사각형입니다.

https://doi.org/10.6113/JPE.2018.18.4.1075

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718



Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives


Changming Zheng and Jiasheng Zhang*


†,*College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China



Abstract

To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.


Key words: Discrete sliding mode control, Finite-time observer, Permanent-magnet synchronous machine drives


Manuscript received Aug. 24, 2017; accepted Mar. 3, 2018

Recommended for publication by Associate Editor Dong-Hee Lee.

Corresponding Author: jsxzzcm@126.com Tel: +86-15698112301, China University of Petroleum

*College of Information and Control Engineering, China University of Petroleum (East China), China



Ⅰ. INTRODUCTION

High-performance permanent magnet synchronous machines (PMSMs) have been extensively utilized in industrial sectors due to its compact structure and high power-to-weight ratio. As is well known, conventional PI control is still prevalent in PMSM due to its simplicity. Nevertheless, industrial PMSM drives are complex systems with various uncertainties and disturbances, which can result in the deterioration or even failure of PI algorithms [1]. Hence, enhancing dynamic responses while not weakening robustness is still a serious challenge.

Various control algorithms have been put forward to solve the above problems, including predictive strategies [2], adaptive strategies [3], and sliding mode control (SMC) strategies [1], [4], etc. Among them, SMC is known as an approach featuring simple implementation, superior dynamic performance and invariance property to disturbances or uncertainties. Note that the SMC algorithms were initially devised in the continuous-time domain, i.e., the continuous- time SMC (CSMC). However, nowadays most control algorithms are digitally implemented on computers. Considering that the sampling time cannot be infinitely small, the control input of the CSMC is frozen during a sampling period and the invariability of the CSMC is degraded or even invalid [5]. Hence, straightly employing the CSMC to the discrete-time domain without any modification can result in unexpected problems. Thus, research on discretized SMC (DSMC) is inevitable. Many DSMC algorithms have been presented and successfully applied in PMSMs [6]-[8]. Nevertheless, in the conventional DSMC, the order of the dynamics model is decreased and the differential terms are introduced to magnify the noises. To overcome these defects, discretized integral SMC (DISMC) algorithms have been presented and employed in motion tracking systems [9]-[11]. However, they have rarely been used for PMSM drives. In addition, the DISMC algorithms designed above are often based on equivalent control with a switching term, which cannot achieve an excellent dynamic quality and may cause an overlarge control effort when disturbances occur [12]. Moreover, the sliding surface of the DSMC can only move into a quasi-sliding mode (QSM) domain instead of moving onto the ideal sliding surface [6]. In addition, the switching gain should be chosen sufficiently large to guarantee the reachability of the QSM, which induces chattering. Since chattering can attenuate control accuracy, many chattering suppression methods have been presented, where the reaching-law approaches and high-order SMC have proved to be the most efficient [6], [13]. The reaching-law approaches can directly regulate the convergence rate during the reaching phase to suppress chattering. The high-order SMC algorithms can essentially alleviate chattering while not degenerating robustness. The most common one is a second-order sliding mode algorithm (2-SMA). The 2-SMA has been successfully utilized in identification, observation and differentiation [14]-[17]. In addition, to further enhance the chattering alleviation and anti-disturbance performance of SMC-based control systems, disturbance or uncertainty estimation and attenuation (DUEA) methods are increasingly used [18]. These techniques share a similar principle, which is constructing an observer for disturbance estimation and generating the corresponding compensation by using the estimate. The commonly-used DUEA methods for PMSM drives include the sliding mode disturbance observer (SMDO), extended state observer (ESO) and disturbance observer (DO), [1]-[3], [19]. However, the estimation accuracy of the DO and ESO is more or less influenced by parameter variations, and they have a common disadvantage in terms of asymptotic convergence. Note that convergence in finite time is an attractive property, which means a faster convergence rate and a higher accuracy. An extended SMDO with a finite-time convergence rate for PMSM drives was presented in [1]. However, chattering is inevitable and a low-pass filter (LPF) is introduced for chattering attenuation, which causes a phase delay and deterioration of the observation performance.

This paper presents a DISMC scheme with a finite-time nonlinear DO for PMSM drives. An integral-type nonlinear sliding surface is introduced and a discretized integral sliding-mode (DISM) speed controller is constructed using the reaching-law approach. The initial reaching phase of the DISM can be eliminated and global robustness can be obtained when the initial value of the sliding function is properly configured. Moreover, motivated by the 2-SMA based sliding mode differentiator technique, a discretized finite-time nonlinear DO (FTNDO) is presented to provide finite-time converging estimation of the lumped disturbance for PMSM drives. Another unique feature of the FTNDO is that it can alleviate chattering behavior in the conventional SMDO without losing robustness to parameter variations. In addition, in view of the discretized estimation error, the stability of the composite controller is analyzed theoretically. Finally, the superior dynamic responses and anti-disturbance capabilities of the presented algorithm are verified by experiments.

The remainder of this paper is arranged as follows. Section II constructs a discrete dynamics model of the PMSM with the lumped disturbance. The design procedures of the FTNDO-DISMC scheme are elaborated in Section III, where a stability analysis of the composite controller is also given. Experimental results and comparisons are investigated in Section IV, and some conclusions are given in Section V.



