LOW POWER CONVERTERS

Novel cross-switch seven-level inverter with triple boost capability and self-balancing
J. Zhao · Y. Chen · J. Zeng · L. Wang · J. Liu
1415

Predictive current controller and compensator-based discrete current controller for single-phase bridge inverters
J. Zhou · S. Xu · R. Shao · L. Chang
1427

Primary side control method for constant voltage/current output of series non-compensated inductive wireless transfer systems
X. Ge · Y. Liu
1438

Novel extendable multilevel inverter based on switched-capacitor structure
Y. Wang · J. Ye · R. Xu · Y. Wang · J. Liang
1448

Wide gain boost converter based on LCD cell
Y. Song · Y. Tang · J. Kan · L. Jiang
1461

IPOS three-state boost converter and its volt-second balance method based output voltage sharing control strategy for bipolar DC bus applications
Z. Chen · C. Feng · G. Chen · Y. Chen · X. Zhu
1472

PV front-end isolated voltage multiplier converter for off grid EV charging infrastructure
S. Raizada · V. Verma
1484

HIGH POWER CONVERTERS

Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality
B. Yan · H. Huang · H. Wang
1496

Three-phase modular boost–buck inverter analysis and experimental validation
Y. Han · Z. Wu
1508

Trinary asymmetric cascaded H bridge (1:3:9) multilevel inverter with self-balanced capacitor
A.K. Yarlagadda · V. Verma
1522

MOTOR DRIVES

Transmission efficiency and optimization of the power-confluence magnet planetary gear
Y. Ge · D. Liu
1532

GRID AND POWER QUALITY

Output common mode voltage of a newly combined three-phase full bridge duplex inverter
H. Wang · L. Yuan · Q. Ren
1542

Min-projection strategy with improved dynamic and steady state characteristics for three-phase grid-connected inverters
B. Yang · W. Xiao · F. Xie · B. Zhang · Y. Chen · D. Qiu
1552

DEVICES AND COMPONENTS

Comparison of junction temperature variations of IGBT modules under DC and PWM power cycling test conditions
T. An · Y. Tian · F. Qin · Y. Dai · Y. Fang · P. Chen
1561

Structure of a permanent magnet motor used for electric vehicles to suppress the eddy current effect
M. Zhang · W. Li · W. Xie · L. Zhang
1576

Power metallization degradation monitoring on power MOSFETs by means of concurrent degradation processes
S. De Gasper · M. Nejaf · D. Niaf · A. Basirrrotto
1587

Junction temperature estimation approach based on TSEP in multichip IGBT modules
J. Yang · Y. Che · L. Ran · B. Hu · M. Du
1596

EMERGING POWER ELECTRONICS

Machine learning-based parameter identification method for wireless power transfer systems
H. Zhang · P. Tan · X. Shangguan · X. Zhang · H. Liu
1606

Generalized switched-capacitor multilevel inverter topology with self-balancing capacitors
K. Jena · C. K. Panigrahi · K. K. Gupta · D. K. Das · N. K. Dwarkanath
1617

Matching network design for input impedance optimization of four-coil magnetic resonance coupling wireless power transfer systems
Z. Wang · X. Sun · Q. Zhang · Z. Chen
1627

CORRECTION

Correction to: Wavelet packet transform and improved complete ensemble empirical mode decomposition with adaptive noise based power quality disturbance detection
Y. Mei · Y. Wang · X. Zhang · S. Liu · Q. Wei · Z. Zhu
1638
Aims and Scope

The *Journal of Power Electronics* (JPE) publishes papers of a high technical standard with a suitable balance of practice and theory. It covers a wide range of applications and apparatus in the power electronics field. The scope of the JPE includes the following:

- Low Power Converters
- High Power Converters
- Motor Drives
- Grid and Power Quality
- Energy Management Systems
- Devices and Components
- Consumer Power Electronics
- Emerging Power Electronics

The official abbreviation is *J. Power Electron.*

Copyright Information

For Authors

As soon as an article is accepted for publication, authors will be requested to assign copyright of the article (or to grant exclusive publication and dissemination rights) to the publisher (respectively the owner if other than Springer Nature). This will ensure the widest possible protection and dissemination of information under copyright laws.

