사각형입니다.

https://doi.org/10.6113/JPE.2018.18.4.1111

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718



Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines


Chang Yuan, Chang Liu**, Dan Yang*, Ruibing Zhou*, and Niang Tang***


†,*State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China

**State Grid Jinan Power Supply Company, Jinan, China

***Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, China



Abstract

In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.


Key words: Energy storage, Parameters setting range, Physical constraints, Virtual synchronous machine (VSM)


Manuscript received Oct. 11,2017; accepted Feb. 17, 2018

Recommended for publication by Associate Editor Tomislav Dragicevic.

Corresponding Author: yc@ncepu.edu.cn Tel: +86-137-1018-5866, Fax: +86-10-61772428, North China Electric Power Univ.

*State Key Lab. of Alternate Electrical Power Syst. with Renewable Energy Sources, North China Electric Power Univ., China

**State Grid Jinan Power Supply Company, China

***Electric Power Res. Inst. of Guangdong Power Grid Co., Ltd., China



I. INTRODUCTION

In order to alleviate environmental and energy supply problems, distributed generators (DGs) have been developing rapidly in recent years. In China, the installed capacities of grid-connected wind and solar power have reached 164GW and 130GW at the end of 2017, respectively [1]. In 2017, renewable energy generated 1.7 trillion kWžh of electricity, accounting for 26.4 percent of all the electricity generated [2]. In Europe, USA, Japan and India, significant targets have also been considered for the use of DGs and renewable energy sources in their power systems over the next two decades [3].

DGs employing grid connected power electronic converters result in high stress on power system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. For example, wind turbines have an amount of kinetic energy stored in their blades, gear boxes and generators. However, they cannot support power systems directly. PV units do not have rotating parts that can be used as an energy buffer to deliver inertia to systems [4].

The inertia and damping in traditional power systems mainly come from synchronous machines. When frequency changes occur, the rotating masses inject or absorb energy into or from the grid to counteract the frequency variations in conventional power systems. Inertia in modern power systems can be defined as follows. Resistance in the form of energy exchange counteracts the frequency change, which results from an imbalance in the power generation and demand [4]. However, the equivalent rotating inertia of current power systems keeps decreasing due to the replacing of synchronous generators with DGs employing grid connected power electronic converters. The influences of decreasing inertia and damping on frequency stability are regarded as one of the main challenges in power systems.

Virtual synchronous machines (VSMs) have become a promising method to solve frequency stability problems. VSM concepts and applications have been investigated in [5]-[8]. A VSM with an alternating moment of inertia was introduced in [9]. The authors of [10]-[12] mainly focused on optimal control strategies for the charging and discharging of ESS based on frequency variation detection. The authors of [13], [14] explored the utilization of energy storage devices to provide virtual inertia in order to maintain system stability. The virtual kinetic storage of VSMs has been investigated in [15] to maintain power system stability. Energy storage systems supporting a short-term frequency response have been studied in [16], [17]. The influences of different controller parameters and operating points on inertial dynamics have been discussed in [18] for VSMs. The relations between VSMs and frequency-droop control have been investigated in [19] and [20]. In addition, the static synchronous generator model proposed in [21] provided a new perspective to investigate grid-tied inverters.

There are two necessary conditions for inverters to provide inertia and damping to the system in this paper. First, the inverters should be controlled by a VSM. Second, energy storage should be implemented. An ESS operates to provide inertia and damping through charging or discharging when a frequency variation occurs. The volume of the ESS equipment is usually determined by investment, installation environment and other factors. Whether or not the VSM can provide enough inertia and damping to the system depends on the power and energy volume of the ESS equipment. However, the transient characteristics and physical constraints of the VSM have not been studied thoroughly. Thus, this paper focuses on solving these issues.

This paper is organized as follows. In section II, a mathematical model of a VSM is built, and physical constraints are proposed. In section III, the quantitative relationships among the power and energy margins, the VSM key parameters and the operating points are studied. The simulation system configuration and detailed simulation results are presented in section IV. In section V, real-time RTDS experiments are carried out, and the transient characteristics of the VSM with different values of H and D are presented. Finally, some conclusions are presented in section VI.



II. ANALYSIS OF PHYSICAL CONSTRAINTS

A typical system structure of a VSM is shown in Fig. 1. In this section, a system structure with a VSM is presented, and a mathematical model of a VSM is built. The dynamic responses of the VSM output active power are investigated theoretically when the grid frequency steps. Physical constraints are proposed based on the analysis.


그림입니다.
원본 그림의 이름: image1.png
원본 그림의 크기: 가로 946pixel, 세로 784pixel

Fig. 1. System structure with VSM.


Microgrids have become a popular way to integrate DGs to the grid in low and medium voltage distribution systems. A typical system structure with a VSM is shown in Fig. 1. It includes a small gas turbine, a wind turbine, photovoltaic arrays, an ESS and different loads. In addition, the system can be operated either in a stand-alone fashion or while connected with the power grid. Inverters employing a VSM control can provide inertia and damping to systems. They can also mitigate frequency variations in the grid.

The VSM system in Fig. 1 contains PVs, ESSs and inverters. It is known that PV units do not have rotating parts and contribute no inertia or damping to a system. An ESS can operate to provide inertia and damping through charging or discharging. The electromechanical energy conversion process is realized by an inverter employing VSM control.

A theoretical analysis and simulations are carried out by considering the following conditions and assumptions.

(1) The pole pairs of the VSM is 1.

(2) The primary frequency regulation of the VSM is ignored.

(3) The closed loop and its tracking are both neglected.

(4) The PV is considered to output constant power during the frequency changing process. The function of the ESS to suppress PV output active power is not considered in this paper. This is due to the fact that it may influence the volume margins of the ESS when the frequency changes.


A. Modelling of a VSM

An equivalent circuit and vector diagram of a VSM system are presented in Fig. 2. In Fig. 2(a), 그림입니다.
원본 그림의 이름: CLP0000368c31e4.bmp
원본 그림의 크기: 가로 42pixel, 세로 67pixel is the potential of the VSM. 그림입니다.
원본 그림의 이름: CLP0000368c0001.bmp
원본 그림의 크기: 가로 53pixel, 세로 67pixel is the VSM terminal voltage. L is the equivalent inductance, R is the equivalent resistance, and 그림입니다.
원본 그림의 이름: CLP0000368c0002.bmp
원본 그림의 크기: 가로 50pixel, 세로 79pixel is the output current. In Fig. 2(b), ω is the angular frequency of 그림입니다.
원본 그림의 이름: CLP0000368c31e4.bmp
원본 그림의 크기: 가로 42pixel, 세로 67pixel. 그림입니다.
원본 그림의 이름: CLP0000368c0003.bmp
원본 그림의 크기: 가로 72pixel, 세로 51pixel is the angular frequency of 그림입니다.
원본 그림의 이름: CLP0000368c0001.bmp
원본 그림의 크기: 가로 53pixel, 세로 67pixel. δ is the power angle of the VSM, and α is the impedance angle.


