사각형입니다.

https://doi.org/10.6113/JPE.2019.19.6.1591

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718



Practical SPICE Model for IGBT and PiN Diode Based on Finite Differential Method


Han Cao*,**, Puqi Ning†,**, Xuhui Wen*,**, and Tianshu Yuan*,**


†,*Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China

**Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, China



Abstract

In this paper, a practical SPICE model for an IGBT and a PiN diode is proposed based on the Finite Differential Method (FDM). Other than the conventional Fourier model and the Hefner model, the excess carrier distribution can be accurately solved by a fast FDM in the SPICE simulation tool. In order to improve the accuracy of the SPICE model, the Taguchi method is adopted to calibrate the extracted parameters. This paper presents a numerical modelling approach of an IGBT and a PIN diode, which are also verified by SPICE simulations and experiments.


Key words: Finite differential method, IGBT, Model, PiN diode, SPICE


Manuscript received Dec. 21, 2018; accepted May 29, 2019

Recommended for publication by Associate Editor Sang-Won Yoon.

Corresponding Author: npq@mail.iee.ac.cn Tel: +86-13269167295, Institute of Electrical, CAS

*Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences, China

**Collaborative Innovation Center of Electric Vehicles in Beijing, China


NOMENCLATURE

그림입니다.
원본 그림의 이름: CLP000027904141.bmp
원본 그림의 크기: 가로 50pixel, 세로 53pixel

Total die area of a diode (cm2).

그림입니다.
원본 그림의 이름: CLP000027900001.bmp
원본 그림의 크기: 가로 62pixel, 세로 64pixel

Total die area of an IGBT (cm2).

그림입니다.
원본 그림의 이름: CLP000027900002.bmp
원본 그림의 크기: 가로 123pixel, 세로 76pixel

Gate-collector capacitance (nF).

그림입니다.
원본 그림의 이름: CLP000027900003.bmp
원본 그림의 크기: 가로 132pixel, 세로 77pixel

Depletion capacitance (nF).

그림입니다.
원본 그림의 이름: CLP000027900004.bmp
원본 그림의 크기: 가로 126pixel, 세로 76pixel

Gate-emitter capacitance (nF).

그림입니다.
원본 그림의 이름: CLP000027900005.bmp
원본 그림의 크기: 가로 96pixel, 세로 71pixel

Oxide capacitance (nF).

그림입니다.
원본 그림의 이름: CLP000027900006.bmp
원본 그림의 크기: 가로 114pixel, 세로 73pixel

Reverse transmission capacitance (nF).

그림입니다.
원본 그림의 이름: CLP000027900007.bmp
원본 그림의 크기: 가로 68pixel, 세로 60pixel

Ambipolar diffusivity (cm2 /s).

그림입니다.
원본 그림의 이름: CLP000027900008.bmp
원본 그림의 크기: 가로 87pixel, 세로 74pixel

Electron diffusivity (cm2 /s).

그림입니다.
원본 그림의 이름: CLP000027900009.bmp
원본 그림의 크기: 가로 83pixel, 세로 78pixel

Hole diffusivity (cm2 /s).

그림입니다.
원본 그림의 이름: CLP00002790000a.bmp
원본 그림의 크기: 가로 75pixel, 세로 60pixel

Dielectric constant of silicon (F/cm).

그림입니다.
원본 그림의 이름: CLP00002790000b.bmp
원본 그림의 크기: 가로 69pixel, 세로 74pixel

Electron recombination coefficient (cm4 /s).

그림입니다.
원본 그림의 이름: CLP00002790000c.bmp
원본 그림의 크기: 가로 66pixel, 세로 77pixel

Hole recombination coefficient (cm4 /s).

그림입니다.
원본 그림의 이름: CLP00002790000d.bmp
원본 그림의 크기: 가로 73pixel, 세로 73pixel

Collector current of an IGBT (A).

