on the permissions link or go to copyright.com and enter the title of the publication that you wish to use. For assistance in placing a permission request, Copyright Clearance Center can be contacted directly via phone: +1-855-239-3415, fax: +1-978-646-8600, or e-mail: info@copyright.com

© The Korean Institute of Power Electronics 2020

Journal Website

www.jspels.org
www.springer.com/43236
Electronic edition:
link.springer.com/journal/43236

Subscription Information

Journal of Power Electronics is published six times a year. Volume 20 (6 issues) will be published in 2020.

ISSN: 1598-2092 print
ISSN: 2093-4718 electronic

For information on subscription rates please contact Springer Nature Customer Service Center: customerservice@springernature.com

The Americas (North, South, Central America and the Caribbean)
Springer Nature Journal Fulfillment
233 Spring Street, New York NY 10013-1578, USA
Tel.: 800-SPRINGER (777-4643); 212-460-1500 (outside North America)

Outside the Americas
Springer Nature Customer Service Center
GmbH, Tiergartenstraße 15,
69121 Heidelberg, Germany
Tel.: +49-6221-345-4303

Advertisements

E-mail contact: anzigen@springer.com

Disclaimer

Springer Nature publishes advertisements in this journal in reliance upon the responsibility of the advertiser to comply with all legal requirements relating to the marketing and sale of products or services advertised. Springer Nature and the editors are not responsible for claims made in the advertisements published in the journal. The appearance of advertisements in Springer Nature publications does not constitute endorsement, implied or intended, of the product advertised or the claims made for it by the advertiser.

Office of Publication

Springer Nature Singapore Pte Ltd./Springer Singapore

Springer is part of Springer Science+Business Media

Funding

This work was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education)

Co-Publisher

The Korean Institute of Power Electronics
LOW POWER CONVERTERS

Boost-type push–pull converter with reduced switches
A. Gu, W. Sun, G. Zhang, S. Chen, Y. Wang, L. Yang, Y. Zhang 645

Dynamic enhancement of interleaved step-up/step-down DC–DC converters using passive damping networks
E. Geetha, M. Maddiah, M.M. Khorasani, A. Kakabi, V. Samavati 657

Soft-switching and low conduction loss current-fed isolated bidirectional DC–DC converter with PWM plus dual phase-shift control
Z. Zhang, S. Xie, Z. Wu, J. Xu 664

HIGH POWER CONVERTERS

Flexible cascaded multilevel inverter with multiple operation modes
Y. Wang, G. Du, J. Liang, M. Qin 675

MOTOR DRIVES

Three-vector-based model predictive current control with disturbance feedforward compensation
Y. Xu, H. Li, J. Ren, Y. Zhang 687

Mathematical model and vector control of a six-phase linear induction motor with the dynamic end effect
Y. Han, Z. Nie, J. Xu, J. Zha, J. Sun 698

SVPWM technique for common-mode voltage elimination of dual-winding fault-tolerant permanent magnet motor drives

Novel modulation method for torque ripple suppression of brushless DC motors based on SIMO DC–DC converter
S. Sun, H. Guo, Y. Zhang, Y. Jia, H. Lv, Q. Song, X. Tang, Y. Zhang 720

GRID AND POWER QUALITY

Fault-tolerant control strategy for open-circuit fault of two-parallel-connected three-phase AC–DC two-level PWM converter

Sliding mode and predictive current control strategy of the three-phase Vienna rectifier
X. Feng, Y. Yao, X. Cui, K. Shao, Y. Wang 743

Two-level fault diagnosis RBF networks for auto-transformer rectifier units using multi-source features
Y. Lin, H. Ge, S. Chen, M. Pecht 754

Sensorless vector control of SCIG-based small wind turbine systems using cascaded second-order generalized integrators
A.T. Nguyen, D.-C. Lee 764

Characteristic analysis of parallel-rotor hybrid generator based on exciter types
H.-M. Woo, D.-H. Lee 774

Real-time test-bed system development using power hardware-in-the-loop (PHIL) simulation technique for reliability test of DC nano-grid
K.-W. Hoo, H.-J. Choi, J.-H. Jung 784

Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL
S.-H. Hwang, S.-W. Seo 794

ENERGY MANAGEMENT SYSTEMS

Isolated three-port DC–DC converter employing ESS to obtain voltage balancing capability for bipolar LVDC distribution system
J. Sim, J.-Y. Lee, J.-H. Jung 802

Cell equalizer for recycling batteries from hybrid electric vehicles
T. Bat-Orgil, B. Dogusjav, T. Shimizu 811

Effective algorithms of a power converter for tidal current power generation system

Contents continued on inside back cover
Table of Contents

Journal of Power Electronics Vol. 20, No. 3 May 2020

Low Power Converters

- **Boost-type push-pull converter with reduced switches**
 - Aiyu Gu, Weijie Sun, Guidong Zhang, Sizhe Chen, Yu Wang, Ling Yang, Yun Zhang 645
- **Dynamic enhancement of interleaved step-up/step-down DC-DC converters using passive damping networks**
 - E. Geetha, M. Maddah, M. Mansouri Khosravi, A. Kokabi, V. Samavatian 657
- **Soft-switching and low conduction loss current-fed isolated bidirectional DC-DC converter with PWM plus dual phase-shift control**
 - Zhao Zhang, Shaojun Xie, Zhiying Wu, Jinming Xu 664

High Power Converters

- **Flexible cascaded multilevel inverter with multiple operation modes**
 - Yaoqiang Wang, Guanyu Du, Jun Liang, Ming Qin 675

Motor Drives

- **Three-vector-based model predictive current control with disturbance feedforward compensation**
 - Yanping Xu, Hangke Li, Jinglu Ren, Yanping Zhang 687
- **Mathematical model and vector control of a six-phase linear induction motor with the dynamic end effect**
 - Yi Han, Ziling Nie, Jin Xu, Junjie Zhu, Jun Sun 698
- **SVPWM technique for common-mode voltage elimination of dual-winding fault-tolerant permanent magnet motor drives**
 - Jae-Hyuk Baik, Sang-Won Yun, Dong-Sik Kim, Chun-Ki Kwon, Ji-Yoon Yoo 710
- **Novel modulation method for torque ripple suppression of brushless DC motors based on SIMO DC-DC converter**
 - Shikai Sun, Hui Guo, Yimeng Zhang, Yupeng jia, Hongliang Lv, Qingwen Song, Xiaoyan Tang, Yuming Zhang 720

Grid and Power Quality

- **Fault-tolerant control strategy for open-circuit fault of two-parallel-connected three-phase AC-DC two-level PWM converter**
 - Hyun-Keun Ku, Jun-Hyung Jung, Jin-Woo Park, Jang-Mok Kim, Yung-Dueg Son 731
- **Sliding mode and predictive current control strategy of the three-phase Vienna rectifier**
 - Xingtian Feng, Yuanyuan Tao, Xiao Cui, Kang Shao, Yubin Wang 743
- **Two-level fault diagnosis RBF networks for auto-transformer rectifier units using multi-source features**
 - Yi Lin, Hongjuan Ge, Shuwen Chen, Michael Pecht 754
- **Sensorless vector control of SCIG-based small wind turbine systems using cascaded second-order generalized integrators**
 - Anh Tan Nguyen, Dong-Choong Lee 764
- **Characteristic analysis of parallel-rotor hybrid generator based on exciter types**
 - Hyeon Myeong Woo, Dong-Hee Lee 774
- **Real-time test-bed system development using power hardware-in-the-loop (PHIL) simulation technique for reliability test of DC nano grid**
 - Kyung-Wook Heo, Hyun-Jun Choi, Jee-Hoon Jung 784
Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL

Energy Management Systems

Isolated three-port DC-DC converter employing ESS to obtain voltage balancing capability for bipolar LVDC distribution system

Cell equalizer for recycling batteries from hybrid electric vehicles

Effective algorithms of a power converter for tidal current power generation system

Device, Modeling, and Control

Balanced parallel instantaneous position control of PMDC motors with low-cost position sensors

Emerging Power Electronics

Performance evaluation of GaN FET-based matrix converters with dv/dt filters for variable frequency drive applications