Fig. 2. Equivalent circuit and vector diagram of a VSM connected to a grid.

그림입니다.
원본 그림의 이름: image9.png
원본 그림의 크기: 가로 751pixel, 세로 220pixel

(a)

그림입니다.
원본 그림의 이름: image10.png
원본 그림의 크기: 가로 410pixel, 세로 223pixel

(b)


Different VSM models can be built according to different synchronous machine (SM) models. A detailed model classification of VSMs is presented in [20]. This paper chooses a second-order model for analysis [22].

The swing equation of the VSM can be written as follows:

그림입니다.
원본 그림의 이름: CLP000014a40041.bmp
원본 그림의 크기: 가로 855pixel, 세로 322pixel   (1)

where Pm* is the virtual shaft power determined by the governor, Pe* is the measured output power, H is the virtual inertia constant, D is the virtual damping factor, ω0 is the nominal angular frequency, and *suggests that the parameter is in per unit (p.u.).

The mathematical model of a VSM is built when there is a small variation on ωg. The incremental model can be written as:

그림입니다.
원본 그림의 이름: CLP000014a40042.bmp
원본 그림의 크기: 가로 910pixel, 세로 329pixel          (2)

Equ. (3) is obtained by applying a Laplace transform on Equ. (2), and it can be written as follows:

그림입니다.
원본 그림의 이름: CLP000014a40043.bmp
원본 그림의 크기: 가로 1062pixel, 세로 221pixel    (3)


B. Relationship between the Output Active Power and Power Angle of a VSM

The output current of a VSM can be derived from Kirchhoff's law considering the equivalent resistance and inductance. Therefore:

그림입니다.
원본 그림의 이름: CLP0000368c0004.bmp
원본 그림의 크기: 가로 343pixel, 세로 139pixel     (4)

The output apparent power of the VSM can be conducted as follows:

그림입니다.
원본 그림의 이름: CLP0000368c0005.bmp
원본 그림의 크기: 가로 1280pixel, 세로 463pixel    (5)

Where the superscript “-” indicates the conjugate operation of the element. The equivalent impedance Z=((ωL)2+R2)1/2 , and the impedance angle α=tan-1(ωL/R). Pe and Qe can be acquired from Equ. (5) and written as:

그림입니다.
원본 그림의 이름: CLP000014a40044.bmp
원본 그림의 크기: 가로 737pixel, 세로 315pixel        (6)

The increment of the active power ΔPe* in Equ. (7) can be deduced from Equ. (6) and written as:

그림입니다.
원본 그림의 이름: CLP000014a40045.bmp
원본 그림의 크기: 가로 1170pixel, 세로 170pixel     (7)

Considering that 그림입니다.
원본 그림의 이름: CLP000014a40046.bmp
원본 그림의 크기: 가로 1038pixel, 세로 68pixel, Equ. (7) can be simplified as:

그림입니다.
원본 그림의 이름: CLP000014a40047.bmp
원본 그림의 크기: 가로 709pixel, 세로 168pixel         (8)

Equ. (9) is obtained by applying a Laplace transform of Equ. (8) and it can be written as:

그림입니다.
원본 그림의 이름: CLP000014a40048.bmp
원본 그림의 크기: 가로 887pixel, 세로 172pixel   (9)

Plug Pe=Pref and Qe=Qref into Equ. (6). Pref is the reference of the output active power. Qref is the reference of the output reactive power. Therefore, Es and ds can be calculated using Equ. (6).

그림입니다.
원본 그림의 이름: CLP000014a40049.bmp
원본 그림의 크기: 가로 939pixel, 세로 426pixel    (10)

where Es is the potential of the VSM, and ds is the power angle at the steady state.

Let SE=EUsin(α-δ)/(SnZ), which is the synchronizing power coefficient. Equ. (11) can be obtained from Equ. (9) and Equ. (10).

그림입니다.
원본 그림의 이름: CLP000014a4004a.bmp
원본 그림의 크기: 가로 1846pixel, 세로 529pixel        (11)

where *suggests that the parameter is in per unit (p.u.). It shows that SE is influenced by Qref instead of Pref in Equ. (11).


C. Physical Constraints of a VSM

The transfer function of Δωg* to ΔPe*can be deduced from Equ. (3) and Equ. (9), so that:

그림입니다.
원본 그림의 이름: CLP000014a4004b.bmp
원본 그림의 크기: 가로 938pixel, 세로 210pixel    (12)

The Laplace form of Δωg* can be written as:

그림입니다.
원본 그림의 이름: CLP000014a4004c.bmp
원본 그림의 크기: 가로 457pixel, 세로 201pixel   (13)

According to Equ. (12) and Equ. (13), ΔPe*(s) can be written as:

그림입니다.
원본 그림의 이름: CLP000014a4004d.bmp
원본 그림의 크기: 가로 1150pixel, 세로 223pixel     (14)

According to the poles’ type of transfer function in (14), there are three different modes to be analyzed: under damping, over damping and critical damping. The maximum ΔPe*Pe.max*) can be deduced through an inverse Laplace transform for Equ. (14). ΔPe.max* is the peak value of the output active power variation, which means the employed ESS must have a power margin larger than ΔPe.max* to mimic the desired inertia characteristics. In addition, the energy constraint ΔE* can be integrated from the shaded areas in Fig. 3.


Fig. 3. Dynamic responses of the VSM output active power when the grid frequency steps down in three modes: (a) Under damping; (b) Over damping; (c) Critical damping.

그림입니다.
원본 그림의 이름: image23.png
원본 그림의 크기: 가로 444pixel, 세로 305pixel

(a)

그림입니다.
원본 그림의 이름: image24.png
원본 그림의 크기: 가로 433pixel, 세로 307pixel

(b)

그림입니다.
원본 그림의 이름: image25.png
원본 그림의 크기: 가로 428pixel, 세로 312pixel

(c)


1) Under Damping (Two Conjugate Complex Poles):

The dynamic response of the VSM output active power is shown in Fig. 3(a) when the grid frequency steps down.

ΔPe* can be obtained from an inverse Laplace transform on Equ. (14), and is written as:

그림입니다.
원본 그림의 이름: CLP000014a4004e.bmp
원본 그림의 크기: 가로 1141pixel, 세로 235pixel          (15)

where m=(80SE-D2)1/2, and e is the Euler number.