Ⅱ. DYNAMICS MODEL OF A PMSM WITH LUMPED DISTURBANCE

In the rotor d–q synchronous rotating coordinate system, the nominal dynamics model of a non-salient PMSM with no saturation of the magnetic circuit can be described as:

그림입니다.
원본 그림의 이름: CLP000016a815af.bmp
원본 그림의 크기: 가로 827pixel, 세로 74pixel    (1)

where Kt =1.5f donates the torque constant. p and ψf donate the pole pairs and flux linkage, respectively. iq (t) is the q-axis current and Kt iq(t) represents the electromagnetic torque Te. The parameters J, Bf and TL (t) donate the rotational inertia, friction coefficient and load torque, respectively. ωr (t) donates the mechanical angular velocity.

Taking the parameter uncertainties and unmodeled dynamics as the equivalent lumped disturbance of a PMSM, the continuous-time scalar dynamics model of the PMSM in equation (1) can be obtained by:

그림입니다.
원본 그림의 이름: CLP000016a80001.bmp
원본 그림의 크기: 가로 708pixel, 세로 74pixel         (2)

그림입니다.
원본 그림의 이름: CLP000016a80002.bmp
원본 그림의 크기: 가로 838pixel, 세로 65pixel    (3)

where X (t) = ωr and u (t) = iq. Ac = − Bf /J and Bc = Kt /J denote the scalar nominal parameters. ΔAc and ΔBc donate the parameter uncertainties. d(t) donates the lumped disturbance, including uncertainties, unmodeled disturbances and load torque disturbances.

Considering that the sampling period T is very small, the Euler difference method can be employed for approximate discretization.

그림입니다.
원본 그림의 이름: CLP000016a80003.bmp
원본 그림의 크기: 가로 447pixel, 세로 128pixel           (4)

where Xk = X (kT), and k donates the kth time step.

Moreover, applying equation (4) into equation (2), the discretized form of the PMSM dynamics model with lumped disturbance can be obtained by:

그림입니다.
원본 그림의 이름: CLP000016a80004.bmp
원본 그림의 크기: 가로 572pixel, 세로 63pixel     (5)

where uk = u (kT), with the scalar parameters:

그림입니다.
원본 그림의 이름: CLP000016a80005.bmp
원본 그림의 크기: 가로 500pixel, 세로 63pixel        (6)

그림입니다.
원본 그림의 이름: CLP000016a80006.bmp
원본 그림의 크기: 가로 532pixel, 세로 65pixel       (7)

For conventional field-oriented control (FOC) based PMSM drive systems, this paper aims to devise an enhanced speed controller featuring fast dynamic responses, high precision and anti-disturbance performance. The current loops still use PI control. An overall block diagram of a PMSM dynamic system using the presented speed controller in the discrete-time domain is described in Fig. 1. Additionally, if the friction coefficient Bf is considered to be 0, or the first item on the right side of equation (2) is regarded as one part of the lumped disturbance d(t), then, Ac = 0. Hence, the aforementioned two cases are essentially equivalent, and the speed controller design can be simplified.


그림입니다.
원본 그림의 이름: image10.emf
원본 그림의 크기: 가로 352pixel, 세로 133pixel

Fig. 1. Overall structure of a discrete PMSM regulation system.



Ⅲ. PRESENTED DISMC WITH FINITE-TIME NONLINEAR DO

In this section, the specific design procedures of the presented FTNDO-DISMC scheme based on the PMSM discrete model in Section II are elaborated. First, a reaching- law based DISM speed controller is presented. Then, a SMD-based FTNDO is constructed to realize the finite-time converging estimation of the lumped disturbances. Finally, the presented composite control law is obtained and the stability is analyzed.


A. DISM Speed Controller Design

First, the tracking error of the speed can be defined as:

그림입니다.
원본 그림의 이름: CLP000016a80007.bmp
원본 그림의 크기: 가로 358pixel, 세로 67pixel     (8)

where Rk represents the speed reference ωrref.

Then, a discretized nonlinear integral-type sliding surface is constructed as [9]:

그림입니다.
원본 그림의 이름: CLP000016a80008.bmp
원본 그림의 크기: 가로 398pixel, 세로 67pixel   (9)

그림입니다.
원본 그림의 이름: CLP000016a80009.bmp
원본 그림의 크기: 가로 510pixel, 세로 67pixel        (10)

where Sk is the discretized sliding surface or sliding function. 𝜅k donates the error integral term aiming to eliminate the tracking error Ek. M and the integral gain G are the positive parameters to be designed.

To facilitate the DISM controller design, consider the one-step forward expression of equation (9) as:

그림입니다.
원본 그림의 이름: CLP000016a8000a.bmp
원본 그림의 크기: 가로 907pixel, 세로 170pixel       (11)

Generating the expressions of Xk+1 and κk from equations (5) and (9), and substituting them into (11) yields:

그림입니다.
원본 그림의 이름: CLP000016a8000c.bmp
원본 그림의 크기: 가로 1280pixel, 세로 63pixel    (12)

Note that the tracking responses and chattering suppression using the reaching-law approach are better than equivalent control. In addition, the over-large control effort can be avoided. Considering the following discrete-time exponential reaching law presented by Gao et al. [6]:

그림입니다.
원본 그림의 이름: CLP000016a8000d.bmp
원본 그림의 크기: 가로 761pixel, 세로 65pixel       (13)

where α > 0, β > 0 and 0 < 1 – αT < 1.

