사각형입니다.

https://doi.org/10.6113/JPE.2019.19.4.869

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718



Design-Oriented Stability of Outer Voltage Loop in Capacitor Current Controlled Buck Converters


Xi Zhang*, Zhongwei Zhang*, Bocheng Bao, Han Bao*, Zhimin Wu*, Kaiwen Yao*, and Jing Wu*


†,*School of Information Science and Engineering, Changzhou University, Changzhou, China



Abstract

Due to the inherent feedforward of load current, capacitor current (CC) control shows a fast transient response that makes it suitable for the power supplies used in various portable electronic devices. However, considering the effect of the outer voltage loop, the stable range of the duty-cycle is significantly diminished in CC controlled buck converters. To investigate the stability effect of the outer voltage loop on buck converters, a CC controlled buck converter with a proportion-integral (PI) compensator is taken as an example, and its second-order discrete-time model is established. Based on this model, the instability caused by the duty-cycle is discussed with consideration of the outer voltage loop. Then the dynamical effects of the feedback gain of the PI compensator and the equivalent series resistance (ESR) of the output capacitor on the CC controlled buck converter with a PI compensator are studied. Furthermore, the design-oriented closed-loop stability criterion is derived. Finally, PSIM simulations and experimental results are supplied to verify the theoretical analyses.


Key words: Buck converter, Capacitor current (CC) control, Outer voltage loop, Stability


Manuscript received Dec. 9, 2018; accepted Apr. 1, 2019

Recommended for publication by Associate Editor Sangshin Kwak.

Corresponding Author: mervinbao@126.com, Tel: +86-13951230001, Changzhou University

*School of Information Science and Engineering, Changzhou University, China



Ⅰ. INTRODUCTION

Recently, the transient performance of power supplies has come to be regarded as an important index for powering microprocessors or portable electronics devices [1]-[4]. As a result, V2 control featuring a fast transient response has been proposed and has attracted a lot of attention [5]-[9]. However, the stability of V2 control switching dc-dc converters is greatly affected by the equivalent series resistance (ESR) of the output capacitor [10]. When the ESR of the output capacitor is large, V2 control switching dc-dc converters operate in the stable period-1 state and show better control performance. On the other hand, when the ESR of the output capacitor is small, the converter operates in the unstable state, which results in subharmonic and chaotic oscillations [11], [12]. However, a larger ESR of the output capacitor can result in a larger output voltage ripple and a lower steady-state performance of the converter. To improve the stability of V2 control with a small ESR output capacitor, the inductor current ripple was sensed to compensate the output voltage ripple in the control loop, which can deteriorate the load transient performance of the converter [3], [9], [13].

To solve the above problem, capacitor current (CC) control was proposed and widely used in switching dc-dc converters [14]-[19]. The capacitor current is equal to the difference between the inductor current and the output current. Thus, the control has inherent feedforward of the load current and shows a fast transient response [14]. In addition, CC control can eliminate the subharmonic and chaotic oscillations caused by the output capacitor voltage phase lagging behind the inductor current phase, and improve the stability of the converter [17]-[19].

To analyze and design a CC controlled switching dc-dc converter, the output impedance characteristic of the CC controlled buck converter was investigated in [14] and it was concluded that the CC control is equivalent to inductor current control combined with load current feedforward. Based on the describing function method, the stability of the capacitor current fixed off-time controlled buck converter was studied in [18]. In addition, the design optimization methodology for the capacitor current compensated constant on-time V2 control was proposed in [19]. However, the stability effect of the outer voltage loop on the converter was not considered in these studies.

To study the stability effects of the outer voltage loop on converters, some research works were carried out [20]-[24]. Taking the compensator capacitor voltage in the outer voltage loop as a state variable, third-order discrete-time models for a peak-current-mode controlled switching dc-dc converter with a proportion-integral (PI) compensator were established. For these models, complex dynamic behaviors such as coexisting fast-scale and slow-scale instabilities [20], and the complex interaction between the tori and onset of three-frequency quasi-periodicity [21], were revealed. To solve the inaccuracy caused by the approximation used in [20], an accurate discrete-time model combined with the Floquet theory was proposed to analyze the subharmonic oscillation in a V2IC controlled buck converter with a Type-I compensator in [22]. In addition, an improved discrete-time model was proposed to investigate the stability of a peak-current-mode controlled buck LED driver in [23]. However, the design-oriented closed-loop stability criterion has not been found in [20]-[23], which makes it inconvenient to choose the circuit parameters of converters.

By representing the compensator capacitor voltage in the outer voltage loop with a linear combination of the inductor current and the output capacitor, a second-order discrete-time model for a constant on-time current-mode controlled buck converter was proposed in [24], and used to obtains the design-oriented instability condition. In fact, constant on-time control is a kind of pulse frequency modulation control technique with a variable-frequency [24], whereas CC control is a kind of pulse width modulation control technique with a constant-frequency, where the stability can be affected by the duty-cycle. Specifically, CC control uses the capacitor current instead of the inductor current as the inner loop control signal, which can exhibit a fast load transient performance.

In this paper, a CC controlled buck converter with a proportion-integral (PI) compensator is taken as an example. The stability effect of the outer voltage loop on CC control is investigated and a design-oriented closed-loop stability criterion is derived. In Section II, a CC controlled buck converter with a PI compensator is briefly described and its second-order discrete-time model is established. In Section III, the dynamical behaviors of the converter with variations of the duty-cycle, feedback gain of the PI compensator, and ESR of the output capacitor are investigated by bifurcation diagrams, maximal Lyapunov exponents and loci of eigenvalues. In Section IV, by simplifying the second-order discrete-time model, a design-oriented closed-loop stability criterion for a CC controlled buck converter with a PI compensator is derived. Based on this, a stability interface to divide the stable space and unstable space in the space of the feedback gain, output capacitor ESR, and duty-cycle is given. In Section V, a PSIM simulation model and an experimental prototype are implemented to verify the theoretical results. Finally, some conclusions are made in Section VI.



