사각형입니다.

https://doi.org/10.6113/JPE.2019.19.3.665

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718



Interleaved High Step-Up Boost Converter


Penghui Ma*, Wenjuan Liang*, Hao Chen*, Yubo Zhang*, and Xuefeng Hu


†,*School of Electrical Engineering, Anhui University of Technology, Ma’anshan, China



Abstract

Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.


Key words: Efficiency analysis, High step-up, Low input current ripple, Low output voltage ripple, Voltage balance


Manuscript received Jun. 11, 2018; accepted Jan. 26, 2019

Recommended for publication by Associate Editor Hongfei Wu.

Corresponding Author: 1152830391@qq.com, Tel: +86-13965385829, Anhui University of Technology

*School of Electrical Engineering, Anhui University of Technology, China



Ⅰ. INTRODUCTION

Traditional fossil fuel resources are being rapidly depleted, and their continued use will further aggravate environmental degradation. The development of clean energy systems is crucial. Photovoltaic power generation, wind power generation and fuel cell power generation are important clean energy technologies. Systems using photovoltaic cells and batteries to provide clean power have become increasingly common. Therefore, in order to transfer the energy from traditional photovoltaic cells (12-48V) to a traditional 110V/220V AC power grid, it is necessary to use a DC-DC converter to improve the voltage. To achieve a high voltage gain, a cascaded boost converter had been presented in [1]-[4]. Although a large conversion ratio can be achieved, the voltage stress on the active switch is equivalent to the value of a high output voltage. Some converters employ the switched-capacitor technique to a conventional boost converter for a high conversion ratio [5]-[8]. Although the voltage stress of the power switch is reduced when the gain is increased, the efficiency of the converter is reduced since more power switch devices are used. In addition, the use of multiple switched capacitor modules brings a great deal of impulse current, which greatly reduces the stability of the converter. Switched-inductor technology has been combined with basic boost converters to obtain a high voltage [9]-[11], and the reverse recovery of the output diode is effectively suppressed. However, there are larger ripples on both the high input current and the output voltage, which is harmful to photovoltaic cells and the load.

Considering the low ripple of the interleaved structures for high power applications, several interleaved Boost converters were proposed in [12]-[15]. However, the voltage gain was not high enough to be suitable for low voltage renewing energy generated systems. In [16], [17], transformer technology is used to improve the voltage gain. However, this increases the volume of the converter, and reduces both the power density and efficiency. Coupled-inductors were used in [18]- [21]. However, this resulted in hysteresis loss and eddies current loss, which reduce the efficiency of the converter. In addition, the leakage inductance can easily cause voltage spikes across the switches, and voltage clamping techniques are required to limit the voltage stresses on the switches. Consequently, this increases both the design cost and the control difficulty.

In this paper, a new interleaved boost converter is proposed to achieve a high gain and a high efficiency. The topology of proposed converter is shown in Fig. 1. The converter has the following characteristics. (a) It has a higher step-up ratio with same duty cycles. (b) The voltage stresses of the main switches are very low. (c) It is beneficial for reducing the input current ripple and output voltage ripple. (d) The voltage of output capacitance can be automatically shared without an extra control strategy.


그림입니다.
원본 그림의 이름: image1.emf
원본 그림의 크기: 가로 244pixel, 세로 145pixel

Fig. 1. Topology of the proposed converter.



Ⅱ. OPERATING PRINCIPLES OF THE PROPOSED CONVERTER

To simplify the circuit analysis, the following assumptions are made.

(a) All of the power semiconductors and energy storage components are ideal, which means the on-state resistance of power semiconductors, the forward voltage drop of the diodes, and the equivalent series resistance (ESR) of the inductors and capacitors are ignored.

(b) All of the capacitances are large enough that each of the capacitor voltages can be treated as constant.

(c) The relationship between d1 and d2 can be written as d1=d2=d, where d1 and d2 are the duty cycles of S1 and S2, respectively.

(d) The phase difference between the gate driving signals of S1 and S2 is 180°.

In the circuit analysis, it is assumed that the converter operates in the continuous conduction mode (CCM) and that the duty ratio of the switches is greater than 0.5. Fig. 2 illustrates operational waveforms of the proposed converter in the CCM during one switching cycle. According to Fig. 2, four operation modes exist in each switching cycle of the proposed converter. Fig. 3 shows an equivalent circuit of the converter in different modes.


그림입니다.
원본 그림의 이름: image2.emf
원본 그림의 크기: 가로 199pixel, 세로 274pixel

Fig. 2. Key waveforms of one cycle during CCM operation.


Fig. 3. Equivalent circuit of each mode in the CCM mode. (a) Mode I and III. (b) Mode II. (c) Mode IV.

그림입니다.
원본 그림의 이름: image3.emf
원본 그림의 크기: 가로 244pixel, 세로 144pixel

(a)

그림입니다.
원본 그림의 이름: image4.emf
원본 그림의 크기: 가로 244pixel, 세로 144pixel

(b)

그림입니다.
원본 그림의 이름: image5.emf
원본 그림의 크기: 가로 244pixel, 세로 144pixel

(c)


Mode I and Mode III: In this mode, the switches S1 and S2 are switched on. The diodes D1, D2, D3 and D4 are off. The current flow path is shown in Fig. 3 (a). At this time, the inductances L1 and L2 are charged by the power, and the currents of the inductances L1 and L2 are gradually increased. The capacitances C3 and C4 in series are combined to supply the load R. When the switch S2 is off, the converter operates in the next mode.