Substituting equation (13) into equation (12), by eliminating the left term Sk+1, the initial form of the desired control input ukref can be obtained by:

그림입니다.
원본 그림의 이름: CLP000016a8000e.bmp
원본 그림의 크기: 가로 1256pixel, 세로 175pixel     (14)

Normally, the frequency of Rk is much smaller than the sampling frequency, and its variation can be considered linear during a sampling period. Hence, the future Rk+1 can be approximately predicted according to its previous values.

그림입니다.
원본 그림의 이름: CLP000016a8000f.bmp
원본 그림의 크기: 가로 440pixel, 세로 64pixel           (15)

Substituting equation (15) into equation (14), a necessary simplification yields the command current of the DISM controller.

그림입니다.
원본 그림의 이름: CLP000016a80010.bmp
원본 그림의 크기: 가로 1155pixel, 세로 178pixel          (16)

A block diagram of the presented DISM controller is shown in Fig. 2. Note that different initial values of κk in equation (9) can affect the system performance. On the one hand, if the initial speed tracking error E0 is available, by setting the initial integral value to κ0 = –ME0, then S0 = 0. This means the system trajectory stays in the QSM domain when k = 0. Hence, the initial reaching process towards the QSM is eliminated and global robustness can be obtained, which can improve the dynamic responses. On the other hand, if E0 is unknown and κ0 is set to a certain value that makes S0 ≠ 0, the initial system trajectory does not stay in the QSM and the reaching phase is introduced. Nevertheless, the presented control law of equation (16) is still applicable. Intuitive comparisons of Sk with different initial values are shown in Fig. 3, where a disturbance occurs at kmT. The only difference is whether the initial reaching phase exists. Additionally, when a disturbance occurs during the sliding motion, the system trajectory is still driven towards the QSM domain with excellent dynamic quality by using the reaching-law approach.


그림입니다.
원본 그림의 이름: image15.emf
원본 그림의 크기: 가로 459pixel, 세로 248pixel

Fig. 2. Block diagram of the presented DISM controller.


Fig. 3. Comparisons of Sk with different initial values: (a) S0 = 0; (b) S0 ≠ 0.

그림입니다.
원본 그림의 이름: CLP000016a80011.bmp
원본 그림의 크기: 가로 694pixel, 세로 482pixel

(a)

그림입니다.
원본 그림의 이름: CLP000016a80012.bmp
원본 그림의 크기: 가로 697pixel, 세로 489pixel

(b)


B. Finite-Time Nonlinear Disturbance Observer Design

It can be observed from the control law of equation (16) that the lumped disturbance dk is unknown and difficult to measure in practice, i.e., the current form of (16) cannot be directly implemented. To overcome this dilemma, a sliding-mode differentiator (SMD) based finite-time nonlinear DO is constructed to accurately estimate dk online without adding extra hardware.


1) SMD-Based Observer

The 2-SMA based SMD, which can provide a finite-time convergence rate, preserve the strong insensitivity to parameter perturbations and remove the chattering effect of the conventional SMC, has been presented by Levant in [13], [14], [16] and [17]. Herein, the SMD-based finite-time DO is introduced in its simplest form with uncertainties and disturbances as:

그림입니다.
원본 그림의 이름: CLP000016a80013.bmp
원본 그림의 크기: 가로 1129pixel, 세로 329pixel           (17)

where x(t) and z(t) donate the system state variable and disturbance, respectively. 그림입니다.
원본 그림의 이름: CLP000016a80014.bmp
원본 그림의 크기: 가로 91pixel, 세로 62pixel and 그림입니다.
원본 그림의 이름: CLP000016a80015.bmp
원본 그림의 크기: 가로 92pixel, 세로 60pixel donate the corresponding estimates. λ0 and λ1 are positive observer parameters. Then 그림입니다.
원본 그림의 이름: CLP000016a80016.bmp
원본 그림의 크기: 가로 249pixel, 세로 63pixel and 그림입니다.
원본 그림의 이름: CLP000016a80017.bmp
원본 그림의 크기: 가로 241pixel, 세로 63pixel can be obtained in finite time.

Considering digital implementation, similar to the treatment in equation (4), the discretized form of the finite-time DO is expressed as:

그림입니다.
원본 그림의 이름: CLP000016a80018.bmp
원본 그림의 크기: 가로 935pixel, 세로 311pixel         (18)

A detailed stability analysis of the SMD-based observer in the continuous-time system has been discussed in [13], [16], where the stability condition assuring finite-time convergence is presented as:

그림입니다.
원본 그림의 이름: CLP000016a80019.bmp
원본 그림의 크기: 가로 415pixel, 세로 254pixel   (19)

where L donates the Lipshitz constant.