Ⅱ. SYSTEM DESCRIPTION AND ITS SECOND-ORDER DISCRETE-TIME MODEL


A. System Description

A schematic diagram of a CC controlled buck converter with a PI compensator is shown in Fig. 1. The capacitor current iC = iLio is sensed by sensing resistor Rs and taken as the inner control loop. Meanwhile, the proportional- integral (PI) compensator with the feedback gain g = Ra/Rin and the time constant τa = RaCa is used as the outer voltage loop. The CC controlled buck converter with a PI compensator has three state variables, consisting of the inductor current iL(t), the output capacitor voltage vC(t), and the compensation capacitor voltage va(t).


그림입니다.
원본 그림의 이름: image1.emf
원본 그림의 크기: 가로 248pixel, 세로 164pixel

Fig. 1. Schematic diagram of a CC controlled buck converter with a PI compensator.


At the beginning of each switching cycle, the switch S is turned on and the sensed capacitor current RsiC(t) increases. When RsiC(t) increases to the control signal vcon(t), the switch S is turned off. Thus, the switching equation of the CC controlled buck converter with a PI compensator is written as

그림입니다.
원본 그림의 이름: CLP00001c5c001c.bmp
원본 그림의 크기: 가로 402pixel, 세로 86pixel                  (1)

In addition, the control signal can be expressed as

그림입니다.
원본 그림의 이름: CLP00001c5c001d.bmp
원본 그림의 크기: 가로 863pixel, 세로 78pixel         (2)

where Vref is the reference voltage, vo = κ[riL(t) + vC(t)] is the output voltage and κ = R/(R+r).

According to the states of the switch S and the diode D, the two switch states of the CC controlled buck converter with a PI compensator operating in the inductor current continuous conduction mode (CCM) can be identified as

Switch state 1: switch S is on and diode D is off.

Switch state 2: switch S is off and diode D is on.

In the m-th (m = 1, 2) switch state, the state equations of buck converter are described by

그림입니다.
원본 그림의 이름: CLP00001c5c001e.bmp
원본 그림의 크기: 가로 926pixel, 세로 83pixel        (3)

where x(t) = [iL(t) vC(t)]T, and tm–1 and tm denote the time instants at the beginning and end of the m-th switch state, respectively. In addition, the matrices Am and Bm are the state matrix and input matrix, whose expressions are written as

그림입니다.
원본 그림의 이름: CLP00001c5c001f.bmp
원본 그림의 크기: 가로 1290pixel, 세로 356pixel


B. Second-Order Discrete-Time Model

Define the state variable x(t) at the time instant tm–1 as x(tm–1). By solving (3), the state variable x(t) at the time instant tm can be obtained as [24]

그림입니다.
원본 그림의 이름: CLP00001c5c0020.bmp
원본 그림의 크기: 가로 1138pixel, 세로 89pixel     (4)

where τm = tmtm–1 is the operation time interval of the m-th switch state, and the matrixes Pm and Qm are expressed as

그림입니다.
원본 그림의 이름: CLP00001c5c0021.bmp
원본 그림의 크기: 가로 912pixel, 세로 353pixel그림입니다.
원본 그림의 이름: CLP00001c5c0022.bmp
원본 그림의 크기: 가로 1165pixel, 세로 347pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0023.bmp
원본 그림의 크기: 가로 1437pixel, 세로 179pixel 그림입니다.
원본 그림의 이름: CLP00001c5c0024.bmp
원본 그림의 크기: 가로 972pixel, 세로 87pixel

Denote xn = [iL,n, vC,n]T and xn+1 = [iL,n+1, vC,n+1]T to be the sampling values of x = [iL, vC]T at the beginning of the n-th switching cycle and the (n+1)-th switching cycle, respectively. In the n-th switching cycle, RsiC increases to vcon at the time instant t = t1, and the state variable x(t1) is obtained as

그림입니다.
원본 그림의 이름: CLP00001c5c0025.bmp
원본 그림의 크기: 가로 1136pixel, 세로 99pixel     (5)

where ton is the on-time of the n-th switching cycle, which can be calculated numerically by combining (1) and (5).

At t = (n+1)T, i.e. at the end of the n-th switching cycle, the state variable xn+1 is written as

그림입니다.
원본 그림의 이름: CLP00001c5c0026.bmp
원본 그림의 크기: 가로 1371pixel, 세로 95pixel (6)

By referring to [24], the compensation capacitor voltage va(t) at t = t1 and at t = (n+1)T is expressed as

그림입니다.
원본 그림의 이름: CLP00001c5c0027.bmp
원본 그림의 크기: 가로 1171pixel, 세로 157pixel   (7a)

and

그림입니다.
원본 그림의 이름: CLP00001c5c0028.bmp
원본 그림의 크기: 가로 1217pixel, 세로 168pixel   (7b)

where va,n and va,n+1 are sampling values of the compensation capacitor voltage va(t) at the beginning of the n-th and (n+1)-th switching cycles, respectively.

Substituting (7a) into (7b) yields

그림입니다.
원본 그림의 이름: CLP00001c5c0029.bmp
원본 그림의 크기: 가로 1180pixel, 세로 167pixel    (8)




which indicates that va,n+1 is a linear representation of iL,n+1.