Mode II: In this mode, the switch S1 is still in the open state, and the switch S2 is closed. The diodes D1 and D3 are on, and D2 and D4 are off. The current flow path is shown in Fig. 3 (b). At this point, the inductance of L1 is still being charged, and the current of L1 continues to increase. The capacitor C1 is charged by the input power. The input power, the inductor L2 and the capacitor C2 are connected in series to provide energy to the capacitor C4 and the load R. The capacitor C3 releases energy to load R at the same time, and the inductor current iL2 on L2 is decreased. When the switch S2 is switched, the converter operates in mode III. Then the converter operates in mode IV after the switch S1 is closed.

Mode IV: In this mode, the switch S1 is still closed, and the switch S2 is still opened. The diodes D1 and D3 are turned off, and the diodes D2 and D4 are turned on. The current flow path is shown in Fig. 3 (c). At this point, the inductance of L1 is still being charged, and the current of L1 continues to increase. The capacitance C2 is charged by the input power. The input power, the inductance L1 and the capacitance C1 are combined to supply energy to the capacitance C4 and the load R. The capacitance C4 also releases energy to the load R, and the inductor current iL1 on L1 continue to decrease. The inductance L2 is still charged and the current on L2 continues to increase. When the switch tube S1 is opened, the converter operates in mode I again.



Ⅲ. STEADY-STATE PERFORMANCE OF THE PROPOSED CONVERTER


A. Voltage Gain and Device Stress in the CCM Mode

The charge is transferred progressively from the input to the output by charging the voltage multiplier stage capacitors. For a converter with three modes (Fig. 3), the voltage gain can be obtained by applying the volt-second equilibrium principle of the boost inductor in a complete working week.

When the switch S1 is opened, for the inductance L1:

그림입니다.
원본 그림의 이름: CLP00000188251e.bmp
원본 그림의 크기: 가로 496pixel, 세로 93pixel                      (1)

Where T1on is the opening time in one cycle S1, and T1off is the turn off time in one cycle.

From Mode I to Mode III, it can be seen that:

그림입니다.
원본 그림의 이름: CLP000001880001.bmp
원본 그림의 크기: 가로 206pixel, 세로 85pixel                                 (2)

By (1) and (2), it can be found that:

그림입니다.
원본 그림의 이름: CLP000001880002.bmp
원본 그림의 크기: 가로 861pixel, 세로 158pixel      (3)

Where d1 is the switching duty cycle for S1.

When the switch S2 is opened, for the inductance L2:

그림입니다.
원본 그림의 이름: CLP000001880003.bmp
원본 그림의 크기: 가로 516pixel, 세로 98pixel                   (4)

Where T2on is the opening time in one cycle for S2, and T2off is the turn off time in one cycle.

From Modes I, III and IV, it can be seen that:

그림입니다.
원본 그림의 이름: CLP000001880004.bmp
원본 그림의 크기: 가로 216pixel, 세로 86pixel                               (5)

By (4) and (5), it can be found that:

그림입니다.
원본 그림의 이름: CLP000001880005.bmp
원본 그림의 크기: 가로 889pixel, 세로 178pixel     (6)

Where d2 is the switching duty cycle for S2.

By Mode II, it can be seen that the voltage on C1 is:

그림입니다.
원본 그림의 이름: CLP000001880006.bmp
원본 그림의 크기: 가로 1017pixel, 세로 172pixel    (7)

Similarly, the expression of the voltage on the capacitor C2 can be obtained by Mode IV as:

그림입니다.
원본 그림의 이름: CLP000001880007.bmp
원본 그림의 크기: 가로 1013pixel, 세로 170pixel    (8)

By mode IV, the expression of the voltage on the capacitor C3 can be obtained as:

그림입니다.
원본 그림의 이름: CLP000001880008.bmp
원본 그림의 크기: 가로 1171pixel, 세로 168pixel     (9)

In the same way, the expression of the voltage on the capacitor C4 can be obtained by mode II as:

그림입니다.
원본 그림의 이름: CLP00000188000a.bmp
원본 그림의 크기: 가로 1174pixel, 세로 171pixel    (10)

Order d1=d2=d:

그림입니다.
원본 그림의 이름: CLP00000188000b.bmp
원본 그림의 크기: 가로 503pixel, 세로 155pixel                           (11)

According to mode I and mode III, it can be found that the expression of the output voltage is as follows:

그림입니다.
원본 그림의 이름: CLP00000188000c.bmp
원본 그림의 크기: 가로 362pixel, 세로 87pixel                                 (12)

Take formula (11) into the front of the formula:

그림입니다.
원본 그림의 이름: CLP00000188000d.bmp
원본 그림의 크기: 가로 337pixel, 세로 161pixel                                  (13)

Therefore, when the proposed converter operates in the current continuous mode of inductance, the voltage gain is:

그림입니다.
원본 그림의 이름: CLP00000188000e.bmp
원본 그림의 크기: 가로 498pixel, 세로 171pixel                           (14)

Fig. 4 shows the voltage gain of the proposed converter in the CCM compared with the converters proposed in [16] (n=1) and in [12] under different duty cycles.