More information about copyright regulations for this journal is available at www.springer.com/43236

For Readers

While the advice and information in this journal is believed to be true and accurate at the date of its publication, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may have been made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, on video disks, etc., without first obtaining written permission from the publisher (respectively the copyright owner if other than Springer Nature). The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

Springer Nature has partnered with Copyright Clearance Center’s RightsLink service to offer a variety of options for reusing Springer Nature content. For permission to reuse our content please locate the material that you wish to use on link.springer.com or on springerimages.com and click on the permissions link or go to copyright.com and enter the title of the publication that you wish to use. For assistance in placing a permission request, Copyright Clearance Center can be contacted directly via phone: +1-855-239-3415, fax: +1-978-646-8600, or e-mail: info@copyright.com

© The Korean Institute of Power Electronics 2022

Journal Website

www.jpels.org
www.springer.com/43236

For the actual version of record please always check the online version of the publication.

Subscription Information

Journal of Power Electronics is published every month (12 times per year). Volume 22 (12 issues) will be published in 2022.

ISSN: 1598-2092 print
ISSN: 2093-4718 electronic

For information on subscription rates please contact Springer Nature Customer Service Center: customerservice@springernature.com

Advertisements

E-mail contact: anzeigen@springer.com

Disclaimer

Springer Nature publishes advertisements in this journal in reliance upon the responsibility of the advertiser to comply with all legal requirements relating to the marketing and sale of products or services advertised. Springer Nature and the editors are not responsible for claims made in the advertisements published in the journal. The appearance of advertisements in Springer Nature publications does not constitute endorsement, implied or intended, of the product advertised or the claims made for it by the advertiser.

Office of Publication

Springer Nature Singapore Pte Ltd. / Springer Singapore

Springer is part of Springer Science+Business Media

Funding

This work was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education)

Co-Publisher

The Korean Institute of Power Electronics
Table of Contents
Journal of Power Electronics Vol. 22, No. 9 September 2022

Low Power Converters
Novel cross-switch seven-level inverter with triple boost capability and self-balancing ... Jianxin Zhao, Yuanrui Chen, Jun Zeng, Lintao Wang, Junfeng Liu 1415
Predictive current controller and compensator-based discrete current controller for single-phase bridge inverters ... Jinghua Zhou, Shuang Xu, Riming Shao, Liuchen Chang 1427
Primary side control method for constant voltage/current output of series-none compensated inductive wireless transfer systems .. Xin Ge, Yimin Lu 1438
Novel extensible multilevel inverter based on switched-capacitor structure ... Yaoqiang Wang, Juncheng Ye, Ruohan Ku, Yi Wang, Jun Liang 1448
Wide-gain boost converter based on LCD cell ... Yinghao Song, Yu Tang, Jiarong Kan, Lin Jiang 1461
IPOS three-state boost converter and its volt-second balance method based output voltage sharing control strategy for bipolar DC bus applications ... Zhangyong Chen, Chenchen Feng, Gen Chen, Yong Chen, Xintong Zhu 1472
PV fed front-end isolated voltage multiplier converter for off grid EV charging infrastructure ... Shirish Raizada, Vishal Verma 1484

High Power Converters
Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality ... Bichen Yan, Haihong Huang, Haixin Wang 1496
Three-phase modular boost-buck inverter analysis and experimental validation ... Yongjie Han, Zhihong Wu 1508
Trinary asymmetric cascaded H bridge (1:3:9) multilevel inverter with self-balanced capacitor ... Anil Kumar Yarlagadda, Vimlesh Verma 1522

Motor Dives
Transmission efficiency and optimization of the power-confluence magnet planetary gear ... Yanjun Ge, Dongning Liu 1532

Grid and Power Quality
Output common mode voltage of a newly combined three-phase full-bridge duplex inverter ... Hengli Wang, Lei Yuan, Qiang Ren 1542
Min-projection strategy with improved dynamic and steady state characteristics for three-phase grid-connected inverters ... Bin Yang, Wenxun Xiao, Fan Xie, Bo Zhang, Yanfeng Chen, Dongyuan Qiu 1552

Devices and Components
Comparison of junction temperature variations of IGBT modules under DC and PWM power cycling test conditions Tong An, Yanzhong Tian, Fei Qin, Yanwei Dai, Yanpeng Gong, Pei Chen 1561
Structure of a permanent magnet motor used for electric vehicles to suppress the eddy current effect

Meiwei Zhang, Weili Li, Wanlu Xie, Liangliang Zhang 1576

Power metallization degradation monitoring on power MOSFETs by means of concurrent degradation processes

Sergio De Gasperi, Michael Nelliebel, Dieter Haerle, Andrea Baschirotto 1587

Junction Temperature Estimation Approach Based on TSEPs in Multichip IGBT Modules

Jianxiong Yang, Yanbo Che, Li Ran, Borong Hu, Mingxing Du 1596

Emerging Power Electronics

Machine learning-based parameter identification method for wireless power transfer systems