그림입니다.
원본 그림의 이름: CLP00002790000e.bmp
원본 그림의 크기: 가로 111pixel, 세로 73pixel

Collector-gate current in an IGBT (A).

그림입니다.
원본 그림의 이름: CLP00002790000f.bmp
원본 그림의 크기: 가로 78pixel, 세로 74pixel

Total anode current of a diode (A).

그림입니다.
원본 그림의 이름: CLP000027900010.bmp
원본 그림의 크기: 가로 128pixel, 세로 76pixel

Displacement current at 그림입니다.
원본 그림의 이름: CLP000027900039.bmp
원본 그림의 크기: 가로 53pixel, 세로 54pixel (A).

그림입니다.
원본 그림의 이름: CLP000027900011.bmp
원본 그림의 크기: 가로 139pixel, 세로 77pixel

Displacement current at 그림입니다.
원본 그림의 이름: CLP00002790003a.bmp
원본 그림의 크기: 가로 58pixel, 세로 57pixel (A).

그림입니다.
원본 그림의 이름: CLP000027900012.bmp
원본 그림의 크기: 가로 77pixel, 세로 74pixel

Drive current of an IGBT (A).

그림입니다.
원본 그림의 이름: CLP000027900013.bmp
원본 그림의 크기: 가로 105pixel, 세로 75pixel

Gate-emitter current in an IGBT (A).

그림입니다.
원본 그림의 이름: CLP000027900014.bmp
원본 그림의 크기: 가로 117pixel, 세로 74pixel

MOS channel region current (A).

그림입니다.
원본 그림의 이름: CLP000027900015.bmp
원본 그림의 크기: 가로 83pixel, 세로 73pixel

Electron current at 그림입니다.
원본 그림의 이름: CLP00002790003d.bmp
원본 그림의 크기: 가로 53pixel, 세로 55pixel (A).

그림입니다.
원본 그림의 이름: CLP000027900016.bmp
원본 그림의 크기: 가로 93pixel, 세로 76pixel

Electron current at 그림입니다.
원본 그림의 이름: CLP00002790003e.bmp
원본 그림의 크기: 가로 56pixel, 세로 56pixel (A).

그림입니다.
원본 그림의 이름: CLP000027900017.bmp
원본 그림의 크기: 가로 88pixel, 세로 82pixel

Hole current at 그림입니다.
원본 그림의 이름: CLP00002790003f.bmp
원본 그림의 크기: 가로 50pixel, 세로 52pixel (A).

그림입니다.
원본 그림의 이름: CLP000027900018.bmp
원본 그림의 크기: 가로 93pixel, 세로 76pixel

Hole current at 그림입니다.
원본 그림의 이름: CLP000027900040.bmp
원본 그림의 크기: 가로 59pixel, 세로 54pixel (A).

그림입니다.
원본 그림의 이름: CLP000027900019.bmp
원본 그림의 크기: 가로 82pixel, 세로 69pixel

Current density of a diode (A/cm2).

그림입니다.
원본 그림의 이름: CLP00002790001a.bmp
원본 그림의 크기: 가로 85pixel, 세로 81pixel

MOS channel transconductance Ω-1.

그림입니다.
원본 그림의 이름: CLP00002790001b.bmp
원본 그림의 크기: 가로 91pixel, 세로 69pixel

Base impurity doping concentration (cm-3).

그림입니다.
원본 그림의 이름: CLP00002790001c.bmp
원본 그림의 크기: 가로 49pixel, 세로 59pixel

Carrier density of drift region (cm-3).

그림입니다.
원본 그림의 이름: CLP00002790001d.bmp
원본 그림의 크기: 가로 66pixel, 세로 56pixel

Carrier density at 그림입니다.
원본 그림의 이름: CLP00002790003b.bmp
원본 그림의 크기: 가로 55pixel, 세로 54pixel (cm-3).