Therefore, the second-order discrete-time model of the CC controlled buck converter with a PI compensator in CCM can be unified as

그림입니다.
원본 그림의 이름: CLP00001c5c002a.bmp
원본 그림의 크기: 가로 1225pixel, 세로 96pixel    (9)

It is marked that model (9) is only a second-order discrete-time model, unlike the existing third-order discrete- time model [20].

Based on model (9), the Jacobian of the CC controlled buck converter with a PI compensator for the given equilibrium state can be calculated by

그림입니다.
원본 그림의 이름: CLP00001c5c002b.bmp
원본 그림의 크기: 가로 436pixel, 세로 197pixel                 (10)

where J11, J12, J21 and J22 are derived in the Appendix.

Correspondingly, the maximal Lyapunov exponents of the CC controlled buck converter with a PI compensator are calculated by

그림입니다.
원본 그림의 이름: CLP00001c5c002c.bmp
원본 그림의 크기: 가로 705pixel, 세로 194pixel            (11)

그림입니다.
원본 그림의 이름: CLP00001c5c002d.bmp
원본 그림의 크기: 가로 490pixel, 세로 82pixel               (12)

where Jk is the Jacobian of the converter evaluated along the trajectory, and eig(•) and max(•) are the eigenvalue function and maximal member function, respectively.



Ⅲ. STABILITY EFFECTS WITH VARIATIONS OF SPECIFIC CIRCUIT PARAMETERS

To investigate the dynamic behaviors of the CC controlled buck converter with a PI compensator, the circuit parameters are chosen in Table I.


TABLE I TYPICAL CIRCUIT PARAMETERS FOR THE CC CONTROLLED BUCK CONVERTER WITH A PI COMPENSATOR

Parameters

Significations

Values

Vin

Input voltage

15 V

L

Inductance

50 μH

C

Output capacitance

50 μF

r

Output capacitor ESR

10 mΩ

R

Load resistance

5 Ω

Vref

Reference voltage

5 V

T

Switching cycle

10 µs

Rin

Input resistance

1 kΩ

Ra

Compensation resistance

1 kΩ

Ca

Compensation capacitance

15 nF


A. Instability Caused by Input Voltage

For a buck converter with a constant voltage output, the variation of the duty-cycle D = Vo/Vin (0 < D < 1) can be realized by varying the input voltage Vin. Thus, the stability effect of the duty-cycle on the CC controlled buck converter with a PI compensator can be explored by varying the input voltage. When the input voltage Vin is taken as the bifurcation parameter and the other circuit parameters are given in Table I, bifurcation diagrams and maximal Lyapunov exponents of model (9) are shown in Figs. 2(a) and 2(b), respectively.


Fig. 2. Stability effect with Vin increasing. (a) Bifurcation diagrams of iL,n and vo,n. (b) Maximal Lyapunov exponent.

그림입니다.
원본 그림의 이름: image26.emf
원본 그림의 크기: 가로 250pixel, 세로 171pixel

그림입니다.
원본 그림의 이름: image27.emf
원본 그림의 크기: 가로 246pixel, 세로 171pixel


In Fig. 2, with Vin decreasing, the first period-doubling bifurcation occurs at Vin = 14.43 V and the operation state of the CC controlled buck converter with a PI compensator is from period-1 to period-2, implying the occurrence of instability in the converter. With Vin decreasing further, the operation state changes from period-2, to period-4, to period-8, and then to chaos by successive period-doubling bifurcation and border-collision bifurcation routes.

At the first period-doubling bifurcation point, the duty-cycle is D = Vo/Vin ≈ 0.37, which is less than 0.5. This indicates that the stable range of the duty-cycle is significantly diminished with consideration of the outer voltage loop.


B. Stability Effects of the Feedback Gain and Output Capacitor ESR

According to (2), the control signal generated by the outer voltage loop is related to the feedback gain g and output capacitor ESR r. Thus, the stability effects of the feedback gain g and output capacitor ESR r on the CC controlled buck converter with a PI compensator are stressed.

Based on model (9) and the circuit parameters given in Table I, bifurcation diagrams with variations of g and r are shown in Figs. 3(a) and 3(b), respectively. From Fig. 3, the CC controlled buck converter with a PI compensator goes through a period-doubling bifurcation point at g = 6.41 or r = 87.2 mΩ, which leads to its operation state changing from period-1 to period-2. With g increasing or r decreasing further, the operation state of the converter changes from period-2, to period-4, to period-8, and finally to chaos.

The loci of two eigenvalues, λ1 and λ2, of the CC controlled buck converter with a PI compensator with g increasing or r decreasing are depicted in Fig. 4. The results imply that λ1 and λ2 are two nonzero real eigenvalues. When g increases from 6.0 to 7.0 or r decreases from 80 mΩ to 90 mΩ, λ1 is always located in the unit circle, and λ2 leaves the unit circle via ‒1 at g = 6.41 or r = 87.2 mΩ, resulting in the emergence of period-doubling bifurcation. Accordingly, typical eigenvalues and corresponding operation states are listed in Table II and Table III, respectively.


TABLE II TYPICAL EIGENVALUES AND OPERATION STATES FOR DIFFERENT VALUES OF FEEDBACK GAIN

g

λ1

λ2

Operation state

6.0

‒0.9653

0.2621

stable

6.1494

‒0.9796

0.2536

stable

6.2988

‒0.9940

0.2454

stable

6.4753

‒1.0110

0.2361

unstable

6.6383

‒1.0319

0.2289

unstable

6.7605

‒1.0863

0.2321

unstable


TABLE III TYPICAL EIGENVALUES AND OPERATION STATES FOR DIFFERENT VALUES OF OUTPUT CAPACITOR ESR

r/

λ1

λ2

Operation state

80.0

‒1.0856

0.2367

unstable

81.9

‒1.0714

0.2400

unstable

83.9

‒1.0406

0.2407

unstable

85.9

‒1.0066

0.2412

unstable

87.9

‒0.9977

0.2457

stable

89.9

‒0.9896

0.2502

stable


From Fig. 3 and Fig. 4, it can be found that the feedback gain of the PI compensator and the ESR of the output capacitor have significant influences on the stability of the CC controlled buck converter with a PI compensator.