When t=4Harctan(m/D)/m, ΔPe.max* can be written as:

그림입니다.
원본 그림의 이름: CLP000014a4004f.bmp
원본 그림의 크기: 가로 1054pixel, 세로 170pixel    (16)

Let ΔPe*(t)=0, and t=4Hπ/m is the first zero point of ΔPe*(t) except for the original point. ΔE* can be obtained from the integration of the shadow area in Fig. 3(a). Therefore:

그림입니다.
원본 그림의 이름: CLP000014a40050.bmp
원본 그림의 크기: 가로 1329pixel, 세로 421pixel   (17)


2) Over Damping (Two Unequal Negative Real Poles):

The dynamic response of the VSM output active power is shown in Fig. 3(b) when the grid frequency steps down. ΔPe* can be obtained from an inverse Laplace transform on Equ. (14), and is written as:

그림입니다.
원본 그림의 이름: CLP000014a40051.bmp
원본 그림의 크기: 가로 1181pixel, 세로 224pixel         (18)

where n=( D2-80SE)1/2.

When t=2Hln[(D+n)/(D-n)]/n, ΔPe.max* can be written as:

그림입니다.
원본 그림의 이름: CLP000014a40052.bmp
원본 그림의 크기: 가로 1354pixel, 세로 277pixel           (19)

When 그림입니다.
원본 그림의 이름: CLP000014a4005d.bmp
원본 그림의 크기: 가로 186pixel, 세로 62pixel, 그림입니다.
원본 그림의 이름: CLP000014a4005e.bmp
원본 그림의 크기: 가로 228pixel, 세로 78pixel. The integration time t is supposed to be 10H in order to simplify the expression of ΔE*. ΔE* can be obtained from the integration of the shadow area in Fig. 3(b) so that:

그림입니다.
원본 그림의 이름: CLP000014a40053.bmp
원본 그림의 크기: 가로 1234pixel, 세로 420pixel      (20)

3) Critical Damping (Two Equal Negative Real Poles):

The dynamic response of the VSM output active power is shown in Fig. 3(c) when the grid frequency steps down.

ΔPe*can be obtained from an inverse Laplace transform on Equ. (14) and is written as:

그림입니다.
원본 그림의 이름: CLP000014a40054.bmp
원본 그림의 크기: 가로 755pixel, 세로 156pixel       (21)

When t=4H/D, ΔPe.max* can be written as: 

그림입니다.
원본 그림의 이름: CLP000014a40058.bmp
원본 그림의 크기: 가로 706pixel, 세로 161pixel         (22)

When 그림입니다.
원본 그림의 이름: CLP000014a40055.bmp
원본 그림의 크기: 가로 192pixel, 세로 74pixel, 그림입니다.
원본 그림의 이름: CLP000014a40056.bmp
원본 그림의 크기: 가로 238pixel, 세로 92pixel. The integration time t is infinite. ΔE* can be obtained from an integration of the shadow area in Fig. 3(c) so that:

그림입니다.
원본 그림의 이름: CLP000014a40057.bmp
원본 그림의 크기: 가로 1372pixel, 세로 181pixel          (23)

According to Table I, the relationships between the power and energy margins, inertia constant H, damping factor D and reference of the reactive power Qref are revealed. Once the power and energy volume of the ESS equipment are fixed, the possible inertia and damping characteristics that the VSM can mimic are restricted. Those are the proposed physical constraints of the energy storage based VSM.


TABLE I POWER AND ENERGY MARGIN EXPRESSIONS OF AN ESS

Mode

Power

Energy

under damping

Equ.(16)

Equ.(17)

over damping

Equ.(19)

Equ.(20)

critical damping

Equ.(22)

Equ.(23)



Ⅲ. PARAMETER INFLUENCES ON THE DYNAMIC BEHAVIORS OF VSMS

In this section, the influences of H, D and Qref on VSM dynamic behaviors are analyzed. Bode diagrams and pole trajectories are presented. The physical constraints on H, D and Qref are further studied theoretically. The parameters of the system are shown in Table II. When Qref=0kVar and H=0.05s, SE can be calculated as 1.038. In addition, D=11.42 is calculated for the critical damping mode.


TABLE II PARAMETERS OF A VSM

Parameter

Value

Parameter

Value

Sn

250kVA

Pref

10kW

Ug(L-L)

380V

Udc

800V

L

1.5mH

ωref

314rad/s

R

0.2Ω

Δωg*

0.01


A. Influences of H, D and Qref on VSM Dynamic Behaviors

The operating points are set at Pref =10kW and Qref =0kVar. The control parameters are set at H=0.05s and D=11.42 when Qref changes. The Bode diagrams in Fig. 4 are obtained from Equ. (12).


Fig. 4. Bode diagrams; (a) Under damping with different H. (b) Under damping with different D, (c) Under damping with different Qref, (d) Over damping with different H, (e) Over damping with different D, (f) Over damping with different Qref.

그림입니다.
원본 그림의 이름: image37.png
원본 그림의 크기: 가로 1141pixel, 세로 516pixel

(a)

그림입니다.
원본 그림의 이름: image38.png
원본 그림의 크기: 가로 1153pixel, 세로 506pixel

(b)

그림입니다.
원본 그림의 이름: image39.png
원본 그림의 크기: 가로 1156pixel, 세로 525pixel

(c)

그림입니다.
원본 그림의 이름: image40.png
원본 그림의 크기: 가로 1156pixel, 세로 528pixel

(d)

그림입니다.
원본 그림의 이름: image41.png
원본 그림의 크기: 가로 1163pixel, 세로 531pixel

(e)

그림입니다.
원본 그림의 이름: image42.png
원본 그림의 크기: 가로 1166pixel, 세로 531pixel

(f)


According to the amplitude-frequency characteristics in Fig. 4(a) and (d), H influences the low frequency band characteristics. The phase-frequency characteristics reveal that a larger H makes a smaller phase margin. In addition, the effect of H on the phase margin is mainly distributed on the middle frequency band.

The amplitude-frequency characteristics and phase- frequency characteristics in Fig. 4 (b) and (e) show that D only influences the middle frequency band characteristics. In addition, D has little effect on the magnitude-frequency characteristic. A larger D makes a lager phase margin.

Fig. 4(c) and (f) show that Qref influences the amplitude- frequency characteristic in the high frequency band and the phase-frequency characteristic in the low frequency band. An increase of Qref results in an increase of the phase margin.

The pole trajectories got from Equ. (14) are presented in Fig. 5. The radical lines indicate the damping ratio and the circle lines indicate the nature frequency.