그림입니다.
원본 그림의 이름: image12.emf
원본 그림의 크기: 가로 282pixel, 세로 235pixel

Fig. 4. Voltage gain comparison.


During CCM operation, the voltage stresses across S1, S2 and D1~D4 are written as:

그림입니다.
원본 그림의 이름: CLP00000188000f.bmp
원본 그림의 크기: 가로 656pixel, 세로 149pixel                     (15)

그림입니다.
원본 그림의 이름: CLP000001880010.bmp
원본 그림의 크기: 가로 969pixel, 세로 151pixel        (16)

Fig. 5 shows a comparison of the normalized voltage stresses of the power components with the converter in [16]. It is concluded that the voltage stress values of the power devices are always lower than the high output voltage. Thus, high- performance power devices, including diodes and switches, can be employed to increase efficiency.


그림입니다.
원본 그림의 이름: image23.emf
원본 그림의 크기: 가로 289pixel, 세로 239pixel

Fig. 5. Normalized voltage stresses of the power components.


According to the working principle, the current ripples of the inductor can be derived as:

그림입니다.
원본 그림의 이름: CLP000001880011.bmp
원본 그림의 크기: 가로 358pixel, 세로 171pixel                  (17)

The average currents of IC1, IC2, IC3 and ICO are zero in the steady-state. Thus, the average currents of the diodes D1 and D3 (ID1 and ID2) are equal to IL2,avg/2; and the average currents of the diodes D2 and D4 (ID3 and ID4) are equal to IL1,avg/2. The current stresses on S and D1~D4 are expressed as:

그림입니다.
원본 그림의 이름: CLP000001880012.bmp
원본 그림의 크기: 가로 857pixel, 세로 155pixel        (18)

그림입니다.
원본 그림의 이름: CLP000001880013.bmp
원본 그림의 크기: 가로 862pixel, 세로 160pixel        (19)


B. Analysis of the Input Current Ripple under the CCM

As shown in Fig. 6(a), at time t1, the inductance current and the input current can be expressed as:

그림입니다.
원본 그림의 이름: CLP000001880014.bmp
원본 그림의 크기: 가로 1222pixel, 세로 166pixel      (20)

그림입니다.
원본 그림의 이름: CLP000001880015.bmp
원본 그림의 크기: 가로 931pixel, 세로 161pixel                 (21)

그림입니다.
원본 그림의 이름: CLP000001880016.bmp
원본 그림의 크기: 가로 1232pixel, 세로 168pixel     (22)

The expression of the input current ripple is obtained as:

그림입니다.
원본 그림의 이름: CLP000001880017.bmp
원본 그림의 크기: 가로 639pixel, 세로 188pixel                             (23)

Assuming L2=nL1:

그림입니다.
원본 그림의 이름: CLP000001880018.bmp
원본 그림의 크기: 가로 607pixel, 세로 188pixel                              (24)

The relationship between the input current ripple and the duty cycle d is given in Fig. 6(b). It can be seen that the inductance value of the converter is designed according to the duty cycle of the converter, and that the zero ripples of the input current can be theoretically realized.


Fig. 6. Input current ripple analysis diagrams.

그림입니다.
원본 그림의 이름: image32.emf
원본 그림의 크기: 가로 356pixel, 세로 198pixel

(a)

그림입니다.
원본 그림의 이름: image33.emf
원본 그림의 크기: 가로 312pixel, 세로 205pixel

(b)


C. Performance Analysis of the Automatic Balance of the Output Voltage of Two Branches

Assuming the duty cycle of the main switch S1 is d1, the duty cycle of the main switch S2 is d2, and d1d2. In addition, the MOSFET and power diode usually have some voltage drops which should be considered in practical circuit designs. Assuming Vd to be the voltage drops, by applying the voltage- second balance to the inductance, the discharging voltages of L1 and L2 can be obtained as:

그림입니다.
원본 그림의 이름: CLP000001880019.bmp
원본 그림의 크기: 가로 556pixel, 세로 168pixel           (25)

그림입니다.
원본 그림의 이름: CLP00000188001a.bmp
원본 그림의 크기: 가로 564pixel, 세로 166pixel           (26)

Two voltage-second equations can be rewritten as:

그림입니다.
원본 그림의 이름: CLP00000188001b.bmp
원본 그림의 크기: 가로 1145pixel, 세로 86pixel          (27)

그림입니다.
원본 그림의 이름: CLP00000188001c.bmp
원본 그림의 크기: 가로 1132pixel, 세로 87pixel          (28)

The voltages across C1 and C2 can be derived as:

그림입니다.
원본 그림의 이름: CLP00000188001d.bmp
원본 그림의 크기: 가로 657pixel, 세로 168pixel                      (29)

그림입니다.
원본 그림의 이름: CLP00000188001e.bmp
원본 그림의 크기: 가로 646pixel, 세로 168pixel                       (30)

When the main switch S1 is turned off, the output voltage of branch 1 can be derived as:

그림입니다.
원본 그림의 이름: CLP000001880020.bmp
원본 그림의 크기: 가로 1213pixel, 세로 266pixel       (31)

Analogously, when the main switch S2 is turned off, the output voltage of branch 2 can be derived as:

그림입니다.
원본 그림의 이름: CLP000001880021.bmp
원본 그림의 크기: 가로 1213pixel, 세로 259pixel        (32)

The output voltage difference between the two branches is:

그림입니다.
원본 그림의 이름: CLP000001880022.bmp
원본 그림의 크기: 가로 323pixel, 세로 84pixel               (33)

According to the voltage–second balance, when the main switches in each branch of the conventional interleaved boost converter have different duty cycles, the branch with the larger duty cycle can output a higher voltage and operates in the continuous current mode. Meanwhile the other branch automatically operates in the discontinuous current mode.