Fig. 3. Bifurcation diagrams of iL,n and vo,n with increases in the (a) Feedback gain g; (b) Output capacitor ESR r.

그림입니다.
원본 그림의 이름: image28.emf
원본 그림의 크기: 가로 248pixel, 세로 168pixel

그림입니다.
원본 그림의 이름: image29.emf
원본 그림의 크기: 가로 247pixel, 세로 168pixel


Fig. 4. Loci of the eigenvalues λi (i = 1, 2) when the (a) Feedback gain g is increasing; (b) Output capacitor ESR r is increasing.

그림입니다.
원본 그림의 이름: image30.emf
원본 그림의 크기: 가로 245pixel, 세로 173pixel

그림입니다.
원본 그림의 이름: image31.emf
원본 그림의 크기: 가로 245pixel, 세로 173pixel


C. Design-Oriented Closed-Loop Stability Criterion

Based on the condition that the rising slope m1 = (VinVo)/L and falling slope ‒m2 = ‒Vo/L are constant in each switching cycle, the second-order discrete-time model (9) can be approximated as

그림입니다.
원본 그림의 이름: CLP00001c5c002e.bmp
원본 그림의 크기: 가로 1539pixel, 세로 268pixel   (13)

where Io = Vo/R is the averaged output current.

Combining (10) and (13), the Jacobian for the approximate second-order discrete-time model (13) is expressed as

그림입니다.
원본 그림의 이름: CLP00001c5c002f.bmp
원본 그림의 크기: 가로 1200pixel, 세로 267pixel    (14)

where

그림입니다.
원본 그림의 이름: CLP00001c5c0030.bmp
원본 그림의 크기: 가로 1296pixel, 세로 161pixel (15a)

그림입니다.
원본 그림의 이름: CLP00001c5c0031.bmp
원본 그림의 크기: 가로 1306pixel, 세로 168pixel (15b)

In the neighborhood of the instability boundary, there exist the following approximate conditions

그림입니다.
원본 그림의 이름: CLP00001c5c0032.bmp
원본 그림의 크기: 가로 899pixel, 세로 173pixel         (16)

Substituting (16) and κ = R/(R+r) into (15) yields

그림입니다.
원본 그림의 이름: CLP00001c5c0033.bmp
원본 그림의 크기: 가로 1111pixel, 세로 213pixel     (17a)

그림입니다.
원본 그림의 이름: CLP00001c5c0034.bmp
원본 그림의 크기: 가로 1109pixel, 세로 202pixel     (17b)

The two nonzero eigenvalues of (14) are described as

그림입니다.
원본 그림의 이름: CLP00001c5c0035.bmp
원본 그림의 크기: 가로 1341pixel, 세로 126pixel (18)

To ensure normal stable operation, λ1,2 must locate within −1 and 1 [25]. From Section III.B, it is known that the stability of the CC controlled buck converter with a PI compensator is lost by the first period-doubling bifurcation, i.e., λ1 = ‒1 or λ2 = ‒1 is the critical stable condition, which indicates that

그림입니다.
원본 그림의 이름: CLP00001c5c0036.bmp
원본 그림의 크기: 가로 1412pixel, 세로 119pixel

or

그림입니다.
원본 그림의 이름: CLP00001c5c0037.bmp
원본 그림의 크기: 가로 905pixel, 세로 90pixel         (19)

Using (17) and putting the Jacobian elements of (14) into (19), a simplified relation for the circuit parameters of the CC controlled buck converter with a PI compensator is derived as

그림입니다.
원본 그림의 이름: CLP00001c5c0038.bmp
원본 그림의 크기: 가로 1183pixel, 세로 185pixel    (20)

Furthermore, substituting the rising slope m1 = (VinVo)/L and falling slope ‒m2 = ‒Vo/L into (20) and defining gc as a critical feedback gain, the design-oriented closed-loop stability criterion can be given as

그림입니다.
원본 그림의 이름: CLP00001c5c0039.bmp
원본 그림의 크기: 가로 812pixel, 세로 267pixel           (21)

i.e.

그림입니다.
원본 그림의 이름: CLP00001c5c003a.bmp
원본 그림의 크기: 가로 777pixel, 세로 178pixel           (22)

where D = Vo/Vin and = 1 ‒ 2D.

Consequently, for the condition 그림입니다.
원본 그림의 이름: CLP00001c5c003b.bmp
원본 그림의 크기: 가로 662pixel, 세로 194pixel, i.e.

그림입니다.
원본 그림의 이름: CLP00001c5c003c.bmp
원본 그림의 크기: 가로 394pixel, 세로 155pixel               (23)

when

그림입니다.
원본 그림의 이름: CLP00001c5c003d.bmp
원본 그림의 크기: 가로 884pixel, 세로 174pixel        (24)

the CC controlled buck converter with a PI compensator is stable, otherwise it is unstable. It is necessary to note that the feedback gain g of the outer voltage loop as well as the capacitance C and ESR r of the output capacitor can affect the stability of the buck converter when the outer voltage loop is closed, which has not been previously considered [25].