Fig. 5. Poles trajectories. (a) D varies from 5 to 9 and from 14 to 18 when H=0.05s, Qref=0kVar. (b) H varies from 0.02s to 0.04s and from 0.1s to 0.2s when D=11.42, Qref=0kVar. (c) Qref varies from -30kVar to -10kVar and from 10kVar to 30kVar when H=0.05s, D=11.42.

그림입니다.
원본 그림의 이름: image43.png
원본 그림의 크기: 가로 1013pixel, 세로 466pixel

(a)

그림입니다.
원본 그림의 이름: image44.png
원본 그림의 크기: 가로 1016pixel, 세로 466pixel

(b)

그림입니다.
원본 그림의 이름: image45.png
원본 그림의 크기: 가로 1016pixel, 세로 466pixel

(c)


In Fig. 5(a), the poles are distributed on the negative real axis when D varies from 14 to 18. In addition, the VSM operates in the over damping mode. The poles are conjugate complex when D varies from 5 to 9. In addition, the VSM operates in the under damping mode. It indicates that the system tends to be stable when D increases.

In Fig. 5(b), the poles are distributed on the negative real axis when H varies from 0.02s to 0.04s. In addition, the VSM operates in the over damping mode. The poles are conjugate complex when H varies from 0.1s to 0.2s. In addition, the VSM operates in the under damping mode. This indicates that the system tends to oscillate less when H decreases.

In Fig. 5(c), the poles are distributed on the negative real axis when Qref varies from -10kVar to -30kVar. In addition, the VSM operates in the over damping mode. The poles are conjugate complex when Qref varies from 10kVar to 30kVar. In addition, VSM operates in the under damping mode. This indicates that the system tends to be stable when Qref decreases.

The dynamic responses of the output active power when the grid frequency steps down by 1% are shown in Fig. 6. These results show that H, D and Qref are all related to the power and energy margins. The influences of the three factors on the power and energy margins are shown in Fig. 7. The power and energy margins should increase when H increases and D decreases as shown in Fig. 7(a) and (c). However, the energy margins do not change when D increases to a certain extent as shown in Fig. 7(d). An increase of Qref makes the power margin increase in Fig. 7(e). However, Qref has a slight effect on the energy margin as shown in Fig. 7(f).

그림입니다.
원본 그림의 이름: CLP000014a40059.bmp
원본 그림의 크기: 가로 337pixel, 세로 159pixel      (24)

where J is the virtual inertia, and Ek is the kinetic energy stored in the rotor. H varies between 2s and 10s for a typical SM although it depends on the machine size and power [9]. However, the setting of the VSM inertia constant can be more flexible than the SM.

그림입니다.
원본 그림의 이름: CLP000014a4005a.bmp
원본 그림의 크기: 가로 500pixel, 세로 171pixel        (25)

Ek and H can be defined by Equ. (24) and Equ. (25), respectively [23]. The energy Ek increases while H increases according to Equ. (25). The damping factor D possesses the function for damping power fluctuations. Therefore, ΔPe.max* and ΔE* decrease when D increases. It can also be concluded from Fig. 6 that H is related to the oscillation frequency and D is related to the speed of the oscillation attenuation.


Fig. 6. Theoretic dynamic responses of the output active power when the grid frequency steps down by 1%. (a) Under damping with different values of H when Qref=0kVar, D=11.42. (b) Under damping with different values of D when Qref=0kVar, H=0.05s. (c) Under damping with different values of Qref when H=0.05s, D=11.42. (d) Over damping with different values of H when Qref=0kVar, D=11.42. (e) Over damping with different values of D when Qref=0kVar, H=0.05s. (f) Over damping with different values of Qref when H=0.05s, D=11.42.

그림입니다.
원본 그림의 이름: image46.png
원본 그림의 크기: 가로 781pixel, 세로 337pixel

(a)

그림입니다.
원본 그림의 이름: image47.png
원본 그림의 크기: 가로 778pixel, 세로 336pixel

(b)

그림입니다.
원본 그림의 이름: image48.png
원본 그림의 크기: 가로 775pixel, 세로 335pixel

(c)

그림입니다.
원본 그림의 이름: image49.png
원본 그림의 크기: 가로 776pixel, 세로 338pixel

(d)

그림입니다.
원본 그림의 이름: image50.png
원본 그림의 크기: 가로 779pixel, 세로 343pixel

(e)

그림입니다.
원본 그림의 이름: image51.png
원본 그림의 크기: 가로 785pixel, 세로 344pixel

(f)


Fig. 7. Piecewise curves of power and energy margins. (a) H varies from 0.02s to 0.2s when D=11.42, Qref=0kVar. (b) H varies from 0.02s to 0.2s when D=11.42, Qref=0kVar. (c) D varies from 5 to 18 when H=0.05s, Qref=0kVar. (d) D varies from 5 to 18 when H=0.05s, Qref=0kVar. (e) Qref* varies from -0.12 to 0.12 when H=0.05s, D=11.42. (f) Qref* varies from -0.12 to 0.12 when H=0.05s, D=11.42.

그림입니다.
원본 그림의 이름: image54.png
원본 그림의 크기: 가로 749pixel, 세로 371pixel

(a)

그림입니다.
원본 그림의 이름: image55.png
원본 그림의 크기: 가로 805pixel, 세로 355pixel

(b)

그림입니다.
원본 그림의 이름: image56.png
원본 그림의 크기: 가로 783pixel, 세로 348pixel

(c)

그림입니다.
원본 그림의 이름: image57.png
원본 그림의 크기: 가로 788pixel, 세로 347pixel

(d)

그림입니다.
원본 그림의 이름: image58.png
원본 그림의 크기: 가로 767pixel, 세로 342pixel

(e)

그림입니다.
원본 그림의 이름: image59.png
원본 그림의 크기: 가로 773pixel, 세로 344pixel

(f)


B. Physical Constraints on H, D and Qref

It is preferable for the VSM to operate on the over damping mode in order to relieve frequency transitions and to avoid a large overshoot. Therefore, this paper chooses the over damping mode when H varies from 0 to 1s and D varies from 54 to 100. Fig. 8 illustrates the relationships among power and energy margins, H, D and Qref.


Fig. 8. Power and energy margins with physical constraints. (a) Power margin surfaces and power constraint surface. (b) Projection of subgraph a when Qref*=0 on bottom surface. (c) Energy margin surfaces and energy constraint surface. (d) Projection of subgraph c when Qref*=0 on bottom surface.