그림입니다.
원본 그림의 이름: CLP00002790001e.bmp
원본 그림의 크기: 가로 68pixel, 세로 59pixel

Carrier density at 그림입니다.
원본 그림의 이름: CLP00002790003c.bmp
원본 그림의 크기: 가로 58pixel, 세로 56pixel (cm-3).

그림입니다.
원본 그림의 이름: CLP00002790001f.bmp
원본 그림의 크기: 가로 130pixel, 세로 64pixel

Average carrier density of drift region (cm-3).

그림입니다.
원본 그림의 이름: CLP000027900020.bmp
원본 그림의 크기: 가로 40pixel, 세로 53pixel

Electron charge (c).

그림입니다.
원본 그림의 이름: CLP000027900021.bmp
원본 그림의 크기: 가로 31pixel, 세로 46pixel

Time (us).

그림입니다.
원본 그림의 이름: CLP000027900022.bmp
원본 그림의 크기: 가로 124pixel, 세로 74pixel

Turn-off delay time (ns).

그림입니다.
원본 그림의 이름: CLP000027900023.bmp
원본 그림의 크기: 가로 119pixel, 세로 63pixel

Turn-on delay time (ns).

그림입니다.
원본 그림의 이름: CLP000027900024.bmp
원본 그림의 크기: 가로 72pixel, 세로 74pixel

Voltage fall time (ns).

그림입니다.
원본 그림의 이름: CLP000027900025.bmp
원본 그림의 크기: 가로 55pixel, 세로 60pixel

Current rise time (ns).

그림입니다.
원본 그림의 이름: CLP000027900026.bmp
원본 그림의 크기: 가로 94pixel, 세로 57pixel

High-level lifetime (us).

그림입니다.
원본 그림의 이름: CLP000027900027.bmp
원본 그림의 크기: 가로 74pixel, 세로 57pixel

Electron mobility (cm/s).

그림입니다.
원본 그림의 이름: CLP000027900028.bmp
원본 그림의 크기: 가로 81pixel, 세로 71pixel

Hole mobility (cm/s).

그림입니다.
원본 그림의 이름: CLP000027900029.bmp
원본 그림의 크기: 가로 93pixel, 세로 56pixel

Saturation mobility (cm/s).

그림입니다.
원본 그림의 이름: CLP00002790002a.bmp
원본 그림의 크기: 가로 116pixel, 세로 74pixel

Diode voltage drop (V).

그림입니다.
원본 그림의 이름: CLP00002790002c.bmp
원본 그림의 크기: 가로 107pixel, 세로 73pixel

Collector-gate voltage (V).

그림입니다.
원본 그림의 이름: CLP00002790002d.bmp
원본 그림의 크기: 가로 70pixel, 세로 73pixel

Depletion region voltage drop (V).

그림입니다.
원본 그림의 이름: CLP00002790002e.bmp
원본 그림의 크기: 가로 97pixel, 세로 70pixel

Drain-source voltage in a MOSFET (V).

그림입니다.
원본 그림의 이름: CLP00002790002f.bmp
원본 그림의 크기: 가로 99pixel, 세로 72pixel

Gate-emitter voltage (V).

그림입니다.
원본 그림의 이름: CLP000027900030.bmp
원본 그림의 크기: 가로 96pixel, 세로 75pixel

Gate-source voltage in a MOSFET (V).

그림입니다.
원본 그림의 이름: CLP000027900031.bmp
원본 그림의 크기: 가로 64pixel, 세로 77pixel

Junction voltage drop (V).

그림입니다.
원본 그림의 이름: CLP000027900032.bmp
원본 그림의 크기: 가로 69pixel, 세로 71pixel

Thermal voltage (V).

그림입니다.
원본 그림의 이름: CLP000027900033.bmp
원본 그림의 크기: 가로 78pixel, 세로 73pixel

Threshold voltage of a MOSFET (V).

그림입니다.
원본 그림의 이름: CLP000027900034.bmp
원본 그림의 크기: 가로 86pixel, 세로 70pixel

Drift region width of a diode (um).