Based on (23), (24) and the circuit parameters given in Table I, an interface to divide the stable space and unstable space in the g-r-D space is obtained by using MATLAB software, as shown in Fig. 5. It is indicated that the stable range of the duty-cycle is significantly diminished with the feedback gain increasing or the output capacitor ESR decreasing.



Ⅳ. CIRCUIT SIMULATIONS AND EXPERIMENTAL VERIFICATIONS


A. PSIM Circuit Simulations

According to Fig. 5, six kinds of operation conditions with different values of the feedback gain g, output capacitor ESR r and duty-cycle D are chosen in Table IV. Using PSIM software and the circuit parameters given in Table I, simulation results for the six kinds of operation conditions given in Table IV are given in Figs. 6-8, where (a1) and (b1) are time-domain waveforms, and (a2) and (b2) are phase plane trajectories.


그림입니다.
원본 그림의 이름: image48.emf
원본 그림의 크기: 가로 283pixel, 세로 193pixel

Fig. 5. Stability interface used to divide the stable space and unstable space in the g-r-D space.


TABLE IV SIX KINDS OF OPERATION CONDITIONS FOR THE CC CONTROLLED BUCK CONVERTER WITH A PI COMPENSATOR

Parameters

Stable space points

Unstable space points

g (Fig.6)

(6, 10 mΩ, 0.33)

(7, 10 mΩ, 0.33)

r (Fig.7)

(13, 90 mΩ, 0.33)

(13, 40 mΩ, 0.33)

D (Fig.8)

(1, 10 mΩ, 0.33)

(1, 10 mΩ, 0.49)


In Figs. 6-8, when (g, r, D) are located in the stable space, the CC controlled buck converter with a PI compensator operates in the period-1 oscillation state, as shown in Figs. 6(a)‒8(a). On the other hand, when (g, r, D) are located in the unstable space, the converter operates in the subharmonic oscillation state, as shown in Figs. 6(b)‒8(b).


Fig. 6. PSIM simulations under different values of g. (a) (g, r, D) = (6, 10 mΩ, 0.33). (b) (g, r, D) = (7, 10 mΩ, 0.33).

그림입니다.
원본 그림의 이름: image49.emf
원본 그림의 크기: 가로 229pixel, 세로 165pixel

그림입니다.
원본 그림의 이름: image50.emf
원본 그림의 크기: 가로 237pixel, 세로 166pixel

그림입니다.
원본 그림의 이름: image51.emf
원본 그림의 크기: 가로 234pixel, 세로 166pixel

그림입니다.
원본 그림의 이름: image52.emf
원본 그림의 크기: 가로 237pixel, 세로 164pixel


Fig. 7. PSIM simulations under different values of r. (a) (g, r, D) = (13, 90 mΩ, 0.33). (b) (g, r, D) = (13, 40 mΩ, 0.33).

그림입니다.
원본 그림의 이름: image53.emf
원본 그림의 크기: 가로 230pixel, 세로 166pixel

그림입니다.
원본 그림의 이름: image54.emf
원본 그림의 크기: 가로 235pixel, 세로 165pixel

그림입니다.
원본 그림의 이름: image55.emf
원본 그림의 크기: 가로 230pixel, 세로 167pixel

그림입니다.
원본 그림의 이름: image56.emf
원본 그림의 크기: 가로 236pixel, 세로 165pixel


Fig. 8. PSIM simulations under different values of D. (a) (g, r, D) = (1, 10 mΩ, 0.33). (b) (g, r, D) = (1, 10 mΩ, 0.49).

그림입니다.
원본 그림의 이름: image57.emf
원본 그림의 크기: 가로 230pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image58.emf
원본 그림의 크기: 가로 234pixel, 세로 164pixel

그림입니다.
원본 그림의 이름: image59.emf
원본 그림의 크기: 가로 230pixel, 세로 168pixel

그림입니다.
원본 그림의 이름: image60.emf
원본 그림의 크기: 가로 236pixel, 세로 162pixel


To validate the accuracy of the stability interface in the g-r-D space shown in Fig. 5, two sets of circuit parameters near the point (g, r, D) = (4.29, 15mΩ, 0.4) on the stability interface are chosen as (g, r, D) = (4.2, 15mΩ, 0.4) and (g, r, D) = (4.4, 15mΩ, 0.4). According to Fig. 5, it is known that (g, r, D) = (4.2, 15mΩ, 0.4) are located in the stable space, whereas (g, r, D) = (4.4, 15mΩ, 0.4) are located in the unstable space. For the two sets of circuit parameters, PSIM simulation results are given in Fig. 9(a) and 9(b). As shown in Fig. 9(a), the CC controlled buck converter with a PI compensator for (g, r, D) = (4.2, 15 mΩ, 0.4) operates in the stable periodic oscillation state. However, as shown in Fig. 9(b), for (g, r, D) = (4.4, 15 mΩ, 0.4), it operates in the unstable subharmonic oscillation state.


Fig. 9. PSIM simulations under two sets of circuit parameters near the stability interface. (a) (g, r, D) = (4.2, 15 mΩ, 0.4). (b) (g, r, D) = (4.4, 15 mΩ, 0.4).

그림입니다.
원본 그림의 이름: image61.emf
원본 그림의 크기: 가로 229pixel, 세로 169pixel

그림입니다.
원본 그림의 이름: image62.emf
원본 그림의 크기: 가로 235pixel, 세로 167pixel

그림입니다.
원본 그림의 이름: image63.emf
원본 그림의 크기: 가로 230pixel, 세로 168pixel

그림입니다.
원본 그림의 이름: image64.emf
원본 그림의 크기: 가로 236pixel, 세로 164pixel


It can be concluded from Figs. 6-9 that when the outer voltage loop is considered, some of the circuit parameters including the feedback gain, output capacitor ESR, and duty cycle have great dynamic effects on the stability of the CC controlled buck converter with a PI compensator. A small feedback gain, a large output capacitor ESR, and a small duty cycle are better for the normal stable operation of the CC controlled buck converter with a PI compensator. Therefore, the PSIM simulation results validate the theoretical analyses.