그림입니다.
원본 그림의 이름: image60.png
원본 그림의 크기: 가로 479pixel, 세로 479pixel

(a)

그림입니다.
원본 그림의 이름: image61.png
원본 그림의 크기: 가로 559pixel, 세로 572pixel

(b)

그림입니다.
원본 그림의 이름: image62.png
원본 그림의 크기: 가로 472pixel, 세로 472pixel

(c)

그림입니다.
원본 그림의 이름: image63.png
원본 그림의 크기: 가로 572pixel, 세로 572pixel

(d)


Power margin surfaces with different values of Qref* and 10kW power constraint surface are shown in Fig. 8(a). It can be seen that an increase of Qref* raises the power margin. Projections of ΔPe.max and ΔPe.max =10kW when Qref*=0 are presented in Fig. 8(b). The intersecting line divides the projection into two parts. The parameters under and beyond the physical constraint fall within area I and area II, respectively.

Energy margin surfaces with different values of Qref* and energy constraint surface are shown in Fig. 8(c). It can be seen that an increase of Qref* has little effect on the energy margin. Projections of ΔE and ΔE=3 kW×s when Qref*=0 are presented in Fig. 8(d). The intersecting line divides the projection into two parts. The parameters under and beyond the physical constraint fall within area I and area II, respectively.



Ⅳ. SIMULATION RESULTS

PSCAD/EMTDC® is a widely accepted simulation tool, especially in electrical power systems. PSCAD/EMTDC includes a comprehensive library of system models ranging from simple passive elements and control functions, to electric machines and other complex devices. In addition, PSCAD has become the graphical user interface of RTDS.

In this section, the simulation system configuration and control system are presented first. The simulations are carried out when the frequency steps up and down to verify the theoretical analysis. In addition, simulations when the power constraints are broken are also studied in detail. The parameters of the VSM simulation system are the same as those of the theoretical analysis in Table II. The simulations are carried out in PSCAD/EMTDC, without smoothing in order to be consistent with the theoretical analysis results. The switching frequency is set at 10 kHz and the solution time step is set to 1μs.


A. Simulation System Configuration and Control Diagram

The simulation system configuration and the control diagram of a VSM are presented in Fig. 9.


그림입니다.
원본 그림의 이름: image64.png
원본 그림의 크기: 가로 1569pixel, 세로 804pixel

Fig. 9. System configuration and control diagram.


The active power control is designed according to Equ. (1). The primary frequency regulation is ignored. The rotor angle 그림입니다.
원본 그림의 이름: CLP000014a4005f.bmp
원본 그림의 크기: 가로 58pixel, 세로 61pixel can be written as:

그림입니다.
원본 그림의 이름: CLP000014a4005b.bmp
원본 그림의 크기: 가로 1123pixel, 세로 140pixel           (26)

The reactive power control is achieved by changing the internal potential amplitude E of the VSM. The internal potential amplitude E can be written as:

그림입니다.
원본 그림의 이름: CLP000014a4005c.bmp
원본 그림의 크기: 가로 1111pixel, 세로 99pixel   (27)

where Kp is the coefficient of proportionality, and Ki is integral coefficient.

The DC side of the VSM is divided into two modes. The DC side in mode I is a voltage source at 800V. The DC side in mode II is a voltage source initially. However, it is switched to a constant power source when the physical constraints are broken. The simulations in 4.2 and 4.3 are carried out in mode I, and the simulations in 4.4 are carried out in mode II.


B. Dynamic Responses of the Output Active Power when Pref Steps

The simulation results in Fig. 10 indicate that the VSM can realize the inertia and damping characteristics well. The simulations start at t=0. Initially, Pref is set at 10kW, and Qref is set at 0kVar. 30kW is applied to Pref at t=1.0s, and 10kW is then applied to Pref at t=3.0s. In Fig. 10(c) and (d), the under damping mode causes a larger overshoot when compared with the over damping mode in Fig. 10(a) and (b). According to the simulation results, the VSM system can provide inertia and damping well with different values of H and D.


Fig. 10. Dynamic responses of the output active power and currents when Pref steps. (a) H=0.05s, D=20, Qref*=0 (over damping). (b) Three phases currents (over damping). (c) H=0.05s, D=5, Qref*=0 (under damping). (d) Three phases currents (under damping).

그림입니다.
원본 그림의 이름: image68.png
원본 그림의 크기: 가로 777pixel, 세로 345pixel

(a)

그림입니다.
원본 그림의 이름: image69.png
원본 그림의 크기: 가로 1200pixel, 세로 522pixel

(b)

그림입니다.
원본 그림의 이름: image70.png
원본 그림의 크기: 가로 780pixel, 세로 343pixel

(c)

그림입니다.
원본 그림의 이름: image71.png
원본 그림의 크기: 가로 1206pixel, 세로 525pixel

(d)


C. Dynamic Responses of the Output Active Power when the Grid Frequency Steps by 1%

The dynamic responses of the active power with different values of H and D when the grid frequency steps by 1% are shown in Fig. 11 and Fig. 12. The simulations in Fig. 11 and Fig. 12 are carried out when Pref=10kW and Qref=0kVar in the steady state. The grid frequency steps at t=0s after the initial process which is ignored.


Fig. 11. Dynamic responses of the output active power ΔPe when the grid frequency steps down by 1%. (a) Under damping with different values of H. (b) Under damping with different values of D. (c) Over damping with different values of H. (d) Over damping with different values of D.

그림입니다.
원본 그림의 이름: image72.png
원본 그림의 크기: 가로 1172pixel, 세로 513pixel

(a)

그림입니다.
원본 그림의 이름: image73.png
원본 그림의 크기: 가로 1172pixel, 세로 513pixel

(b)

그림입니다.
원본 그림의 이름: image74.png
원본 그림의 크기: 가로 1175pixel, 세로 516pixel

(c)

그림입니다.
원본 그림의 이름: image75.png
원본 그림의 크기: 가로 1172pixel, 세로 513pixel

(d)


Fig. 12. Dynamic responses of the output active power ΔPe when the grid frequency steps up by 1%. (a) Under damping with different values of H. (b) Under damping with different values of D. (c) Over damping with different values of H. (d) Over damping with different values of D.

그림입니다.
원본 그림의 이름: image76.png
원본 그림의 크기: 가로 1169pixel, 세로 513pixel

(a)

그림입니다.
원본 그림의 이름: image77.png
원본 그림의 크기: 가로 1159pixel, 세로 513pixel

(b)

그림입니다.
원본 그림의 이름: image78.png
원본 그림의 크기: 가로 1166pixel, 세로 509pixel

(c)

그림입니다.
원본 그림의 이름: image79.png
원본 그림의 크기: 가로 1156pixel, 세로 509pixel

(d)


The simulation results are consistent with the theoretical analysis results. The theoretical analysis results and simulation data are presented in Table III. The power and energy margins increase when H increases and D decreases. However, the energy margins do not change when the damping factor D increases to a certain extent.


