LOW POWER CONVERTERS

Phase lag compensation for improving the stability of LCL-type converters under weak grid condition
J. Wang · G. Pan · J. Ouyang · C. Liu · Y. Zhou · G. Fei 727

High step-up-coupled inductor SEPIC DC–DC converter with input current ripple cancellation
S. W. Lee · H. L. Do 739

HIGH POWER CONVERTERS

Unbalanced control strategy featuring inconsistent sub-module voltage for modular multilevel converter–bidirectional DC–DC converter
P. Chen · F. Xiao · J. Liu · Z. Zhu · Z. Huang 750

Zero voltage switching non-isolated bidirectional DC–DC converter with transient current built-up technique
S. Fan · H. He · S. Chen · J. Duan · J. You · L. Bai 764

MOTOR DRIVES

A vector-splitting method for neutral-point voltage regulation in a three-level inverter
H. Hwang · W. Lee · Y. Park 773

High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives
W. Li · J. Liu · C. Gong 784

Reactive compensation of long primary HTS-linear synchronous machines
K. Guo · Y. Li · L. Shi · Y. Du 796

Pulsewidth modulation method to balance the loss distribution of dual inverter to drive open-end winding motor
K. Kim · Y. Park 809

GRID AND POWER QUALITY

Bidirectional-friendly rectifier control strategy for advanced traction power supply system under unbalanced supply
L. Zeng · P. Han · T. Huang · X. He 821

ENERGY MANAGEMENT SYSTEMS

Fast cycle life evaluation method for ternary lithium-ion batteries based on divided SOC intervals
Q. Wang · J. Sun · H. Wu · W. Qi · H. Jin · L. Ling 831

Comparative analysis of photovoltaic/rechargeable batteries sizing-dependent configurations for optimal energy management strategies in microgrids
Z. Cabrane · J. Kim · K. Yao · S. H. Lee 841

Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
T. K. Pradyumna · K. Cho · M. Kim · W. Choi 850

DEVICES AND COMPONENTS

Optimized junction temperature fluctuation suppression technique for SiC MOSFETs in a wireless charging system
R. Wang · X. Huang · J. Li 859

CONSUMER POWER ELECTRONICS

Predictive charge control for LLC resonant converters
S. Chen · G. Du · Y. Lei · T. Li 870

EMERGING POWER ELECTRONICS

Three-dimensional geometric optimization of WPT coils for coupling coefficient maximization
W. Gao · H. Li · Y. Tang 883

Further articles can be found at link.springer.com

Indexed in Astrophysics Data System (ADS), BIJ List, CiNii, CWR, CNPAC, Dimensions, ESCDO Discovery Service, EI Compendex, Google Scholar, Journal Citation Reports/Science Edition, Korea Citation Index (KCI), Raven, Romanian Register for Scientific Journals and Series, SCOPUS, Thomson Reuters, Web of Science, SCI, TD Net Discovery Service, USGSC CARE List (India)

Instructions for Authors for J. Power Electron. are available at www.springer.com/43236
Journal of Power Electronics

Editor-in-Chief

Kyo-Beum Lee, Ajou University, Suwon, Korea

Editors

Wook-Jin Lee, Publication Editor, Chungnam National University, Daejeon, Korea
Young-Doo Yoon, Publication Editor, Hanyang University, Seoul, Korea
Sung-Jin Choi, University of Ulans, Ulans, Korea
Jee-Hoon Jung, UNIST, Ulans, Korea

Associate Editors

Dukju Ahn, Incheon National University, Incheon, Korea
Seon-Ju Ahn, Chonnam National University, Daejeon, Korea
Jong-Bok Baek, Korea Institute of Energy Research, Daejeon, Korea
Kaushik Basu, Indian Institute of Science, Bengaluru, India
Honnyong Cha, Kyungpook National University, Daegu, Korea
Wu Chen, Southeast University, Nanjing, China
Chun-An Cheng, I-Shou University, Kaoshiung, Taiwan
Younghoon Cho, Konkuk University, Seoul, Korea
Uimin Choi, Seoul National University of Science and Technology, Seoul, Korea
Pooya Davari, Aalborg University, Aalborg, Denmark
Anton Dianov, Samsung Electronics, Suwon, Korea
Xiaojing Guo, Yanshan University, Qinhuangdao, China
Zhiquang Guo, Beijing Institute of Technology, Beijing, China
Peng Han, Ansys, Inc, San Jose, USA
Seon-Hwan Hwang, Kyungnam University, Changwon, Korea
Mehrdad Ahmadi Kamarposhti, Islamic Azad University, Jouybar, Iran
Byung Tae Kim, Kunsan National University, Gunsan, Korea
Jaehong Kim, Chosun University, Gwangju, Korea
Jonghoon Kim, Chonnam National University, Daejeon, Korea
Sungmin Kim, Hanyang University, ERICA Campus, Ansan, Korea
Sangchun Kwak, Chung-ang University, Seoul, Korea
Byoung-Hee Lee, Hanbat National University, Daejeon, Korea
Dong-Hee Lee, Kyungungs University, Busan, Korea
June-Seok Lee, Dankook University, Cheonan, Korea