However, since the two branches of the proposed converter have the cross coupling structure of the capacitors C1 and C2, the voltage on the output capacitors series C3 and C4 can be automatically adjusted according to the duty cycle of the main switch to achieve a new balance. Therefore, the voltage gain of each branch is equal, which effectively suppresses the ripple of the output voltage.


D. Performance Analysis of the Automatic Suppression of Output Voltage Ripple

In order to facilitate analysis and calculation, the change process of the output capacitances of the two branches can be simplified as a linear change as shown in Fig. 7.


그림입니다.
원본 그림의 이름: image47.emf
원본 그림의 크기: 가로 365pixel, 세로 197pixel

Fig. 7. Output voltage ripple analysis diagram.


At time t2, the voltage of capacitance and the output voltage can be expressed as:

그림입니다.
원본 그림의 이름: CLP000001880023.bmp
원본 그림의 크기: 가로 1279pixel, 세로 168pixel          (34)

그림입니다.
원본 그림의 이름: CLP000001880024.bmp
원본 그림의 크기: 가로 1007pixel, 세로 164pixel                     (35)

그림입니다.
원본 그림의 이름: CLP000001880025.bmp
원본 그림의 크기: 가로 1278pixel, 세로 167pixel          (36)

The expression of the output voltage ripple can be obtained by:

그림입니다.
원본 그림의 이름: CLP000001880026.bmp
원본 그림의 크기: 가로 652pixel, 세로 205pixel                                    (37)


E. Analysis of Soft-Start

At first, the converter is started in the open-loop state with an interleaved duty cycle of 0.5 as shown in Fig. 8. When starting the converter, the output logic value of the timer is 0, and the closed-loop is invalid during this time. In this process, the capacitors C1 and C4 or C2 and C3 are charged like a basic boost converter, and there is no inrush current due to the input inductors. After a certain delay time, which can be designed freely, the output logic value of the timer is 1, and the converter is only operated at the closed-loop as shown in Fig. 8. In addition, there are no inrush currents for the capacitors C1-4 due to the input inductors.


그림입니다.
원본 그림의 이름: image48.emf
원본 그림의 크기: 가로 428pixel, 세로 249pixel

Fig. 8. Soft start control.


Considering the effect of different delay times, simulated start-up waveforms under different delay times are added as shown in Fig. 9. It can be seen that the capacitors are pre- charged when the duty cycle is 0.5, and that the inrush current can be restrained to a certain extent due to the existence of inductance.


Fig. 9. Simulated waveforms at start-up with different delay times.

그림입니다.
원본 그림의 이름: image49.emf
원본 그림의 크기: 가로 275pixel, 세로 163pixel

(a)

그림입니다.
원본 그림의 이름: image50.emf
원본 그림의 크기: 가로 273pixel, 세로 163pixel

(b)

그림입니다.
원본 그림의 이름: image51.emf
원본 그림의 크기: 가로 275pixel, 세로 164pixel

(c)


F. Small-Signal Model for Stability Analysis

In order to facilitate modeling analysis, the following assumptions are made. First, the converter works in the CCM. Second, the two inductors are consistent which means inductance L1=L2.

The state variables are selected as:

그림입니다.
원본 그림의 이름: CLP000001880028.bmp
원본 그림의 크기: 가로 1036pixel, 세로 97pixel

One cycle of the converter can be divided into three states. In each mode of operation, the circuit is linear and its behavior can easily be described by the state-space model given by:

그림입니다.
원본 그림의 이름: CLP000001880029.bmp
원본 그림의 크기: 가로 732pixel, 세로 160pixel           (38)

그림입니다.
원본 그림의 이름: CLP00000188002a.bmp
원본 그림의 크기: 가로 1394pixel, 세로 876pixel            (39)

그림입니다.
원본 그림의 이름: CLP00000188002b.bmp
원본 그림의 크기: 가로 1416pixel, 세로 911pixel           (40)

그림입니다.
원본 그림의 이름: CLP00000188002c.bmp
원본 그림의 크기: 가로 1429pixel, 세로 861pixel         (41)

In the expressions, rL1, rL2, rC1 ~ rC4 are the parasitic resistors for the inductors (L1 and L2) and capacitors (C1 ~ C4), respectively. When S1 and S2 are switched on, the state-space equation can be expressed as equation (39). After the main switch S2 is turned off, S1 is still on, and the state-space equation is expressed as equation (40). When S1 is turned off, S2 is on, and the state-space equation is expressed as equation (41).

According to the duty ratios of the three switching states, the following operations are performed.

그림입니다.
원본 그림의 이름: CLP00000188002d.bmp
원본 그림의 크기: 가로 977pixel, 세로 283pixel                (42)

The state-space averaging equations are obtained as equation (43).