TABLE III Comparison of the Theoretical Results and Simulations of Power and Energy Margins

Mode

Fixed parameter

Variable parameter

Power margin(kW)

 

Energy margin(kW×s)

 

Theoretical(kW)

Simulation(kW)

Error(%)

 

Theoretical(kW×s)

Simulation(kW×s)

Error(%)

Under damping

D=11.42, Qref=0

H=0.10s

9.1848

9.6643

5.22

 

0.5216

0.5364

2.84

H=0.15s

12.5562

13.3522

6.34

 

0.8314

0.8651

4.05

H=0.20s

15.5652

16.4530

5.70

 

1.1604

1.2060

3.93

H=0.05s,Qref=0

D=5

8.2670

8.7672

6.05

 

0.3041

0.3255

7.04

D=7

7.0263

7.2780

3.58

 

0.2719

0.2828

4.01

D=9

6.0944

6.3356

3.96

 

0.2545

0.2585

1.57

H=0.05, D=11.42

Qref*=0.12

5.7389

5.7320

-0.12

 

0.2500

0.2510

0.40

Qref*=0.08

5.5739

5.8263

4.53

 

0.2500

0.2520

0.80

Qref*=0.04

5.4075

5.4608

0.99

 

0.2500

0.2515

0.60

Over damping

D=11.42, Qref=0

H=0.02s

2.3773

2.1506

-9.54

 

0.0998

0.0983

-1.50

H=0.03s

3.3939

3.2933

-2.96

 

0.1500

0.1492

-0.53

H=0.04s

4.3432

4.3432

-0.77

 

0.2000

0.1998

-0.10

H=0.05s,Qref=0

D=14

4.5492

4.6350

1.89

 

0.2500

0.2471

-1.16

D=16

4.1233

4.1739

1.23

 

0.2500

0.2489

-0.44

D=18

3.7682

3.8073

1.04

 

0.2500

0.2462

-1.52

H=0.05, D=11.42

Qref*=-0.12

4.7257

4.7489

0.49

 

0.2500

0.2418

-3.28

Qref*=-0.08

4.8985

4.9481

1.01

 

0.2500

0.2468

-1.28

Qref*=-0.04

5.0699

5.0980

0.55

 

0.2500

0.2462

-1.52

Different active power

H=0.05, D=11.42, Qref=0

Pref=20kW

5.2524

5.6020

6.66

 

0.2499

0.2570

2.84

Pref=10kW

5.2524

5.4165

3.12

 

0.2499

0.2507

0.32

Pref=0kW

5.2524

5.3559

1.97

 

0.2499

0.2406

0.28


The simulations in Fig. 13 and Fig. 14 are carried out when H=0.05s and D=11.42. Pref is set at 10kW when Qref changes as shown in Fig. 13(a)-(c) and Fig. 14(a)-(c). Qref is set at 0kVar when Pref changes as shown in Fig. 13(e) and Fig. 14(e). The grid frequency steps by 1% at t=0s after the initial process. The data of the power and energy margins in Fig. 13 are presented in Table III.


Fig. 13. Dynamic responses of the output active power ΔPe when the grid frequency steps down by 1%. (a) Under damping with different values of Qref. (b) Output currents and voltage when Qref=30kVar. (c) over damping with different Qref. (d) output current and voltage when Qref=-30kVar. (e) Critical damping with different values of Pref.

그림입니다.
원본 그림의 이름: image80.png
원본 그림의 크기: 가로 1172pixel, 세로 513pixel

(a)

그림입니다.
원본 그림의 이름: image81.png
원본 그림의 크기: 가로 755pixel, 세로 337pixel

(b)

그림입니다.
원본 그림의 이름: image82.png
원본 그림의 크기: 가로 1175pixel, 세로 519pixel

(c)

그림입니다.
원본 그림의 이름: image83.png
원본 그림의 크기: 가로 1181pixel, 세로 531pixel

(d)

그림입니다.
원본 그림의 이름: image84.png
원본 그림의 크기: 가로 1188pixel, 세로 516pixel

(e)


Fig. 14. Dynamic responses of the output active power ΔPe when the grid frequency steps up by 1%. (a) Under damping with different values of Qref. (b) Output current and voltage when Qref=30kVar. (c) Over damping with different values of Qref. (d) Output current and voltage when Qref=-30kVar. (e) Critical damping with different values of Pref.

그림입니다.
원본 그림의 이름: image85.png
원본 그림의 크기: 가로 1175pixel, 세로 506pixel

(a)

그림입니다.
원본 그림의 이름: image86.png
원본 그림의 크기: 가로 1188pixel, 세로 522pixel

(b)

그림입니다.
원본 그림의 이름: image87.png
원본 그림의 크기: 가로 1147pixel, 세로 513pixel

(c)

그림입니다.
원본 그림의 이름: image88.png
원본 그림의 크기: 가로 1188pixel, 세로 531pixel

(d)

그림입니다.
원본 그림의 이름: image89.png
원본 그림의 크기: 가로 1172pixel, 세로 516pixel

(e)


According to Fig. 13(a) and Fig. 14(a), the power margin increases when the VSM outputs more inductive reactive power. However, Qref has a slight effect on the energy margin. The output currents and voltage of phase A when Qref=30kVar are presented in Fig. 13(b) and Fig. 14(b). The voltage of phase A is ahead of the current. Thus, the VSM outputs inductive reactive power.

According to Fig. 13(c) and Fig. 14(c), the power margin decreases when the VSM outputs more capacitive reactive power. However, Qref has a slight effect on the energy margin. The output currents and voltage of phase A when Qref=-30kVar are presented in Fig. 13(d) and Fig. 14(d). The voltage of phase A lags behind the current. Thus, the VSM outputs capacitive reactive power.

The simulations in Fig. 13(e) and Fig. 14(e) are carried out with different values of Pref when the VSM operates in the unity-power factor mode. It can be concluded that Pref has no effect on the power and energy margins.

Based on the analysis above, changes of the reactive power influence the power and energy margins. An increase of the inductive reactive power makes the power margin increase and it has a slight effect on the energy margin. The output active power in the steady state has no effect on the power and energy margins.

Using grid frequency steps down as an example, the theoretical analysis results and simulation data in Fig. 11 and Fig. 13 are listed in Table III. These simulation values are obtained after filtering. A second-order Butterworth filter with a cut-off frequency of 20Hz is used. Errors are calculated by error = (simulation-theoretical)/ theoretical* 100%. The errors in Table III are all less than 10%. Thus, the theoretical analysis is verified by simulations.