Kibok Lee, Inha University, Incheon, Korea
Seongjun Lee, Chosun University, Gwangju, Korea
Xiao Li, Beihang University, Beijing, China
Fuxin Liu, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Jianxing Liu, Harbin Institute of Technology, Harbin, China
Hao Ma, Zhejiang University, Hangzhou, China
Saad Mekhilef, University of Malaya, Kuala Lumpur, Malaysia
Jinyeong Moon, Florida State University, Tallahassee, USA
Woonki Na, California State University, Fresno, USA
Minh-Khai Nguyen, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
Joung-Hu Park, Soongsil University, Seoul, Korea
N. Prabaharan, SASTRA Deemed University, Thanjavur, India
Mattia Ricco, Alma Mater Studiorum University of Bologna, Bologna, Italy
Subham Sahoo, Aalborg University, Aalborg, Denmark
Ariya Sangwongwanich, Aalborg University, Aalborg, Denmark
Gab-Su Seo, Power Systems Engineering Center, National Renewable Energy Laboratory, Golden, USA
Jongwon Shin, Chung-Ang University, Seoul, Korea
Kai Song, Harbin Institute of Technology, Harbin, China
Kai Sun, Tsinghua University, Beijing, China
Xiaodong Sun, Jiangsu University, Zhenjiang, China
Gaolin Wang, Harbin Institute of Technology, Harbin, China
Wei Wang, Southeast University, Nanjing, China
Yijie Wang, Harbin Institute of Technology, Harbin, China
Zheng Wang, Southeast University, Nanjing, China
Zhonghao Wei, Beijing Institute of Technology, Beijing, China
Huiqing Wen, Xi’an Jiaotong-Liverpool University, Suzhou, China
Hongfei Wu, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Kang-Hyun Yi, Daegu University, Gyeongsan, Korea
Zhonggang Yin, Xi’an University of Technology, Xi’an, China
Sang-Won Yoon, Hanyang University, Seoul, Korea
Liqiang Yuan, Tsinghua University, Beijing, China
Guoqiang Zhang, Harbin Institute of Technology, Harbin, China
Li Zhang, Hohai University, Nanjing, China
Yongchang Zhang, North China University of Technology, Beijing, China
Xueguang Zhang, Harbin Institute of Technology, Harbin, China
Yun Zhang, Tianjin University, Tianjin, China

Advisory Board

Subhashish Bhattacharya, North Carolina State University, North Carolina, USA
Fred Blaabjerg, Aalborg University, Aalborg, Denmark
Dushan Boroyevich, Virginia Polytechnic Institute and State University, Blacksburg, USA
Liu Chen, University of New Brunswick, New Brunswick, Canada
Po-Tai Cheng, National Tsing Hua University, Hsinchu, Taiwan
Bo-Hyung Cho, Seoul National University, Seoul, Korea
Jaeho Cho, Chungbuk National University, Cheongju, Korea
Ilhami Colak, Nisantasi University, Istanbul, Turkey
Jung-Ik Ha, Seoul National University, Seoul, Korea
Dong-Seok Hyun, Hanyang University, Seoul, Korea
Atsuo Kamawara, Yokohama National University, Yokohama, Japan
Marian P. Kazmierkowski, Warsaw University of Technology, Warsaw, Poland
Ralph Kennel, Technical University of Munich, Munich, Germany
Johan W. Kolar, Swiss Federal Institute of Technology, Zurich, Switzerland
Fujio Kurokawa, Nagasaki Institute of Applied Science, Nagasaki, Japan
Dong-Choon Lee, Yeungnam University, Gyeongsan, Korea
Tsorng-Juu Liang, National Cheng-Kung University, Tainan City, Taiwan
Jinjun Liu, Xi’an Jiaotong University, Xi’an, China
Sanjib Kumar Panda, National University of Singapore, Singapore
Fang Z. Peng, Florida State University, Tallahassee, FL, USA
John Shen, Illinois Institute of Technology, Chicago, USA
Toshihisa Shimizu, University of Technology, Warsaw, Poland
Subhashish Bhattacharya, North Carolina State University, North Carolina, USA
Seong-Ki Sul, Seoul National University, Seoul, Korea
Jian Sun, Seoul National University, Seoul, Korea
Hao Ma, Hohai University, Nanjing, China
Li Zhang, Hohai University, Nanjing, China
Yongchang Zhang, North China University of Technology, Beijing, China
Xueguang Zhang, Harbin Institute of Technology, Harbin, China
Yun Zhang, Tianjin University, Tianjin, China