B. Circuit-Implemented Experimental Verifications

To verify the validity of the PSIM simulation results, an experimental prototype of the CC controlled buck converter is built in the lab, as shown in Fig. 10. In the prototype, a IRF540 MOSFET, a MBR2045CT, and a LM319 are used as the switch, the diode, and the comparator. Meanwhile, an LT1357 is used as the operational amplifier to construct the PI compensator.


그림입니다.
원본 그림의 이름: image65.emf
원본 그림의 크기: 가로 269pixel, 세로 181pixel

Fig. 10. Photograph of the experimental prototype


Based on the circuit parameters in Table I, experimental results for the six sets of circuit parameters given in Table IV are shown in Figs. 11-14, where (a1) and (b1) are time-domain waveforms, and (a2) and (b2) are phase plane trajectories. When the chosen circuit parameters are located in the stable space, the CC controlled buck converter with a PI compensator operates in the stable period-1 oscillation state, as shown in Figs. 11(a)-14(a). However, when the chosen circuit parameters are located in the unstable space, the converter operates in the unstable subharmonic oscillation state, as shown in Figs. 11(b)-14(b). Consequently, the experimental results given in Figs. 11-14 validate the PSIM simulations given in Figs. 6-9.


Fig. 11. Experimental results under different values of g. (a) (g, r, D) = (6, 10 mΩ, 0.33). (b) (g, r, D) = (7, 10 mΩ, 0.33).

그림입니다.
원본 그림의 이름: image66.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image67.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image68.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image69.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel


Fig. 12. Experimental results under different values of r. (a) (g, r, D) = (13, 90 mΩ, 0.33). (b) (g, r, D) = (13, 40 mΩ, 0.33).

그림입니다.
원본 그림의 이름: image70.emf
원본 그림의 크기: 가로 193pixel, 세로 169pixel

그림입니다.
원본 그림의 이름: image71.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image72.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image73.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel


Fig. 13. Experimental results under different values of D. (a) (g, r, D) = (1, 10 mΩ, 0.33). (b) (g, r, D) = (1, 10 mΩ, 0.49).

그림입니다.
원본 그림의 이름: image74.emf
원본 그림의 크기: 가로 193pixel, 세로 169pixel

그림입니다.
원본 그림의 이름: image75.emf
원본 그림의 크기: 가로 193pixel, 세로 169pixel

그림입니다.
원본 그림의 이름: image76.emf
원본 그림의 크기: 가로 212pixel, 세로 172pixel

그림입니다.
원본 그림의 이름: image77.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel


Fig. 14. Experimental results under two sets of circuit parameters near the stability interface. (a) (g, r, D) = (4.2, 15 mΩ, 0.4). (b) (g, r, D) = (4.4, 15 mΩ, 0.4).

그림입니다.
원본 그림의 이름: image78.emf
원본 그림의 크기: 가로 193pixel, 세로 169pixel

그림입니다.
원본 그림의 이름: image79.emf
원본 그림의 크기: 가로 193pixel, 세로 169pixel

그림입니다.
원본 그림의 이름: image80.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel

그림입니다.
원본 그림의 이름: image81.emf
원본 그림의 크기: 가로 193pixel, 세로 170pixel



Ⅴ. CONCLUSIONS

In this paper, a second-order discrete-time model of the CC controlled buck converter with a PI compensator is established, upon which the instability of the converter caused by the duty-cycle is discussed and the stability effects of the feedback gain of the PI compensator and the ESR of the output capacitor on the converter are studied. By simplifying the second-order discrete-time model, a design-oriented closed-loop stability criterion is derived, upon which a stability interface used to divide the stable space and the unstable space in the space of the feedback gain, output capacitor ESR, and duty-cycle is given. Theoretical analyses indicated that the stable range of the duty-cycle of the CC controlled buck converter with a PI compensator is significantly diminished with the feedback gain of the PI compensator increasing or the ESR of the output capacitor decreasing, which is verified by PSIM simulations and circuit-implemented experimental results. The results in this paper provide a guideline for choosing the circuit parameters of CC controlled buck converters.



APPENDIX

The elements of the Jacobian in (10) are described as follows.

Let:

그림입니다.
원본 그림의 이름: CLP00001c5c003e.bmp
원본 그림의 크기: 가로 1340pixel, 세로 182pixel

그림입니다.
원본 그림의 이름: CLP00001c5c003f.bmp
원본 그림의 크기: 가로 1465pixel, 세로 156pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0040.bmp
원본 그림의 크기: 가로 715pixel, 세로 167pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0041.bmp
원본 그림의 크기: 가로 1337pixel, 세로 162pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0042.bmp
원본 그림의 크기: 가로 1120pixel, 세로 297pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0043.bmp
원본 그림의 크기: 가로 732pixel, 세로 186pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0044.bmp
원본 그림의 크기: 가로 1160pixel, 세로 173pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0045.bmp
원본 그림의 크기: 가로 1068pixel, 세로 176pixel