However, the stability condition of equation (19) in the continuous-time domain is rough. It is sufficient but not a necessary condition for the discrete-time domain. Stability discussions of the discretized SMD-based observer have been discussed in [20]-[21]. Moreover, the necessary and sufficient stability condition for the discrete sliding mode is given by [22]:

그림입니다.
원본 그림의 이름: CLP000016a8001a.bmp
원본 그림의 크기: 가로 273pixel, 세로 77pixel        (20)

which can be decomposed into the following two inequalities:

그림입니다.
원본 그림의 이름: CLP000016a8001b.bmp
원본 그림의 크기: 가로 579pixel, 세로 170pixel     (21)

where 그림입니다.
원본 그림의 이름: CLP000016a8001c.bmp
원본 그림의 크기: 가로 292pixel, 세로 66pixel donates the estimation error.

Therefore, the stability of the discretized SMD-based observer can be guaranteed if the observer parameters λ0 and λ1 satisfy the inequalities of equation (21) and the conditions presented in [20], [21]. Then, the system trajectories of the finite-time DO can achieve the QSM within finite time steps and can stay in it indefinitely.

The estimation error bounds of the finite-time DO caused by discretization, without input noises, are given in [13], [16], [17] and [20]:

그림입니다.
원본 그림의 이름: CLP000016a8001d.bmp
원본 그림의 크기: 가로 405pixel, 세로 201pixel   (22)

where 그림입니다.
원본 그림의 이름: CLP00001478275e.bmp
원본 그림의 크기: 가로 46pixel, 세로 47pixel and 그림입니다.
원본 그림의 이름: CLP000014780001.bmp
원본 그림의 크기: 가로 48pixel, 세로 48pixel are positive constants depending on the observer gains λ0 and λ1.

In addition, considering the sampling error of the speed and currents, the estimation error of the finite-time DO is bounded by [13], [17]:

그림입니다.
원본 그림의 이름: CLP000016a8001e.bmp
원본 그림의 크기: 가로 449pixel, 세로 202pixel          (23)

where ψ > 0 donates the upper bound of the sampling error. δ1 and δ2 are positive constants depending on the observer gains λ0 and λ1.


2) Finite-Time Nonlinear DO for PMSM Drives

Based on equivalent substitution, regarding the Xk and dk in equation (5) as the corresponding xk and zk in equation (18), by employing the discretized SMD-based DO in equation (18) to the PMSM discrete dynamics model of equation (5), the presented FTNDO for PMSM disturbance estimation can be constructed as:

그림입니다.
원본 그림의 이름: CLP000029300002.bmp
원본 그림의 크기: 가로 1261pixel, 세로 392pixel     (24)

where k1 and k2 represent positive observer parameters. 그림입니다.
원본 그림의 이름: CLP000029300003.bmp
원본 그림의 크기: 가로 76pixel, 세로 79pixel and 그림입니다.
원본 그림의 이름: CLP000029300004.bmp
원본 그림의 크기: 가로 63pixel, 세로 80pixel donate the estimated ωr and the lumped disturbance.

From equation (24), it can be concluded that the chattering effect can be alleviated through equivalent discrete integration. A block diagram of the implementation of the FTNDO in the discrete-time domain is depicted in Fig. 4.


그림입니다.
원본 그림의 이름: CLP000029300001.bmp
원본 그림의 크기: 가로 942pixel, 세로 979pixel

Fig. 4. Block diagram of the discretized FTNDO.


C. DISMC with FTNDO

Since the unknown lumped disturbance dk in equation (16) has been estimated by the FTNDO, by substituting the estimated 그림입니다.
원본 그림의 이름: CLP000029300004.bmp
원본 그림의 크기: 가로 63pixel, 세로 80pixel in equation (24) into equation (16), the entire control law of the FTNDO-DISMC can be obtained by:

그림입니다.
원본 그림의 이름: CLP000029300006.bmp
원본 그림의 크기: 가로 1154pixel, 세로 172pixel          (25)

Moreover, it should be noted that the sign function in equation (25) induces unexpected chattering, which can affect the system performance. Although the adopted reaching-law approach can reduce the chattering to some extent, a smooth nonlinear function can also be used to continue the sign function in equation (25) for further chattering attenuation, that is:

그림입니다.
원본 그림의 이름: CLP000029300007.bmp
원본 그림의 크기: 가로 314pixel, 세로 153pixel      (26)

where ρ donates a small positive constant.

However, using only the constant ρ cannot efficiently remove the chattering effect under various speed-regulation situations. Thus, ρ can be selected adaptively according to the speed tracking error [23]:

그림입니다.
원본 그림의 이름: CLP000029300008.bmp
원본 그림의 크기: 가로 387pixel, 세로 76pixel   (27)

where ρ0 and ρ1 > 0 donate design coefficients.

Hence, the modified smooth function in equation (26) can be rewritten as:

그림입니다.
원본 그림의 이름: CLP000029300009.bmp
원본 그림의 크기: 가로 551pixel, 세로 156pixel      (28)

For this kind of boundary layer technique, a tradeoff should be made between the tracking accuracy, robustness and chattering amplitude.