그림입니다.
원본 그림의 이름: CLP000027900035.bmp
원본 그림의 크기: 가로 69pixel, 세로 71pixel

Drift region width of an IGBT (um).

그림입니다.
원본 그림의 이름: CLP000027900036.bmp
원본 그림의 크기: 가로 73pixel, 세로 48pixel

Differential step (um).

그림입니다.
원본 그림의 이름: CLP000027900037.bmp
원본 그림의 크기: 가로 53pixel, 세로 54pixel

Left boundary of drift region (um).

그림입니다.
원본 그림의 이름: CLP000027900038.bmp
원본 그림의 크기: 가로 63pixel, 세로 51pixel

Right boundary of drift region (um).



Ⅰ. INTRODUCTION

An insulated gate bipolar transistor (IGBT) can be equivalent to a giant transistor (GTR) driven by a metal-oxide semiconductor field effect transistor (MOSFET) in the physical structure. Therefore, it has the advantages of both GTRs and MOSFETs, such as high input impedance and low on-state voltage. With increments in its voltage and current ratings, the application range can be extending from medium power applications to high power applications [1].

The authors of [2] presented a 6.5 kV commercially available IGBT module in a boost circuit application switching at 9 kHz, and a 7 kA IGBT module was fabricated in [3]. Improvements in packing materials and structure design enable IGBTs to be operated at higher frequencies. Thus, the authors of [4] provided an ultra-thin punch-though IGBT with a blocking voltage of 650V, which is able to drive DC-DC converter at 200 kHz.

Since the invention of the first IGBT in 1982 [5], various of modeling methods have been proposed from different aspects and with different objectives. However, depending on the modeling method used, the models can be divided into two categories, numerical models and behavioral models.

Behavioral models concentrate on IGBT behavior without considering their physical mechanism. A curve-fitting method was used in [6] to calculate switching losses. However, this model cannot demonstrate dynamic behavior. The authors of [7] used a Hammerstein model to describe the static characteristics and the switching characteristics of an IGBT.

The configuration of this model is illustrated in Fig. 1, and the model was simulated with Saber. Although behavioral models can simply and accurately describe IGBTs, they lack universality.


그림입니다.
원본 그림의 이름: CLP000027900041.bmp
원본 그림의 크기: 가로 1317pixel, 세로 471pixel

Fig. 1. Configuration of a Hammerstein model.


Numerical models refer to analytical models based on semiconductor physics. Solving an Ambipolar Diffusion Equation (ADE) Equ. (1) with different simplifications to obtain excess carriers distribution p(x,t) is the key point of modelling.

그림입니다.
원본 그림의 이름: CLP000027900042.bmp
원본 그림의 크기: 가로 457pixel, 세로 172pixel            (1)

There are three approaches based on this method: (1), Hefner model [8], Fourier-based model [9] and Laplace transformation model [10]. The Hefner model assumes a linear distribution of excess carriers and describes them as Equ. (2). This method is appropriate for a planar IGBT. However, it is not appropriate for a trench-field-stop IGBT and a PIN diode. The Fourier-based model can simulate all kinds of IGBTs. However, its iterations are too complex, which can lead to some problems in terms of convergence. The drift region excess carrier distribution of a Fourier-based model can be calculated by Equ. (3). A Laplace transformation model can solve the ADE in the frequency domain. However, it is not suitable for changes of the drift region boundary.

그림입니다.
원본 그림의 이름: CLP000027900043.bmp
원본 그림의 크기: 가로 1096pixel, 세로 165pixel            (2)

그림입니다.
원본 그림의 이름: CLP000027900044.bmp
원본 그림의 크기: 가로 1005pixel, 세로 179pixel               (3)

To simplify the calculations and improve accuracy, this paper presents a novel approach to solve Equ. (1) with the Finite Differential Method. In addition, a physical SPICE model for an IGBT and a PIN diode is built in SIMetrix. The simulation is more stable and faster than both the Fourier- based model and the Laplace transformation model. This is due to the simplifications in the drift region and the accurate description of the boundary.