where

그림입니다.
원본 그림의 이름: CLP00001c5c0046.bmp
원본 그림의 크기: 가로 1258pixel, 세로 165pixel

as well as

그림입니다.
원본 그림의 이름: CLP00001c5c0047.bmp
원본 그림의 크기: 가로 816pixel, 세로 224pixel

Thus

그림입니다.
원본 그림의 이름: CLP00001c5c0048.bmp
원본 그림의 크기: 가로 972pixel, 세로 186pixel

그림입니다.
원본 그림의 이름: CLP00001c5c0049.bmp
원본 그림의 크기: 가로 1026pixel, 세로 179pixel

where

그림입니다.
원본 그림의 이름: CLP00001c5c004a.bmp
원본 그림의 크기: 가로 1580pixel, 세로 303pixel

그림입니다.
원본 그림의 이름: CLP00001c5c004b.bmp
원본 그림의 크기: 가로 1568pixel, 세로 297pixel

그림입니다.
원본 그림의 이름: CLP00001c5c004c.bmp
원본 그림의 크기: 가로 1337pixel, 세로 174pixel

그림입니다.
원본 그림의 이름: CLP00001c5c004d.bmp
원본 그림의 크기: 가로 1495pixel, 세로 201pixel



ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China under grant no. 51777016, the Natural Science Foundation for colleges and universities in Jiangsu Province, China under grant no. 18KJB470002, the Natural Science Foundation of Changzhou, Jiangsu Province, China under grant no. CJ20180031, and Changzhou University Talent Introduction Fund for Scientific Research under grant no. ZMF18020067.



REFERENCES

[1] K. I. Wu, B. T. Hwang, and C. C. P. Chen, “Synchronous double-pumping technique for integrated current-mode PWM DC-DC converters demand on fast-transient response,” IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 849-865, Jan. 2017.

[2] J. P. Wang and J. P. Xu, “Peak current mode bifrequency control technique for switching dc-dc converters in DCM with fast transient response and low EMI,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1876-1884, Apr. 2012.

[3] T. Qian and W. Wu, “Analysis of the ramp compensation approaches to improve stability for buck converter with constant on-time control,” IET Power Electron., Vol. 5, No. 2, pp. 196-204, Feb. 2012.

[4] Y. S. Hwang, A. Liu, Y. B. Chang, and J. J. Chen, “A high- efficiency fast-transient-response buck converter with analog- voltage-dynamic-estimation techniques,” IEEE Trans. Power Electron., Vol. 30, No. 7, pp. 3720-3730, Jul. 2015.

[5] D. Goder and W. R. Pelletier, “V2 architecture provides ultra-fast transient response in switch mode power supplies,” in Proc. High Frequency Power Convers. Conf., pp. 19-23, 1996.

[6] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 829-838, Apr. 2010.

[7] G. H. Zhou, J. P. Xu, J. Sha, and Y. Y. Jin, “Valley V2 control technique for switching converters with fast transient response,” in Proc. IEEE 8th International Conference on Power Electronics-ECCE Asia, pp. 2788-2791, 2011.

[8] G. H. Zhou, J. P. Xu, and J. P. Wang, “Constant-frequency peak-ripple based control of buck converter in CCM: Review, unification, and duality,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1280-1291, Mar. 2014.

[9] S. L. Tian, F. C. Lee, Q. Li, and Y. Y. Yan, “Unified equivalent circuit model and optimal design of V2 controlled buck converters,” IEEE Trans. Power. Electron., Vol. 31, No. 2, pp. 1734-1744, Feb. 2016.

[10] R. Redl and J. Sun, “Ripple-based control of switching regulators — An overview,” IEEE Trans. Power Electron., Vol. 24, No. 12, pp. 2669-2680, Dec. 2009.

[11] J. Li and F. C. Lee, “Modeling of V2 current-mode control,” IEEE Trans. Circuits and Systems I: Regulator Papers, Vol. 57, No. 9, pp. 2552-2563, Sep. 2010.

[12] J. P. Wang, B. C. Bao, J. P. Xu, G. H. Zhou, and W. Hu, “Dynamical effects of equivalent series resistance of output capacitor in constant on-time controlled buck converter,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1759-1768, May 2013.

[13] S. L. Tian, F. C. Lee, P. Mattavelli, and Y. Y. Yan, “Small-signal analysis and optimal design of constant frequency V2 control,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1724-1733, Mar. 2015.

[14] G. K. Schoneman and D. M. Mitchell, “Output impedance considerations for switching regulators with current- injected control,” IEEE Trans. Power Electron., Vol. 4, No. 1, pp. 25-35, Jan. 1989.

[15] M. Viejo, P. Alou, J. Oliver, O. Garcia, and J. Cobos, “Fast control technique based on peak current mode control of the output capacitor current,” in Proc. IEEE Energy Covers. Congr. Expo., pp. 3396-3402, 2010.

[16] M. Viejo, P. Alou, J. Oliver, O. Garcia, and J. Cobos, “V2IC control: a novel control technique with very fast response under load and voltage steps,” in Proc. IEEE 26th Annu. Appl. Power Electron. Conf. Expo., pp. 231-237, 2011.

[17] Y. Y. Yan, P. H. Liu, F. C. Lee, Q. Li, and S. L. Tian, “V2 control with capacitor current ramp compensation using lossless capacitor current sensing', in Proc IEEE Energy Covers. Congr. Expo., pp. 117-124, 2013.

[18] X. Zhang, J. P. Xu, G. H. Zhou, and Y. M. Chen, “Capacitor current fixed off-time control for buck converter with fast response and ESR of output capacitor independence,” in Proc IEEE 8th International Power Electron. Motion Control Conference-ECCE Asia, pp. 1166-1169, 2016.

[19] Y. Y. Yan, F. C. Lee, S. L. Tian, and P. H. Liu, “Modeling and design optimization of capacitor current ramp compensated constant on-time V2 control,” IEEE Trans. Power Electron., Vol. 33, No. 8, pp. 7288-7296, Aug. 2018.