그림입니다.
원본 그림의 이름: CLP00000188002e.bmp
원본 그림의 크기: 가로 1426pixel, 세로 923pixel        (43)

By adding small signal perturbations, that is 그림입니다.
원본 그림의 이름: CLP00000188002f.bmp
원본 그림의 크기: 가로 247pixel, 세로 59pixel, 그림입니다.
원본 그림의 이름: CLP000001880030.bmp
원본 그림의 크기: 가로 238pixel, 세로 70pixel, 그림입니다.
원본 그림의 이름: CLP000001880031.bmp
원본 그림의 크기: 가로 256pixel, 세로 83pixel, 그림입니다.
원본 그림의 이름: CLP000001880032.bmp
원본 그림의 크기: 가로 245pixel, 세로 74pixel and 그림입니다.
원본 그림의 이름: CLP000001880033.bmp
원본 그림의 크기: 가로 161pixel, 세로 71pixel, 그림입니다.
원본 그림의 이름: CLP000001880034.bmp
원본 그림의 크기: 가로 169pixel, 세로 83pixel, 그림입니다.
원본 그림의 이름: CLP000001880035.bmp
원본 그림의 크기: 가로 155pixel, 세로 71pixel, 그림입니다.
원본 그림의 이름: CLP000001880036.bmp
원본 그림의 크기: 가로 165pixel, 세로 69pixel, the small-signal state-space expression of the converter can be obtained by eliminating the DC terms.

그림입니다.
원본 그림의 이름: CLP000001880037.bmp
원본 그림의 크기: 가로 540pixel, 세로 158pixel          (44)

Where 그림입니다.
원본 그림의 이름: CLP000001880038.bmp
원본 그림의 크기: 가로 984pixel, 세로 77pixel.

The main design parameters of the converter are: input voltage Vin=24V, output voltage Vo=200V, output power Po=200W, switching frequency f=100kHz, duty cycle d=0.6, coupling inductance turn ratio n=1, excitation inductor L1=L2=100uH, and capacitances C1=C2=47uF, C3= C4= 100uF.

The expression of the open loop transfer function is:

그림입니다.
원본 그림의 이름: CLP000001880039.bmp
원본 그림의 크기: 가로 1143pixel, 세로 331pixel        (45)

A frequency response bode plot is obtained from (45) as shown in Fig. 10.


그림입니다.
원본 그림의 이름: image70.emf
원본 그림의 크기: 가로 250pixel, 세로 178pixel

Fig. 10. Bode diagram of a system without compensation.


If the compensator is not introduced into a system, it can be seen from Fig. 10 that the amplitude margin of the system is infinity, the phase angle margin is 91.3° and the cut-off frequency is 339Hz. The system has a positive phase margin, indicating that the system is stable. However, the phase margin is smaller and the stability is poor.

After the compensator was added, the expression of closed-loop transfer function is as follows:

그림입니다.
원본 그림의 이름: CLP00000188003a.bmp
원본 그림의 크기: 가로 1317pixel, 세로 330pixel   (46)

The frequency response bode plot is obtained from (46) as shown in Fig. 11.


그림입니다.
원본 그림의 이름: image71.emf
원본 그림의 크기: 가로 249pixel, 세로 183pixel

Fig. 11. Bode diagram of a system with compensation.


It can be seen from Fig. 11 that the phase margin of the system is increased to 44.7, the amplitude margin is 9.49 dB and the cut-off frequency is 1.4 kHz after the PID compensator is added. From the above parameters, it can be seen that the stability of the system is improved after adding the PID compensator, and the gain margin is kept within the appropriate range. At the same time, the ability of the system to resist input voltage disturbances and load disturbances is greatly enhanced.



Ⅳ. PERFORMANCE OF COMPARISON

A performance of comparison among the interleaved converters published in [12], [16], [19] and the proposed converter is shown in Table I.


TABLE I PERFORMANCE COMPARISON OF DIFFERENT CONVERTERS

Topology

Converter in [12]

Converter in [19]

Proposed Converter

Numbers of switches

2

4

2

Numbers of diodes

3

4

4

Number of capacitors

3

5

4

Number of windings

2

5

2

Voltage gain

그림입니다.
원본 그림의 이름: CLP00000188003b.bmp
원본 그림의 크기: 가로 126pixel, 세로 135pixel

그림입니다.
원본 그림의 이름: CLP00000188003c.bmp
원본 그림의 크기: 가로 149pixel, 세로 122pixel

그림입니다.
원본 그림의 이름: CLP00000188003d.bmp
원본 그림의 크기: 가로 119pixel, 세로 128pixel

Voltage stress of switches

그림입니다.
원본 그림의 이름: CLP00000188003e.bmp
원본 그림의 크기: 가로 70pixel, 세로 128pixel

그림입니다.
원본 그림의 이름: CLP00000188003f.bmp
원본 그림의 크기: 가로 205pixel, 세로 132pixel

그림입니다.
원본 그림의 이름: CLP000001880040.bmp
원본 그림의 크기: 가로 71pixel, 세로 124pixel

The maximum voltage stress on diodes

그림입니다.
원본 그림의 이름: CLP00000188003e.bmp
원본 그림의 크기: 가로 70pixel, 세로 128pixel

VO

그림입니다.
원본 그림의 이름: CLP00000188003e.bmp
원본 그림의 크기: 가로 70pixel, 세로 128pixel

Ripples of input current

low

low

low

Ripples of output voltage (with same output capacitor)