Ⅱ. SIMULATION OF THE DRIFT REGION


A. Finite Differential Method Implementation in SPICE

A time domain based partial differential equation solution was proposed in [11]. According to this method, the drift region can be finite differenced in k equal parts, x1, …, xj, …xk. Hence, the orders of the ADE can be reduced by Equ. (4) and Equ. (5) in part j, and the partial differential equation can be simplified as Equ. (6).

그림입니다.
원본 그림의 이름: CLP000027900046.bmp
원본 그림의 크기: 가로 397pixel, 세로 172pixel                   (4)

그림입니다.
원본 그림의 이름: CLP000027900047.bmp
원본 그림의 크기: 가로 638pixel, 세로 183pixel                (5)

그림입니다.
원본 그림의 이름: CLP000027900048.bmp
원본 그림의 크기: 가로 1146pixel, 세로 185pixel            (6)

Equ. (6) can be solved by a SPICE simulation, where it is replaced by a simple network of resistors and capacitors driven by voltage controlled current sources. As showed in Fig. 2, pj is replaced by the node voltage ej, and the differential of pj is equivalent to the charge current of C.


그림입니다.
원본 그림의 이름: CLP000027900045.bmp
원본 그림의 크기: 가로 1443pixel, 세로 568pixel

Fig. 2.Method for solving an ADE in a SPICE simulation.


The value chosen for C and R is unimportant as long as the R-C time constant is much larger than the largest time of the ADE interest. In addition, a large number (larger than 1015) or a non-zero small number (less than 10-6) results in convergence problems in SIMetrix.

Based on this principle, the values of R and C are chosen as 1 and 10-6, respectively. Hypothetically, the drift region is finite differenced in k equal parts. A higher k can result in a higher calculation accuracy. However, the solving process is more complex and the simulation time increases. Hence, a trade-off between calculation accuracy and simulation speed should be made. As a consequence, the stage number is chosen as 5. Taking the boundary conditions of Equ. (7) and Equ. (8) into consideration, the excess carrier distribution can be calculated by Equ. (9).

그림입니다.
원본 그림의 이름: CLP000027900049.bmp
원본 그림의 크기: 가로 827pixel, 세로 178pixel              (7)

그림입니다.
원본 그림의 이름: CLP00002790004a.bmp
원본 그림의 크기: 가로 883pixel, 세로 173pixel              (8)

그림입니다.
원본 그림의 이름: CLP00002790004b.bmp
원본 그림의 크기: 가로 1285pixel, 세로 466pixel           (9)

where: 

그림입니다.
원본 그림의 이름: CLP000015240001.bmp
원본 그림의 크기: 가로 1210pixel, 세로 782pixel


B. The Excess Carrier Distribution Simulation

Based on this method, the excess carrier distribution of a PiN diode (IRD3CH53DB6) can be simulated in SIMtrix. In addition, the same method can be used to simulate the drift region distribution of an IGBT. The results are shown in Fig. 3.


그림입니다.
원본 그림의 이름: CLP00001524043c.bmp
원본 그림의 크기: 가로 1125pixel, 세로 761pixel

Fig. 3.Carrier distribution of a PiN diode under different 그림입니다.
원본 그림의 이름: CLP00001524004f.bmp
원본 그림의 크기: 가로 61pixel, 세로 68pixel.


The largest concentration of the electrons and holes in the drift region during a turn-on transient occurs at its boundary. The drop in the carrier density towards the center of the drift region is determined by τHL and D. The reduction of the average carrier density into the drift region with a reduction of the injected current IT can be explained by the charge control method [12].