[20] Y. F. Chen, C. K. Tse, S. S. Qiu, L. Lindenmüller, and W. Schwarz, “Coexisting fast-scale and slow-scale instability in current-mode controlled DC/DC converters: analysis, simulation and experimental results,” IEEE Trans. Circuits and Systems I: Regular Papers, Vol. 55, No. 10, pp. 3335-3348, Nov. 2008.

[21] D. Giaouris, S. Banerjee, O. Imrayed, K. Mandal, B. Zahawi, and V. Pickert, “Complex interaction between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost converter,” IEEE Trans. Circuits and Systems I: Regular Papers, Vol. 59, No. 1, pp. 207-214, Jan. 2012.

[22] J. Cortés, V. Šviković, P. Alou, J. A. Oliver, J. A. Cobos, and R. Wisniewski, “Accurate analysis of subharmonic oscillations of V2 and V2Ic controls applied to buck converter,” IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 1005-1018, Feb. 2015.

[23] M. R. Leng, G. H. Zhou, S. H. Zhou, K. T. Zhang, and S. G. Xu, “Stability analysis for peak current-mode controlled buck LED driver based on discrete-time modeling,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 6, No. 3, pp. 1567-1580, Sep. 2018.

[24] X. Zhang, J. P. Xu, J. H. Wu, B. C. Bao, G. H. Zhou, and K. T. Zhang, “Reduced-order mapping and design-oriented instability for constant on-time current-mode controlled buck converters with a PI compensator,” J. Power Electron., Vol. 17, No. 5, pp. 1298-1307, Sep. 2017.

[25] B. C. Bao, G. H. Zhou, J. P. Xu, and Z. Liu, “Unified classification of operation-state regions for switching converters with ramp compensation,” IEEE Trans. Power Electron., Vol. 26, No. 7, pp. 1968-1975, Jul. 2011.



그림입니다.
원본 그림의 이름: image105.jpeg
원본 그림의 크기: 가로 147pixel, 세로 174pixel

Xi Zhang received his B.S. degree in Electronic Science and Technology from the Changshu Institute of Technology, Suzhou, China, in 2010; his M.S. degree in Computer Application Technology from Changzhou University, Changzhou, China, in 2013; and his Ph.D. degree in Electrical Engineering from Southwest Jiaotong University, Chengdu, China, in 2017. He is presently working as a Lecturer in the School of Information Science and Engineering, Changzhou University. His current research interests include the control techniques and dynamic modeling of switching power converters.


그림입니다.
원본 그림의 이름: image106.emf
원본 그림의 크기: 가로 87pixel, 세로 102pixel

Zhongwei Zhang received his B.S. degree in Electronic Information Engineering from Changzhou University, Changzhou, China, in 2018, where he is presently working towards his M.S. degree in Computer Application Technology. His current research interests include the control techniques and modeling of switching power converters.


그림입니다.
원본 그림의 이름: image107.png
원본 그림의 크기: 가로 158pixel, 세로 198pixel

Bocheng Bao received his B.S. and M.S. degrees in Electronic Engineering from the University of Electronics Science and Technology of China, Chengdu, China, in 1986 and 1989, respectively. He received his Ph.D. degree from the Department of Electronic Engineering, Nanjing University of Science and Technology, Nanjing, China, in 2010. He has more than 20 years of experience in industry and has worked for several enterprises serving as Senior Engineer and General Manager. From June 2008 to January 2011, he was a Professor in the School of Electrical and Information Engineering, Jiangsu Teachers University of Technology, Changzhou, China. He is presently working as a Professor in the School of Information Science and Engineering, Changzhou University, Changzhou, China. His current research interests include bifurcation, chaos, the analysis and simulation of power electronic circuits, and nonlinear circuits and systems.


그림입니다.
원본 그림의 이름: image108.jpeg
원본 그림의 크기: 가로 190pixel, 세로 224pixel

Han Bao received his B.S. degree from the Jiangxi University of Finance and Economics, Nanchang, China, in 2015; and his M.S. degree from Changzhou University, Changzhou, China, in 2018. He is presently working towards his Ph.D. degree in Nonlinear System Analysis and Measurement Technology at the Nanjing University of Aeronautics and Astronautics, Nanjing, China. His current research interests include memristive neuromorphic circuits, computer science and artificial intelligence.


그림입니다.
원본 그림의 이름: image109.png
원본 그림의 크기: 가로 161pixel, 세로 177pixel

Zhimin Wu received her M.S. degree in Control Theory and Control Engineering from Liaoning Shihua University, Fushun, China, in 2004. She is presently working as a Lecturer in the School of Information Science and Engineering, Changzhou University, Changzhou, China. Her current research interests include the control techniques and dynamical modeling of switching power converters.


그림입니다.
원본 그림의 이름: image110.jpeg
원본 그림의 크기: 가로 167pixel, 세로 185pixel

Kaiwen Yao received his B.S. degree in Electronic Information Engineering from Changzhou University Huaide College, Changzhou, China, in 2015; and his M.S. degree in Computer Application Technology from Changzhou University, Changzhou, China, in 2018. His current research interests include the design of PC power supplies.


그림입니다.
원본 그림의 이름: image111.jpeg
원본 그림의 크기: 가로 164pixel, 세로 166pixel

Jing Wu received his B.S. degree in Electrical Engineering and Automation from Changzhou Institute of Technology, Changzhou, China, in 2016. He is presently working towards his M.S. degree in Software Engineering at Changzhou University, Changzhou, China. His current research interests include the control techniques and modeling of switching power converters.