lower

high

lowest


When compared with the converter in [12], the proposed converter doubles the gain while only adding one diode and one capacitor. It also has lower voltage stress and output voltage ripple than the converter in [12]. The converter in [19] achieved a higher voltage gain and soft switching through a coupled inductance technology. However, active or passive clamping circuits are needed to reduce the voltage spikes caused by leakage inductance. The large number of devices reduces the efficiency and is not conducive to improving the power density of the converter. In comparison, the proposed converter has a similar voltage gain, voltage stress and low output voltage ripple while using fewer devices. It is favorable in terms of reliability, circuit volume and cost. Therefore, the proposed converter is a good alternative for applications that require an ultra-step-up voltage gain and a high reliability.



Ⅴ. DESIGN CONSIDERATIONS


A. Inductor Design

The inductors L1 and L2 can be obtained by:

그림입니다.
원본 그림의 이름: CLP000001880041.bmp
원본 그림의 크기: 가로 417pixel, 세로 174pixel         (47)

If the converter is operated in the CCM operation, the inductors L1 and L2 should be larger than LB.


B. Capacitor Design

The capacitor design mainly aims to keep the voltage stresses and fluctuations of the voltage at both ends of the capacitor to within a certain range. The capacitance can be selected by the following formula as:

그림입니다.
원본 그림의 이름: CLP000001880042.bmp
원본 그림의 크기: 가로 454pixel, 세로 167pixel      (48)



Ⅵ. EXPERIMENTAL RESULTS

An experimental prototype circuit of the presented converter is built and tested in the laboratory in order to verify the validity of the theoretical analysis. The components used in the converter are shown in Table II.


TABLE II PROTOTYPE COMPONENTS AND PARAMETERS

Components

Parameters

Input voltage Vin

20~25V

Output voltage VO

200V

Maximum output power P

200W

Switching frequency fs

100kHz

Inductor L1, L2

100uH

Power switch S1,S2

IRFP260N

Diode D1~ D4

DSEI30-06A

Capacitors C1 and C2

47uF/100V

Capacitor C3 and C4

100uF/250V


Figs. 12(a) and 12(b) show waveforms of the currents of the inductors L1 and L2 and the input current iin. It can be seen that the currents iL1 and iL2 are nearly same, and that the input current ripples are very low (ripple rate about 7%) due to the interleaved operation. The theoretical current ripple rate of iin is 5%, which agrees with the experimental result.


Fig. 12. Waveforms of the currents of inductors.

그림입니다.
원본 그림의 이름: image84.emf
원본 그림의 크기: 가로 322pixel, 세로 171pixel

(a)

그림입니다.
원본 그림의 이름: image85.emf
원본 그림의 크기: 가로 323pixel, 세로 173pixel

(b)


Fig. 13 shows the currents of the main switches S1 and S2 and the diodes D1~D4. Fig. 13(c) shows that the current waveforms and the peak values of the two switches are basically equal. Combined with the current waveforms of the inductors L1 and L2 in Fig. 12, it can be concluded that the proposed converter has a better automatic current sharing function.


Fig. 13. Current waveforms of the main switches and diodes.

그림입니다.
원본 그림의 이름: image86.emf
원본 그림의 크기: 가로 321pixel, 세로 172pixel

(a)

그림입니다.
원본 그림의 이름: image87.emf
원본 그림의 크기: 가로 322pixel, 세로 172pixel

(b)

그림입니다.
원본 그림의 이름: image88.emf
원본 그림의 크기: 가로 322pixel, 세로 172pixel

(c)


Figs. 14(a) and 14(b) show waveforms of the voltage stress and current stress of the switches S1 and S2 at an output voltage of 200V. Thus, MOSFETs with low on-resistance and low voltage levels can be used. It is useful to reduce the switching losses and to improve efficiency.


Fig. 14. Waveforms of the voltage current stress of switches.

그림입니다.
원본 그림의 이름: image89.emf
원본 그림의 크기: 가로 322pixel, 세로 172pixel

(a)

그림입니다.
원본 그림의 이름: image90.emf
원본 그림의 크기: 가로 324pixel, 세로 173pixel

(b)


Fig. 15(a) and 15(b) show the voltage stresses on the diodes D1, D2, D3 and D4. It can be seen that the voltage stresses of the diodes D1, D2, D3 and D4 are approximately 100 V, which is equal to half of the output voltage in the steady-state period.


Fig. 15. Waveforms of the voltage stress on diodes.

그림입니다.
원본 그림의 이름: image91.emf
원본 그림의 크기: 가로 321pixel, 세로 172pixel

(a)

그림입니다.
원본 그림의 이름: image92.emf
원본 그림의 크기: 가로 320pixel, 세로 172pixel

(b)


Fig. 16(a) shows the output voltages of the two branches when the main switch duty cycles are d1=0.65 and d2=0.6. Fig. 16(b) shows the output voltages of the two branches when the duty cycles are d1=0.7 and d2=0.6. According to the Fig. 16(a) and 16(b) it can be found that the output voltages of the two branches are always equal, even if the main switch duty ratios are different. The correctness of the theoretical analysis of the automatic balancing of the two branch output voltages is verified.