D. Behaviors of a VSM when the Physical Constraints are Broken

The DC side in this part is in mode II. It is a dc voltage source with a small internal resistance at the beginning. In addition, it switches to the constant power mode when the VSM reaches its power constraint. A 2000uF capacitor is connected with the source in parallel. According to Fig. 8(b), the parameters under and beyond the physical constraints can be set to H=0.2s, D=60 and H=0.7s, D=60. In addition, Pref=10kW and Qref=0kVar are set as the steady state. The grid frequency steps down by 1% at t=0s after the initial process in Fig. 15. The theoretical analysis results and simulations are presented without physical constraints. ΔPe.max in Fig. 15(a) is 6.5228kW, and ΔPe.max in Fig. 15(b) is 15.4422kW. If the power constraint is set at 10kW, the VSM operates with H=0.7s, and D=60 breaks the power constraint.


Fig. 15. Dynamic responses of the output active power ΔPe when the grid frequency steps down by 1%. (a) H=0.2s, D=60, Qref*=0 (parameters under physical constraints). (b) H=0.7s, D=60, Qref*=0 (parameters beyond physical constraints).

그림입니다.
원본 그림의 이름: image90.png
원본 그림의 크기: 가로 776pixel, 세로 340pixel

(a)

그림입니다.
원본 그림의 이름: image91.png
원본 그림의 크기: 가로 1175pixel, 세로 513pixel

(b)


The simulation results are shown in Fig. 16 when the VSM operates with H=0.7s, D=60, Qref =0kVar and Pref =10kW. The power constraint is set at 10kW, and the grid frequency steps down at t=0s. The VSM operates normally to output more active power to support the grid frequency when t=0~t1. The output active power of the VSM reaches the power constraint at t=t1. Meanwhile, the DC capacitor voltage is starting to decrease in Fig. 16(a) after t=t1. The relays act when the direct voltage decreases by 20% of the rated voltage. Then the whole VSM system is shut down (Fig. 16(b) and (c)). The DC capacitor voltage remains unchanged. The output active power and currents decrease to zero.


Fig. 16. Behaviors of the VSM when the physical constraints are broken. (a) DC voltage Vd. (b) Output active power Pe. (c) Output current ig.

그림입니다.
원본 그림의 이름: image92.png
원본 그림의 크기: 가로 769pixel, 세로 337pixel

(a)

그림입니다.
원본 그림의 이름: image93.png
원본 그림의 크기: 가로 765pixel, 세로 336pixel

(b)

그림입니다.
원본 그림의 이름: image94.png
원본 그림의 크기: 가로 1231pixel, 세로 534pixel

(c)



Ⅴ. RTDS EXPERIMENTAL RESULTS

Real-Time Digital Simulator (RTDS) is a supercomputer designed to test the electromagnetic transients in electric power systems. It was developed by the Manitoba HVDC Research Center, Winnipeg, Canada, in 1994. The RTDS is comprised of a RSCAD workstation and racks. Each rack has multiple plug-in processing cards and communication plug-in components. With its powerful parallel processing capacity, the RTDS can simulate a large power networks in real-time for analyzing electromagnetic transients.

In this paper, a VSM experiment system is built completely on RTDS. The employed rack has 12 GPC and 3GP cards, and each GPC or 3GP card has 2 processors. Fig. 17 shows the entire experiment setup of the RTDS system. The VSM model is built in RSCAD, and the computer with RSCAD are connected to the rack through a cable. The physical control box linked to the upper computer is directly connected with the rack. Experimental results can be displayed on the oscilloscope which is connected through the Analogue Output Card.


그림입니다.
원본 그림의 이름: image95.png
원본 그림의 크기: 가로 683pixel, 세로 396pixel

Fig. 17. Photo of the RTDS experiment system.


The system configuration and a control diagram of the VSM are presented in Fig. 9. The parameters of the VSM experimental system are same as those of the theoretical analysis. Experiments start at Pref =0kW and Qref =5kVar. (When Qref=5kVar and H=0.05s, D can be calculated as 11.53 for the critical damping mode). Seconds after the system is stable, 25kW is applied to Pref. The dynamic responses of the output active power are presented when Pref steps with different values of H and D. Fig.18 shows the dynamic responses of the output active power when H=0.05 and D=6, 7, 11.53. When D increases, the peak value of the output active power reduces and the amplitude quickly decreases. Fig.19 shows the dynamic responses of the output active power when D=7 and H=0.08, 0.07, 0.06. When H increases, the peak value of the output active power increases and the characteristic of the inertia is more noticeable. In general, the peak value of the output power should increase when H increases or when D decreases. The results of the RTDS experiment agree with the theoretical analysis.


그림입니다.
원본 그림의 이름: image96.emf
원본 그림의 크기: 가로 703pixel, 세로 404pixel

Fig. 18. Dynamic responses of the output active power when Pref steps with different values of D.


그림입니다.
원본 그림의 이름: image97.emf
원본 그림의 크기: 가로 703pixel, 세로 404pixel

Fig. 19. Dynamic responses of the output active power when Pref  steps with different values of H.



VI. CONCLUSIONS

In this paper, VSM physical constraints are proposed. The influences of key parameters and operating points on the physical constraints are quantitatively analyzed in detail. Bode diagrams and poles trajectories verify these analysis. The transient characteristics and physical constraints of a grid-tie VSM are studied. Finally, the theoretical analysis is verified by simulation and experimental results. The main conclusions are summarized as follows.

(1) Transient characteristics are investigated and physical constraints are proposed based the VSM in this paper. The analytic solutions in Table I are deduced through a theoretical analysis. The inertia constant H, damping factor D and operating point of the reactive power Qref are all related to the power and energy margins.

(2) The influences of H, D and Qref on the physical constraints are investigated by quantitative analysis and simulations. The power and energy margins should increase when H increases and D decreases. Qref has an effect on the power margin and a slight effect on the energy margin. Pref has no effect on the power or energy margins.

(3) The physical constraints and parameters setting ranges are discussed in detail. Parameters beyond the physical constraints cause a sudden decrease of the DC voltage and the whole VSM system is shut down.

The results and analysis in this paper provide a useful basis for the further investigation of VSM transient characteristics. In addition, the physical constraints propose a clear parameters setting principle of the VSM.



References

[1] The national energy administration press conference introduces the relevant energy situation in 2017, http://www. nea.gov.cn/2018-01/24/c_136921015.htm, accessed 24 Jan. 2018.

[2] In 2017, renewable energy generating 1.7 trillion KWH, www.nea.gov.cn/2018-01/26/c_136927061.htm, accessed 26 January 2018.

[3] H. Bevrani., T. Ise and Y. Miura, “Virtual synchronous generators: A survey and new perspectives,” Int. J. of Elect. Power & Energy Syst., Vol. 54, pp. 244-254, Jan. 2014.