Managing Editor

Sejin Jung, The Korean Institute of Power Electronics Administrative Office, Seoul, Korea
Aims and Scope
The Journal of Power Electronics (JPE) publishes papers of a high technical standard with a suitable balance of practice and theory. It covers a wide range of applications and apparatus in the power electronics field. The scope of the JPE includes the following:

- Low Power Converter
- High Power Converters
- Motor Drives
- Grid and Power Quality
- Energy Management Systems
- Devices and Components
- Consumer Power Electronics
- Emerging Power Electronics

The official abbreviation is J. Power Electron.

Copyright Information
For Authors
As soon as an article is accepted for publication, authors will be requested to assign copyright of the article (or to grant exclusive publication and dissemination rights) to the publisher (respective the owner if other than Springer Nature). This will ensure the widest possible protection and dissemination of information under copyright laws.

More information about copyright regulations for this journal is available at www.springer.com/43236

For Readers
While the advice and information in this journal is believed to be true and accurate at the date of its publication, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may have been made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, on video disks, etc., without first obtaining written permission from the publisher (respective the copyright owner if other than Springer Nature). The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

Springer Nature has partnered with Copyright Clearance Center's RightsLink service to offer a variety of options for reusing Springer Nature content. For permission to reuse our content please locate the material that you wish to use on link.springer.com or on springerimages.com and click on the permissions link or go to copyright.com and enter the title of the publication that you wish to use. For assistance in placing a permission request, Copyright Clearance Center can be contacted directly via phone: +1-855-239-3415, fax: +1-978-646-8600, or e-mail: info@copyright.com

© The Korean Institute of Power Electronics 2022

Journal Website
www.jpels.org
www.springer.com/43236
For the actual version of record please always check the online version of the publication.

Subscription Information
Journal of Power Electronics is published every month (12 times per year). Volume 22 (12 issues) will be published in 2022.
ISSN: 1598-2092 print
ISSN: 2093-4718 electronic
For information on subscription rates please contact Springer Nature Customer Service Center: customerservice@springernature.com

Disclaimer
Springer Nature publishes advertisements in this journal in reliance upon the responsibility of the advertiser to comply with all legal requirements relating to the marketing and sale of products or services advertised. Springer Nature and the editors are not responsible for claims made in the advertisements published in the journal. The appearance of advertisements in Springer Nature publications does not constitute endorsement, implied or intended, of the product advertised or the claims made for it by the advertiser.

Office of Publication
Springer Nature Singapore Pte Ltd. / Springer Singapore
Springer is part of Springer Science+Business Media

Funding
This work was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education)

Co-Publisher
The Korean Institute of Power Electronics
LOW POWER CONVERTERS
Phase lag compensation for improving the stability of LCL-type converters under weak grid condition
J. Wang · G. Pan · J. Ouyang · C. Liu · Y. Zhou · G. Fei 727
High step-up-coupled inductor SEPIC DC–DC converter with input current ripple cancellation
S. W. Lee · H. L. Do 739

HIGH POWER CONVERTERS
Unbalanced control strategy featuring inconsistent sub-module voltage for modular multilevel converter–bidirectional DC-DC converter
P. Chen · F. Xiao · J. Liu · Z. Zhu · Z. Huang 750
Zero voltage switching non-isolated bidirectional DC-DC converter with transient current built-up technique
S. Fan · H. He · S. Chen · J. Duan · J. You · L. Bai 764

MOTOR DRIVES
A vector-splitting method for neutral-point voltage regulation in a three-level inverter
H. Huang · W. Lee · Y. Park 773
High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives
W. Li · J. Liu · C. Gong 784
Reactive compensation of long primary HTS-linear synchronous machines
K. Guo · Y. Li · L. Shi · Y. Du 796
Pulsewidth modulation method to balance the loss distribution of dual inverter to drive open-end winding motor
K. Kim · Y. Park 809