Fig. 16. Output voltages of the two branches at different duty cycles.

그림입니다.
원본 그림의 이름: image93.emf
원본 그림의 크기: 가로 323pixel, 세로 173pixel

(a)

그림입니다.
원본 그림의 이름: image94.emf
원본 그림의 크기: 가로 323pixel, 세로 173pixel

(b)


Fig. 17(a) shows a soft-start with a too long delay time. Fig. 17(b) shows a soft-start with an appropriate delay time. It can be seen that the different delay times have an obvious influence on the soft-start performance. When the setting of the delay time is appropriate, it can achieve a better soft start effect.


Fig. 17. Waveforms at start-up with different delay times.

그림입니다.
원본 그림의 이름: image95.emf
원본 그림의 크기: 가로 339pixel, 세로 179pixel

(a)

그림입니다.
원본 그림의 이름: image96.emf
원본 그림의 크기: 가로 339pixel, 세로 179pixel

(b)


Fig. 18 shows a dynamic response between 200 W and 135 W due to a (200Ω-300Ω-200Ω) step load variation, and the output voltage is maintained at 200V.


그림입니다.
원본 그림의 이름: image97.emf
원본 그림의 크기: 가로 322pixel, 세로 172pixel

Fig. 18. Experimental waveforms of a step load.


Fig. 19 shows the experimental conversion efficiency of the proposed converter when the switching frequency is 100k. The measured maximum efficiency is about 94.37% at half load. When the output power is low, the decrease in efficiency is due to wire loss, drive loss and constant loss.


그림입니다.
원본 그림의 이름: CLP000001880043.bmp
원본 그림의 크기: 가로 1295pixel, 세로 773pixel

Fig. 19. Efficiency of the proposed converter.



Ⅶ. CONCLUSION

This paper has successfully developed a novel high voltage gain DC–DC converter for low voltage renewable energy systems such as photovoltaic applications. The working principle and steady-state characteristics of the converter are analyzed in detail, and an experimental platform has been developed and tested. The measured maximum efficiency is about 95.7% at half load.

The proposed converter can achieve a high step-up voltage gain and reduce the voltage stress of both the active switches and the diodes, which allows for the use of lower voltage rating MOSFETs and diodes to reduce both the switching and conduction losses. Other characteristics of the converter are: a low output-voltage ripple and a low input-current ripple, which can prevent accelerated reductions it the lifetime of a photovoltaic cell and load. In addition, due to the charge balance of the blocking capacitor, the converter features automatic voltage sharing between C3 and C4 without adding any extra circuitry or complex control methods.



ACKNOWLEDGMENT

The authors gratefully acknowledge the National Natural Science Foundation (51577002), the Top-notch Personnel Foundation of the Anhui Higher Education Institutions of China (gxbjZD13), the Natural Science Foundation of Anhui Province of China (1408085ME80; 1608085MA06) and the Natural Science Foundation of Anhui Education Committee (KJ2012A048) for its financial support.



REFERENCES

[1] M. Bhunia, R. Gupta, and B. Subudhi, “Cascaded DC-DC converter for a reliable standalone PV fed DC load,” in Proc. IICPE, pp. 1-6, 2014.

[2] S.-M. Chen, T.-J. Liang, L.-S. Yang, and J.-F. Chen, “A cascaded high step-up DC-DC converter with single switch for microsource applications,” IEEE Trans. Power Electron, Vol. 26, No. 4, pp. 1146-1153, Apr. 2011.

[3] J. Fu, B Zhang, D. Qiu, and W. Xiao, “A novel single-switch cascaded DC-DC converter of boost and buck-boost converters,” in Proc. European Conference on Power Electronics and Applications, pp. 1-9, 2014.

[4] Y. J. Choi, R. Y. Kim, and T. J. Kim, “A novel active discontinuous PWM control strategy for high efficiency partial switching predictive current-mode control PFC converter,” in Proc. IFFEC 2017-ECCE Asia, 2017, pp. 236-241.

[5] S. Xiong and S. C. Tan, “Cascaded high-voltage-gain bidirectional switched-capacitor DC–DC converters for distributed energy resources applications,” IEEE Trans. Power Electron., Vol. 32, No. 2, pp. 1220-1231, Feb. 2017.

[6] S. Xiong and S.C. Tan, “Family of cascaded high-voltage- gain bidirectional switched-capacitor dc-dc converters,” in Proc. ECCE, pp. 6648-6654, 2015.

[7] S. Wang, K. Liu, L. Qin, and D. Liu, “Multi-level switch-capacitor DC–DC converter: variable voltage gain optimisation issues,” J. Eng., Vol. 2017, No. 13, pp. 1999- 2004, Oct. 2017.

[8] B. Wu, S. Li, K. Smedley, and S. Singer, “A family of two-switch boosting switched-capacitor converters,” IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5413-5424, Oct. 2015.

[9] H. Liu, Hongchen, and F. Li, “A novel high step-up converter with a quasi-active switched-inductor structure for renewable energy systems,” IEEE Trans. Power Electron., Vol. 31, No. 7, pp. 5030-5039, Jul. 2016.

[10] K. W. E Cheng and Y. M. Ye, “Duality approach to the study of switched-inductor power converters and its higher-order variations,” IET Power Electron., Vol. 8, No. 4, pp. 489-496, Aug. 2015.