D. Stability Analysis

Substituting the final control law of equation (25) into equation (12), a simple calculation yields:

그림입니다.
원본 그림의 이름: CLP00002930000a.bmp
원본 그림의 크기: 가로 1162pixel, 세로 354pixel         (29)

with:

그림입니다.
원본 그림의 이름: CLP00002930000b.bmp
원본 그림의 크기: 가로 450pixel, 세로 77pixel          (30)

It can be concluded from equations (22) and (23) that pk is bounded with:

그림입니다.
원본 그림의 이름: CLP00002930000c.bmp
원본 그림의 크기: 가로 631pixel, 세로 92pixel   (31)

Combined with the stability condition of the DSMC in [22], two cases for the stability analysis of the presented composite controller are discussed.

First, when Sk ≥ 0, if the parameter satisfies the condition βT > | pk |, it can be deduced from equation (29) that:

그림입니다.
원본 그림의 이름: CLP000032143f69.bmp
원본 그림의 크기: 가로 846pixel, 세로 62pixel   (32)

Otherwise, when Sk < 0, if the parameter satisfies the condition βT > | pk |, it can be deduced from equation (29) that:

그림입니다.
원본 그림의 이름: CLP000032140001.bmp
원본 그림의 크기: 가로 847pixel, 세로 64pixel   (33)

Therefore, combining the conclusions of equations (32) and (33), it can be summarized that:

그림입니다.
원본 그림의 이름: CLP000032140002.bmp
원본 그림의 크기: 가로 280pixel, 세로 80pixel        (34)

with the sufficient condition:

그림입니다.
원본 그림의 이름: CLP000032140003.bmp
원본 그림의 크기: 가로 234pixel, 세로 77pixel          (35)

which means that under the constraint of equation (35), | Sk | can decrease monotonously and the discrete sliding mode can be achieved within finite time steps. Thus, the stability of the presented composite controller can be assured.

An overall block diagram of the presented FTNDO- DISMC is depicted in Fig. 5, where the lumped disturbance estimated by the FTNDO is taken as a feed forward link of the DISM controller for disturbance compensation. Moreover, according to equation (35), the switching gain is proportional to the estimation error, which is less than the actual disturbance in the conventional DSMC. Hence, to resist the same disturbance, the switching gain in the presented scheme is decreased, which indicates that the chattering and torque ripple of PMSMs can be reduced when compared with the conventional DSMC.


그림입니다.
원본 그림의 이름: image50.emf
원본 그림의 크기: 가로 523pixel, 세로 287pixel

Fig. 5. Block diagram of the presented FTNDO-DISMC scheme.



Ⅳ. EXPERIMENTAL RESULTS

In this section, various experiments are investigated on a laboratory PMSM platform to verify the superiority of the presented FTNDO-DISMC scheme in terms of dynamic tracking responses and anti-disturbance capability.


A. Experimental Setup

The experimental setup for algorithm implementation is illustrated in Fig. 6, and the PMSM parameters are depicted in Table I. It can be observed that the laboratory platform consists of a PMSM and a control board. A 1024 P/R incremental encoder is installed for speed measurement. A biaxial hysteresis brake is used for the sudden injection and release of loads. Two Hall sensors are adopted for the measurement of the two phase currents.


Fig. 6. Experimental setup: (a) Basic structure of the hardware system; (b) Photograph of the laboratory platform.

그림입니다.
원본 그림의 이름: image52.emf
원본 그림의 크기: 가로 414pixel, 세로 217pixel

(a)

그림입니다.
원본 그림의 이름: image53.jpeg
원본 그림의 크기: 가로 609pixel, 세로 425pixel

(b)


TABLE I PARAMETERS OF A PMSM

Parameters

Values

DC bus voltage

48 V

Rated current

3 A

Rated speed

3000 rpm

Flux linkage

0.04 Wb

Rated power

125 W

Number of pole pairs

2

Stator line resistance

0.82 Ω

Stator line inductance

1.91 mH


The control algorithms are implemented on a DSP-based dSPACE DS1103 control board, with 16-bit ADC units and high-resolution incremental encoder interfaces. All of the experimental data are directly obtained from the ControlDesk software. The switching frequency of the PWM is set as 10 kHz and the sampling time is set as 0.1ms.

To ensure the safety of the system hardware, combined with the presented control scheme in Fig. 5, necessary current and voltage limitations that were presented in [2] are employed in this paper as below:

그림입니다.
원본 그림의 이름: CLP000032140004.bmp
원본 그림의 크기: 가로 693pixel, 세로 205pixel          (36)

where idref and iqref are d-q axes command currents. Im is the rated amplitude of the phase current. u represents the command voltage vector composed of d-q axes voltages. Um donates the maximum voltage limit depending on the DC bus voltage.