GRID AND POWER QUALITY
Bidirectional-friendly rectifier control strategy for advanced traction power supply system under unbalanced supply
L. Zeng · F. Han · T. Huang · X. He 821

ENERGY MANAGEMENT SYSTEMS
Fast cycle life evaluation method for ternary lithium-ion batteries based on divided SOC intervals
Q. Wang · J. Sun · H. Wu · W. Qi · H. Jin · L. Ling 831
Comparative analysis of photovoltaic/rechargeable batteries sizing-dependent configurations for optimal energy management strategies in microgrids
Z. Cabrane · J. Kim · K. Yao · S. H. Lee 841
Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
T. K. Pradynsma · K. Cho · M. Kim · W. Choi 850

DEVICES AND COMPONENTS
Optimized junction temperature fluctuation suppression technique for SiC MOSFETs in a wireless charging system
R. Wang · X. Huang · J. Li 859

CONSUMER POWER ELECTRONICS
Predictive charge control for LLC resonant converters
S. Chen · G. Du · Y. Lei · T. Li 870

EMERGING POWER ELECTRONICS
Three-dimensional geometric optimization of WPT coils for coupling coefficient maximization
W. Gao · H. Li · Y. Tang 883

Further articles can be found at link.springer.com.

Indexed in: Astrophysics Data System (ADS), AME, CINA, CNPIEC, Dimensions, ESCDO Discovery Service, EI Compendex, Google Scholar, Journal Citation Reports/Science Edition, Korea Citation Index (KCI), Nanjing University Register for Scientific Journals and Series, OECD WorldCat Discovery Service, Portico, ProQuest Atlantis Press, ProQuest Ebrary, Swets, SCImago, SCOPUS, Science Citation Index Expanded (ISI), TD Net Discovery Service, UGC-CARE List (India)

Instructions for Authors for J. Power Electron. are available at www.springer.com/43236
Table of Contents

Journal of Power Electronics Vol. 22, No. 5 May 2022

Low Power Converters

Phase lag compensation for improving the stability of LCL-type converters under weak grid condition
Jianfeng Wang, Guobing Pan, Jing Ouyang, Chengyao Liu, Yinghao Zhou, Gong Fei 727

High step-up-coupled inductor SEPIC DC–DC converter with input current ripple cancellation
Sin-Woo Lee, Hyun-Lark Do 739

High Power Converters

Unbalanced control strategy featuring inconsistent sub-module voltage for modular multilevel converter–bidirectional DC–DC converter
Peng Chen, Fei Xiao, Jilong Liu, Zhichao Zhu, Zhaojie Huang 750

Zero voltage switching non-isolated bidirectional DC–DC converter with transient current built-up technique
Shaogui Fan, Haifei He, Shang Chen, Jiandong Duan, Jiang You, Longlei Bai 764

Motor Drives

A vector-splitting method for neutral-point voltage regulation in a three-level inverter
Hankyu Hwang, Woosuk Lee, Yongsoon Park 773

High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives
Wenzhen Li, Jinglin Liu, Chao Gong 784

Reactive compensation of long primary HTS-linear synchronous machines
Keyu Guo, Yaohua Li, Liming Shi, Yumei Du 796

Pulsewidth modulation method to balance the loss distribution of dual inverter to drive open-end winding motor
Kihayng Kim, Yongsoon Park 809

Grid and Power Quality

Bidirectional-friendly rectifier control strategy for advanced traction power supply system under unbalanced supply
Li Zeng, Pengcheng Han, Tongyue Huang, Xiaojiong He 821

Energy Management Systems

Fast cycle life evaluation method for ternary lithium-ion batteries based on divided SOC intervals
Qiuting Wang, Jiani Sun, Hong Wu, Wei Qi, Hui Jin, Li Ling 831

Comparative analysis of photovoltaic/rechargeable batteries sizing-dependent configurations for optimal energy management strategies in microgrids
Zineb Cabrane, Jonghoon Kim, Kisoo Yoo, Soo-Hyoung Lee 841

Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
T. K. Pradyumna, Kangcheol Cho, Minseong Kim, Woojin Choi 850
Devices and Components

Optimized junction temperature fluctuation suppression technique for SiC MOSFETs in a wireless charging system Ruoyin Wang, Xueliang Huang, Jiacheng Li 859

Consumer Power Electronics

Predictive charge control for LLC resonant converters

.. Siqiang Chen, Guiping Du, Yanxiong Lei, Tuhuan Li 870

Emerging Power Electronics

Three-dimensional geometric optimization of WPT coils for coupling coefficient maximization

.. Weipeng Gao, Hongchang Li, Yi Tang 883