[11] Y. Tang, D. Fu, T. Wang, and Z. Xu, “Hybrid switched- inductor converters for high step-up conversion,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1480-1490, Mar. 2015.

[12] P. Wang, L. Zhou, Y. Zhang, J. Li, and M. Sumner, “Input- parallel Output-series DC-DC Boost Converter with a wide input voltage range, for fuel cell vehicles,” IEEE Trans. Veh. Technol., Vol. 66, No. 9, pp. 7771-7781, Sep. 2017.

[13] H. Wen and B. Su, “Hybrid-mode interleaved boost converter design for fuel cell electric vehicles,” Energy Convers. Manag., Vol. 122, pp. 477-487, Jun. 2016.

[14] W. Khadmun and W. Subsingha, “High voltage gain interleaved DC boost converter application for photovoltaic generation system,” Energy Procedia, Vol. 34, pp. 390-398, Jun. 2013.

[15] Y. Zhang, Y. Gao, J. Li, and M. Sumner, “Interleaved switched-capacitor bidirectional DC-DC converter with wide voltage-gain range for energy storage systems,” IEEE Trans. Power Electron., Vol. 33, No. 5, pp. 3852-3869, May. 2018.

[16] K. C. Tseng, C. A. Cheng, and C. T. Chen, “High step-up interleaved boost converter for distributed generation using renewable and alternative power sources,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 2, pp. 713-721, Jun. 2017.

[17] R. Ling, G. Zhao, and Q. Huang, “High step-up interleaved boost converter with low switch voltage stress,” Electric Power Syst. Res., Vol. 128, pp. 11-18, Jul. 2015.

[18] G. A. L. Henn, R. N. A. L. Silva, P. P. Praça, L. H. S. C. Barreto, and D. S. Oliveira, “Interleaved-boost converter with high voltage gain,” IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2753-2761, Nov. 2010.

[19] W. Li, X. Xiang, C. Li, W. Li, and X. He, “Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 300-313, Jan. 2013.

[20] Y. Chen, Y. Tone, T. M. Li, and R. H. Liang, “A novel soft-switching interleaved coupled-inductor boost converter with only single auxiliary circuit,” IEEE Trans. Power Electronics, Vol. 33, No. 3, pp. 2267-2281, Mar. 2018.

[21] K. C. Tseng, J. T. Lin, and C. C. Huang, “High step-up converter with three-winding coupled inductor for fuel cell energy source applications,” IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 574-581, Feb. 2015.

[22] J. Chen, S. Hou, T. Sun, F. Deng, and Z. Chen, “A new interleaved double-input three-level boost converter,” J. Power Electron., Vol. 16, No. 3, pp. 925-935, May 2016.



그림입니다.
원본 그림의 이름: image99.jpeg
원본 그림의 크기: 가로 190pixel, 세로 224pixel

Penghui Ma was born in Anhui Province, China, in 1994. He received his M.S. degree from Fuyang Normal University, Fuyang, China, in 2017. He is presently working towards his M.S. degree in the College of Electrical Engineering, Anhui University of Technology, Ma’anshan, China. His current research interests include power electronics, distributed power systems and dc–dc power.


그림입니다.
원본 그림의 이름: image100.jpeg
원본 그림의 크기: 가로 190pixel, 세로 224pixel

Wenjuan Liang was born in Anhui Province, China, in 1993. She received her B.S. degree in Electrical Engineering from Anhui University of Technology, Ma’anshan, China, in 2017, where she is presently working towards her M.S. degree. Her current research interests include power electronics, dc–dc power conversion, the modeling and control of converters, and renewable power generation.


그림입니다.
원본 그림의 이름: image101.jpeg
원본 그림의 크기: 가로 190pixel, 세로 224pixel

Hao Chen was born in Anhui Province, China, in 1991. He received his B.S. degree from Hefei Normal University, Hefei, China, in 2015. He is presently working towards his M.S. degree in the College of Electrical Engineering, Anhui University of Technology, Ma’anshan, China. His current research interests include power electronics, dc–dc power conversion, the modeling and control of converters, and renewable power generation.


그림입니다.
원본 그림의 이름: image102.jpeg
원본 그림의 크기: 가로 190pixel, 세로 224pixel

Yubo Zhang was born in Hebei Province, China, in 1993. He received his B.S. degree in Electrical Engineering from the Hebei University of Engineering, Handan, China, in 2017. He is presently working towards his M.S. degree in Electrical Engineering at the Anhui University of Technology, Ma’anshan, China. His current research interests include dc–dc converters, inverters and distributed power generation.


그림입니다.
원본 그림의 이름: image103.png
원본 그림의 크기: 가로 160pixel, 세로 190pixel

Xuefeng Hu was born in Jiangsu Province, China. He received his M.S. degree in Electronic Engineering from the China University of Mining and Technology, Xuzhou, China, in 2001; and his Ph.D. degree in Electrical Engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2014. He is presently working as a Professor in the Anhui Key Laboratory of Power Electronics and Motion Control Technology, College of Electronic Engineering, Anhui University of Technology, Ma'anshan, China. He is the author or coauthor of more than 30 technical papers. His current research interests include renewable energy systems, dc-dc power conversion, the modeling and control of converters, flexible ac transmission systems and distributed power systems.