Moreover, all of the parameters can be tuned online through the ControlDesk software. The parameter selection of the presented controller is given as follows. For the DISM controller, the parameter M = 1 can be chosen for the sake of simplicity, and the integral gain is G > 0. The reaching law parameter α should satisfy 0 < α < 1/T, and a larger α can increase the reaching rate. Increasing G or α can improve the dynamic responses. From equation (35), β should be selected as βT > | pk | to guarantee the robustness and stability of the controller. However, overlarge values of G, α and β can bring adverse control effects, such as chattering or overshoots. For the FTNDO, the parameters k1 and k2 can be easily tuned since the behavior of the FTNDO is insensitive to them [13]. According to [20], easy choices for k1 and k2 are k1 =1.5L0.5 and k2 =1.1L, where L > 0 is the only design parameter. This should also be adjusted according to the actual experimental results. Although a faster converging rate can be obtained by increasing L, the estimation error becomes more sensitive to the sampling time Ts and a tradeoff should be made between them. ρ0 and ρ1 can be selected as very small constants. The parameters of the presented controller are selected as M = 1, G = 0.011, α = 20, β = 25, k1 = 2500, k2 = 2×106, ρ0 = 0.5 and ρ1 = 0.005.

For comparison, the conventional discrete PI and DISMC controllers without the FTNDO are also employed. By using the Ziegler-Nichols method, the speed-loop PI parameters are tuned to the optimal values as Kpn = 0.012 and Kin = 1.4. The current-loop PI controllers are employed with parameters of Kpc = 8 and Kic = 2900.


B. Experimental Analysis

First, experimental results of the speed starting responses using the PI, DISMC and DISMC+FTNDO are illustrated in Fig. 7, where the rotor speed, q-axis reference current iqref, phase current ia, and d-q axes feedback currents id and iq are given. It can be seen that the speed starting responses using the DISMC and DISMC+FTNDO methods are similar, with shorter rising times and no explicit overshoots when compared with the PI control. It can also be seen that the presented controller has the best starting speed response.

Next, Fig. 8 shows the speed reversal responses from −1500 rpm to 1500 rpm. Similar conclusions can be drawn since the speed reversal performance using the presented control and the DISMC are better than that of the PI control.


Fig. 7. Speed starting responses: (a) PI; (b) DISMC; (c) DISMC+FTNDO.

그림입니다.
원본 그림의 이름: image54.emf
원본 그림의 크기: 가로 602pixel, 세로 687pixel

(a)

그림입니다.
원본 그림의 이름: image55.emf
원본 그림의 크기: 가로 601pixel, 세로 690pixel

(b)

그림입니다.
원본 그림의 이름: image56.emf
원본 그림의 크기: 가로 599pixel, 세로 691pixel

(c)


Fig. 8. Speed reversal responses: (a) PI; (b) DISMC; (c) DISMC+FTNDO.

그림입니다.
원본 그림의 이름: image57.emf
원본 그림의 크기: 가로 613pixel, 세로 658pixel

(a)

그림입니다.
원본 그림의 이름: image58.emf
원본 그림의 크기: 가로 610pixel, 세로 687pixel

(b)

그림입니다.
원본 그림의 이름: image59.emf
원본 그림의 크기: 가로 607pixel, 세로 652pixel

(c)


Then, the anti-disturbance performance using the PI, DISMC and DISMC+FTNDO are compared in Fig. 9. The rated load is suddenly added at 1s and removed at 2s. It can be seen that the maximum speed fluctuation with the presented controller is about 35 rpm, which is smaller than that using the PI and DISMC controllers at 50 rpm and 80 rpm, respectively. Moreover, after the occurrence of a disturbance, the speed recovery time with the DISMC+ FTNDO is the fastest. These results show that the speed robustness of the presented controller is the best among the three controllers.


Fig. 9. Anti-disturbance capability when suddenly adding and removing the rated load: (a) PI; (b) DISMC; (c) DISMC+FTNDO.

그림입니다.
원본 그림의 이름: image60.emf
원본 그림의 크기: 가로 590pixel, 세로 677pixel

(a)

그림입니다.
원본 그림의 이름: image61.emf
원본 그림의 크기: 가로 589pixel, 세로 677pixel

(b)

그림입니다.
원본 그림의 이름: image62.emf
원본 그림의 크기: 가로 589pixel, 세로 677pixel

(c)


To further verify the speed tracking performance of the presented controller, 10 Hz sinusoidal periodic speed tracking experiments are conducted and depicted in Fig. 10. It shows that the speed tracking error of the DISMC+FTNDO is the smallest at less than 100 rpm. In comparison, the speed tracking error of the DISMC and PI are about 200 rpm and 300 rpm, respectively. Hence, superior tracking responses can be obtained by using the presented controller.


Fig. 10. 10 Hz sinusoidal speed tracking responses: (a) PI; (b) DISMC; (c) DISMC+FTNDO.