Hao Zhang, Ping-an Tan, Xu Shangguan, Xulian Zhang, Huadong Liu 1606

Generalized switched-capacitor multilevel inverter topology with self-balancing capacitors

Kasinath Jena, Chinmoy Kumar Panigrahi, Krishna Kumar Gupta, Dhananjay Kumar, Niraj Kumar Dewangan 1617

Matching network design for input impedance optimization of four-coil magnetic resonance coupling wireless power transfer systems

Zhixuan Wang, Xiangdong Sun, Qi Zhang, Zechi Chen 1627
Journal of Power Electronics
Volume 22 · Number 9 · September 2022

LOW POWER CONVERTERS

Novel cross-switch seven-level inverter with triple boost capability and self-balancing
J. Zhao · Y. Chen · J. Zeng · L. Wang · J. Liu 1415
Predictive current controller and compensator-based discrete current controller for single-phase bridge inverters
J. Zhou · S. Xu · R. Shao · L. Chang 1427
Primary side control method for constant voltage/current output of series non-compensated inductive wireless transfer systems
X. Ge · Y. Liu 1438
Novel extensible multilevel inverter based on switched-capacitor structure
Y. Wang · J. Ye · R. Xu · Y. Wang · J. Liang 1448
Wide-band boost converter based on cascaded cell
Y. Song · Y. Tang · J. Kan · L. Jiang 1451
IPSO three-state boost converter and its self-second balance method based output voltage sharing control strategy for bipolar DC bus applications
Z. Cen · C. Feng · Q. Chen · Y. Chen · X. Zhu 1472
PV fed front-end isolated voltage multiplier converter for off grid EV charging infrastructure
S. Raizada · V. Verma 1484

HIGH POWER CONVERTERS

Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality
B. Yan · H. Huang · H. Wang 1496
Three-phase modular boost–buck inverter analysis and experimental validation
Y. Han · Z. Wu 1508
Trinary asymmetric cascaded H bridge (1:3:9) multilevel inverter with self-balanced capacitor
A.K. Yarlagadda · V. Verma 1522

MOTOR DRIVES

Transmission efficiency and optimization of the power-confluence magnet planetary gear
Y. Ge · D. Liu 1532

GRID AND POWER QUALITY

Output common mode voltage of a newly combined three-phase full bridge duplex inverter
H. Wang · L. Yuan · Q. Ren 1542
Min-projection strategy with improved dynamic and steady state characteristics for three-phase grid-connected inverters
B. Yang · W. Xiao · F. Xie · B. Zhang · Y. Chen · D. Qiu 1552

DEVICES AND COMPONENTS

Comparison of junction temperature variations of IGBT modules under DC and PWM power cycling test conditions
T. An · Y. Tian · F. Qin · Y. Dai · Y. Gang · P. Chen 1561
Structure of a permanent magnet motor used for electric vehicles to suppress the eddy current effect
M. Zhang · W. Li · W. Xie · L. Zhang 1576
Power metallization degradation monitoring on power MOSFETs by means of concurrent degradation processes
S. Du · Gasperi · M. Neher · D. Haerle · A. Baschirotto 1587
Junction temperature estimation approach based on TSEP in multichip IGBT modules
J. Yang · Y. Che · L. Ran · B. Hu · M. Du 1596

EMERGING POWER ELECTRONICS

Machine learning-based parameter identification method for wireless power transfer systems
H. Zhang · P. Tan · X. Zhang · Q. Zhang · H. Liu 1606
Generalized switched-capacitor multilevel inverter topology with self-balancing capacitors
K. Jena · C.K. Panigrahi · F. Patel · K. Kabe · N.K. Dewangan 1617
Matching network design for input impedance optimization of four-coil magnetic resonance coupling wireless power transfer systems
Z. Wang · X. Sun · Q. Zhang · Z. Chen 1627

CORRECTION

Correction to: Wavelet packet transform and improved complete ensemble empirical mode decomposition with adaptive noise based power quality disturbance detection
Y. Mei · Y. Wang · X. Zhang · S. Liu · Q. Wei · Z. Zhou 1638

Further articles can be found at link.springer.com

Indexed in: Astrophysics Data System (ADS), BIPLUS, GIOS, CNRIS, CNPQ, Dimensions, ECOI Discovery Service, Elsevier, Google Scholar, Journal Citation Reports/Science Edition, Kanrich Clesticated Index (KCI), Kneiss, Korean Academic Searchable Database (KOS), KOSI, Science Citation Index Expanded (SCI), TD Net Discovery Service, UGC CARE List Index

Instructions for Authors for J. Power Electron. are available at: www.springer.com/43236