[4] P. Tielens and D.-V. Hertem, “The relevance of inertia in power system,” Renew. and Sustain. Energy Reviews,Vol. 55, pp.999-1009, Mar. 2016.

[5] J. Driesen and K. Visscher, “Virtual synchronous generators,” in Proc. IEEE Power and Energy Soc. 2008 Gen. Meet.: Convers. Del. Energy 21 Century, Pittsburgh, PA, U.S.A, pp. 1-3, July. 2008.

[6] H.-P. Beck and R. Hesse, “Virtual synchronous machine,” in Proc. 9th Int. Conf. on Elect. Power Quality and Util., Barcelona, Spain, pp.1-6, 2007.

[7] T. Loix, S. De Breucker, P. Vanassche, J. Van den Keybus, J. Driesen and K. Visscher, “Layout and performance of the power electronic converter platform for the VSYNC project,” IEEE PowerTech, Bucharest, Romania, pp. 1-8, 2009.

[8] Q. C Zhong and G. Weiss, “Synchronverters: inverters that mimic synchronous generators,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1259-1267, Apr. 2011.

[9] J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual synchronous generator with alternating moment of inertia,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 3, No. 2, pp. 451-458, Jun. 2015.

[10] A. Vassilakis, P. Kotsampopoulos, N. Hatziargyriou, and V. Karapanos, “A battery energy storage based virtual synchronous generator,” IREP Symp. Security and Control of the Emerging Power Grid, Rethymno, Greece , pp.1-6, Aug. 2013.

[11] M. Albu, K. Visscher, D. Creanga, A. Nechifor, and N. Golovanov, “Storage selection for DG applications containing virtual synchronous generators,” IEEE Power Tech, Bucharest, Romania, pp. 1-6, 2009.

[12] M. A. Torres L., L. A. C. Lopes, L. A. Morán T. and J. R. Espinoza C., “Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control,” IEEE Trans. Energy Convers., Vol. 29, No. 4, pp 833-840, Dec. 2014.

[13] M. Benidris and J. Mitra, “Enhancing stability performance of renewable energy generators by utilizing virtual inertia,” IEEE Power and Energy Soc. Gen. Meet., pp. 1-6, 2012.

[14] M. Benidris, S. Elsaiah, S. Sulaeman and J. Mitra, “Transient stability of distributed generators in the presence of energy storage devices,” North American Power Symp., Champaign, IL, U.S.A., pp. 1-6, 2012.

[15] M. P. N. van Wesenbeeck, S. W. H. de Haan, P. Varela and K. Visscher, “Grid tied converter with virtual kinetic storage,” IEEE PowerTech, Bucharest, Romania, pp. 1-7, 2009.

[16] J. Liu, J. Wen, W. Yao, and Y. Long, “Solution to short-term frequency response of wind farms by using energy storage systems,” IET Renew. Power Gener., Vol. 10, No.5, pp. 669- 678, May. 2016.

[17] I. Serban, R. Teodorescu, and C. Marinescu, “Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models,” IET Renew. Power Gener., Vol. 7, No. 5, pp. 531-539, Sep. 2013.

[18] S. Wang, J. Hu, X. Yuan, and L. Sun, “On inertial dynamics of virtual synchronous controlled DFIG-based wind turbines,” IEEE Trans. Energy Convers., Vol. 30, No. 4, pp. 1691-1702, Dec. 2015.

[19] S. D'Arco and J. A. Suul, “Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids,” IEEE Trans. Smart Grid, Vol. 5, No. 1, pp. 394- 395, Jan. 2014.

[20] S. D'Arco and J. A. Suul, “Virtual synchronous machines -- classification of implementations and analysis of equivalence to droop controllers for micro-grids,” IEEE Power Tech, Grenoble, France, pp. 1-7, 2013.

[21] L. Xiong, F. Zhuo, F. Wang, X. Liu, Y. Chen, M. Zhu, and H. Yi, “Static Synchronous generator model: A new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM inverter,” IEEE Trans. Power Electron., Vol. 31, No.9, pp. 6264-6280, Sep. 2016.

[22] J. Liu, Y. Miura, and T. Ise, “Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators,” IEEE Trans. Power Electron., Vol. 31, No. 5, pp. 3600-3611, May 2016.

[23] P. Kundur, Power System Stability and Control, McGraw Hill, chap. 3, pp.129, 1994.



그림입니다.
원본 그림의 이름: image98.jpeg
원본 그림의 크기: 가로 208pixel, 세로 274pixel

Chang Yuan was born in Hunan, China, in 1981. He received his B.S. and Ph.D. degrees in Electrical Engineering from Xi’an Jiaotong University, Xi’an, China, in 2003 and 2010, respectively. He is presently working as a Lecturer in the North China Electric Power University, Beijing, China. His current research interests include power electronics applied to power systems.


그림입니다.
원본 그림의 이름: image99.png
원본 그림의 크기: 가로 112pixel, 세로 133pixel

Chang Liu was born in Shandong, China, in 1992. He received his B.S. degree from the Shanghai University of Electric Power, Shanghai, China, in 2014; and his M.S. degree from the North China Electric Power University, Beijing, China, in 2017. He is presently working at the State Grid Jinan Power Supply Company, Jinan, China.


그림입니다.
원본 그림의 이름: image101.jpeg
원본 그림의 크기: 가로 203pixel, 세로 279pixel

Dan Yang was born in Shanxi, China, in 1994. She received her B.S. degree from the North China Electric Power University, Baoding, China, in 2016. She is presently working towards her M.S. degree at the North China Electric Power University, Beijing, China. Her current research interests include power electronics applied to power systems.


그림입니다.
원본 그림의 이름: image102.jpeg
원본 그림의 크기: 가로 210pixel, 세로 293pixel

Ruibing Zhou was born in the Inner Mongolia Autonomous Region, China, in 1990. He is presently working towards his M.S. degree in Electrical Engineering at the North China Electric Power University, Beijing, China. His current research interests include the application of new transmission technologies in power systems.


그림입니다.
원본 그림의 이름: image100.png
원본 그림의 크기: 가로 112pixel, 세로 134pixel

Niang Tang was born in Hunan, China, in 1984. He received his B.S. and M.S. degrees in Electrical Engineering from the Changsha University of Science and Technology, Changsha, China, in 2006 and 2009, respectively. He received his Ph.D. degree in Electrical Engineering from the North China Electric Power University, Beijing, China, in 2013. He is presently working as an Engineer at the Electric Power Research Institute of the Guangdong Power Grid Co., Ltd., Guangzhou, China. His current research interests include power electronics and power quality.