그림입니다.
원본 그림의 이름: CLP000013b4038e.bmp
원본 그림의 크기: 가로 804pixel, 세로 930pixel

(a)

그림입니다.
원본 그림의 이름: CLP000013b40001.bmp
원본 그림의 크기: 가로 808pixel, 세로 945pixel

(b)

그림입니다.
원본 그림의 이름: CLP000013b40002.bmp
원본 그림의 크기: 가로 811pixel, 세로 945pixel

(c)


Combined with the theoretical analysis, the anti- disturbance capability, chattering and adverse overshoots are highly dependent on the parameters α, β, G and the sampling time Ts. The control performance of the presented controller with different controller parameters are compared and shown in Figs. 11-13. In Fig. 11, different values of α are employed. Fig. 11 implies that increasing α can increase the approaching rate of the sliding surface Sk under load disturbances (faster responses). However, an overlarge α can induce larger adverse overshoots and chattering of the speed, iqref and Sk. In Figs. 12 and 13, different values of β and G are employed. It can be seen that increasing β or G can improve the dynamic response and the disturbance rejection capability of the presented controller. However, an overlarge β or G can lead to a large chattering, and an overlarge G can bring about larger adverse overshoots of the speed and iqref. Hence, to obtain the superior performance of the presented controller, a tradeoff should be made between the chattering amplitude and the robustness against disturbances.


Fig. 11. Anti-disturbance capability of the presented controller with different values of α: (a) α = 20; (b) α = 50; (c) α = 100.

그림입니다.
원본 그림의 이름: CLP000013b40003.bmp
원본 그림의 크기: 가로 805pixel, 세로 936pixel

(a)

그림입니다.
원본 그림의 이름: CLP000013b40004.bmp
원본 그림의 크기: 가로 792pixel, 세로 943pixel

(b)

그림입니다.
원본 그림의 이름: CLP000013b40005.bmp
원본 그림의 크기: 가로 802pixel, 세로 944pixel

(c)


Fig. 12. Anti-disturbance capability of the presented controller with different values of β: (a) β = 5; (b) β = 100; (c) β = 200.

그림입니다.
원본 그림의 이름: CLP000013b40006.bmp
원본 그림의 크기: 가로 798pixel, 세로 962pixel

(a)

그림입니다.
원본 그림의 이름: CLP000013b40007.bmp
원본 그림의 크기: 가로 801pixel, 세로 961pixel

(b)

그림입니다.
원본 그림의 이름: CLP000013b40008.bmp
원본 그림의 크기: 가로 800pixel, 세로 961pixel

(c)


Fig. 13. Anti-disturbance capability of the presented controller with different values of G: (a) G = 0.005; (b) G = 0.01; (c) G = 0.02.

그림입니다.
원본 그림의 이름: CLP000013b40009.bmp
원본 그림의 크기: 가로 796pixel, 세로 939pixel

(a)

그림입니다.
원본 그림의 이름: CLP000013b4000a.bmp
원본 그림의 크기: 가로 796pixel, 세로 938pixel

(b)

그림입니다.
원본 그림의 이름: CLP000013b4000b.bmp
원본 그림의 크기: 가로 809pixel, 세로 954pixel

(c)


Fig. 14 illustrates the anti-disturbance capability of the presented controller with different sampling times Ts under the condition that all of the parameters in the speed controller are kept constant. It can be seen that increasing Ts can decrease the convergence rate of Sk, i.e., it degrades the dynamic responses and robustness. However, the chattering significantly decreases with a larger Ts. In addition, by properly tuning the parameter G according to Ts, the presented controller can still obtain a superior control effect just like that with a small Ts.


Fig. 14. Anti-disturbance capability of the presented controller with different values of Ts: (a) Ts = 1×10-4s; (b) Ts = 5×10-4s; (c) Ts = 10-3s.

그림입니다.
원본 그림의 이름: CLP000013b4000c.bmp
원본 그림의 크기: 가로 791pixel, 세로 946pixel

(a)

그림입니다.
원본 그림의 이름: CLP000013b4000d.bmp
원본 그림의 크기: 가로 790pixel, 세로 937pixel

(b)

그림입니다.
원본 그림의 이름: CLP000013b4000e.bmp
원본 그림의 크기: 가로 789pixel, 세로 943pixel

(c)


The responses of the FTNDO and the convergence of the sliding surface Sk in the presented controller with rated load disturbances are shown in Fig. 15, which indicates that Sk can quickly reach the QSM after a disturbance occurs. Moreover, for the convenience of analysis, assuming that Bf ≈ 0, the parameter perturbations are much smaller than the load variations and the acceleration is zero in equation (1) during the steady state. Then it can be deduced that the estimated disturbance is approximately equal to the electromagnetic torque Te. Hence, by comparing Te with the estimated load disturbance –Jd(t) in equation (3), the observation performance of the FTNDO can roughly be determined. Fig. 15 shows that the FTNDO can accurately and quickly track actual disturbances in finite time steps.


그림입니다.
원본 그림의 이름: CLP000013b4000f.bmp
원본 그림의 크기: 가로 868pixel, 세로 957pixel

Fig. 15. Responses of the FTNDO and convergence of the sliding surface Sk in the DISMC with rated load disturbances.



Ⅴ. CONCLUSIONS

This paper presented a FTNDO-DISM composite control scheme for PMSM drives. The main contributions of this work can be summarized as follows. (1) A reaching-law based DISM controller has been designed to enhance the dynamic responses and anti-disturbance capability of PMSM drives. By properly selecting the initial value of the discrete sliding function, the reaching process can be eliminated and the global robustness can be obtained. (2) A SMD-based discretized FTNDO has been presented to provide finite-time convergence estimation and compensation of the lumped disturbance. This can also alleviate the chattering without sacrificing robustness against parameter variations. (3) The FTNDO-DISM composite controller has been constructed and its stability has been analyzed theoretically. Experimental results have demonstrated the validity of the presented algorithm.



REFERENCES

[1] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1358-1365, Mar. 2013.

[2] M. Yang, X. Lang, J. Long, and D. Xu, “A flux immunity robust predictive current control with incremental model and extended state observer for PMSM drive,” IEEE Trans. Power Electron., Vol. 32, No. 12, pp. 9267-9279, Dec. 2017.

[3] S. Li and Z. Liu, “Adaptive speed control for permanent- magnet synchronous motor system with variations of load inertia,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3050-3059, Aug. 2009.

[4] J. W. Jung, V. Q. Leu, D. Q. Dong, H. H. Choi, and T. H. Kim, “Sliding mode control of SPMSM drivers-an online gain tuning approach with unknown system parameters,” J. Power Electron., Vol. 14, No. 5, pp. 980-988, Sep. 2014.

[5] X. Yu, B. Wang, and X. Li, “Computer-controlled variable structure systems: the state-of-the-art,” IEEE Trans. Ind. Electron., Vol. 8, No. 2, pp. 197-205, May 2012.

[6] J. Y. Humg, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., Vol. 40, No. 1, pp. 2-22, Feb. 1993.

[7] M. L. Corradini, G. Ippoliti, S. Longhi, and G. Orlando, “A quasi-sliding mode approach for robust control and speed estimation of PM synchronous motors,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1096-1104, Feb. 2012.

[8] T. Bernardes, V. F. Montagner, H. A. Gründling, and H. Pinheiro, “Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine,” IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1679-1691, Apr. 2014.

[9] K. Abidi, J. X. Xu, and Y. Xinghuo, “On the discrete-time integral sliding-mode control,” IEEE Trans. Autom. Contr., Vol. 52, No. 4, pp. 709-715, Apr. 2007.

[10] Z. Xi and T. Hesketh, “Discrete time integral sliding mode control for overhead crane with uncertainties,” IET Contr. Theory Appl., Vol. 4, No. 10, pp. 2071-2081, Oct. 2010.

[11] Q. Xu, “Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper,” IEEE Trans. Robot., Vol. 29, No. 3, pp. 663-673, Jun. 2013.

[12] H. Du, X. Yu, M. Z. Chen, and S. Li, “Chattering-free discrete-time sliding mode control,” Automatica, Vol. 68, No. 6, pp. 87-91, Jun. 2016.

[13] A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” Int. J. Control, Vol. 76, No. 9/10, pp. 924-941, Jan. 2003.

[14] A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control, Vol. 58, No. 6, pp. 1247-1263, Dec. 1993.

[15] L. Zhao, J. Huang, H. Liu, B. Li, and W. Kong, “Second- order sliding mode observer with online parameter identification for sensorless induction motor drives,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5280-5289, Oct. 2014.

[16] A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, Vol. 34, No. 3, pp. 379-384, Mar. 1998.

[17] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, “Smooth second-order sliding modes: Missile guidance application,” Automatica, Vol. 43, No. 8, pp. 1470-1476, Aug. 2007.

[18] W. H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance- observer-based control and related methods-an overview,” IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 1083-1095, Feb. 2016.

[19] Y. A. R. I. Mohamed, “Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 1981-1988, Aug. 2007.

[20] J. Davila, L. Fridman, and A. Levant, “Second-order sliding-mode observer for mechanical systems,” IEEE Trans. Autom. Control, Vol. 50, No. 11, pp. 1785-1789, Nov. 2005.

[21] R. P. Vieira, C. C. Gastaldini, R. Z. Azzolin, and H. A. Gründling, “Discrete-time sliding mode speed observer for sensorless control of induction motor drives,” IET Elect. Power Appl., Vol. 6, No. 9, pp. 681-688, Nov. 2012.

[22] S. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the stability of discrete-time sliding mode control systems,” IEEE Trans. Autom. Control, Vol. 32, No. 10, pp. 930-932, Oct. 1987.

[23] T. L. Chern and Y. C. Wu, “Design of integral variable structure controller and application to electrohydraulic velocity servosystems,” IEE Proceedings D - Control Theory Appl., Vol. 138, No. 5, pp. 439-444, Sep. 1991.



그림입니다.
원본 그림의 이름: image79.jpg
원본 그림의 크기: 가로 180pixel, 세로 213pixel

Changming Zheng was born in China, in 1991. He received his B.S. degree in the College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China, in 2014, where he is presently working towards his Ph.D. degree. His current research interests include PMSM drives, renewable energy systems and nonlinear control applications.


그림입니다.
원본 그림의 이름: image80.png
원본 그림의 크기: 가로 190pixel, 세로 225pixel

Jiasheng Zhang was born in China, in 1957. He received his M.S. degree from Beihang University, Beijing, China; and his Ph.D. degree from Beijing Jiaotong University, Beijing, China. He is presently working as a Professor in the College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China. His current research interests include power electronics, AC motor drives, renewable distributed power sources and converters.