Suppose the recombination of the end regions is neglected. Consequently:

그림입니다.
원본 그림의 이름: CLP000015240002.bmp
원본 그림의 크기: 가로 295pixel, 세로 96pixel            (10)

Where R is the recombination rate, which is given by:

그림입니다.
원본 그림의 이름: CLP000015240003.bmp
원본 그림의 크기: 가로 233pixel, 세로 161pixel              (11)

The average carrier density in the drift region is then described by:

그림입니다.
원본 그림의 이름: CLP000015240004.bmp
원본 그림의 크기: 가로 379pixel, 세로 170pixel          (12)

Due to this relationship, it can be concluded that the average carrier density has a positive correlation with JT and τHL, which can be verified in Fig. 3.

Bipolar devices mainly work under large injection levels and their drift region contains a large number of electrons and holes which makes it a low resistance state. When a PiN diode is switched from the conduction mode to the reverse-blocking mode, the excess carrier density of the drift region decreases rapidly due to the termination of the injection. The stored charge within the drift region of the PiN diode must be extracted before it can support high voltages. This process is illustrated in Fig. 4 and Fig. 5. This phenomenon is referred to as reverse recovery.


그림입니다.
원본 그림의 이름: CLP000015240005.bmp
원본 그림의 크기: 가로 1045pixel, 세로 699pixel

Fig. 4.Carrier distribution in the reverse recovery (before 21.5us).


그림입니다.
원본 그림의 이름: CLP000015240006.bmp
원본 그림의 크기: 가로 1039pixel, 세로 684pixel

Fig. 5.Carrier distribution in the reverse recovery (after 21.5us).



Ⅲ. DIODE MODEL IMPLEMENTATION

To implement the FDM model for a PiN diode, the basic one-dimension diode body is divided into three parts, as shown in Fig. 6. The performance characteristics of the PiN diode depend mainly on the chip geometry and the processed semiconductor material in the drift region [13]. When the PiN diode is forward biased, holes and electrons are injected into the drift region. This charge does not recombine instantaneously. Instead it has a finite lifetime (τHL) in the drift region. If the PiN diode is reverse biased, there is no stored charge in the drift region, which behaves like a parallel R-C network.


그림입니다.
원본 그림의 이름: CLP000040780002.bmp
원본 그림의 크기: 가로 1505pixel, 세로 385pixel

Fig. 6. Physical structure of a PiN diode.


A. Physics Method for PiN Diode Modeling

The on-state voltage drop of a PiN diode VAK consists of three parts, which are the junction voltages Vj, the voltage of the drift region VB and the voltage of the depletion region Vd.

그림입니다.
원본 그림의 이름: CLP000015240008.bmp
원본 그림의 크기: 가로 480pixel, 세로 80pixel             (13)

Neglecting the distributional effects in the drift region, Vj and Vd can be described by a simple quasi-static model as Equ. (14) and Equ. (15). The voltages across the P+/N- junction and the N+/N- junction are determined by the injected minority carrier density and the majority carrier density, respectively. More importantly, Equ. (14) can be derived under the charge neutrality condition p(x)=n(x).

In Equ. (15), Ip1/Avsat and In1/Avsat are far less than qNB. Consequently, neglecting them can improve the calculating speed and the convergence property of the FDM model.

그림입니다.
원본 그림의 이름: CLP000015240009.bmp
원본 그림의 크기: 가로 443pixel, 세로 195pixel             (14)

그림입니다.
원본 그림의 이름: CLP00001524000a.bmp
원본 그림의 크기: 가로 1423pixel, 세로 171pixel                 (15)

그림입니다.
원본 그림의 이름: CLP00001524000b.bmp
원본 그림의 크기: 가로 1404pixel, 세로 192pixel                 (16)


B. PiN Diode Parameters Extraction

The first parameter that needs to be extraction is the chip area A, which is closely related to the rated current. The approach to extract A is to directly measure the diode area or to obtain it from a datasheet.


그림입니다.
원본 그림의 이름: CLP00001524000e.bmp
원본 그림의 크기: 가로 831pixel, 세로 693pixel

Fig. 7. Turn-off waveform of a PiN diode.


The parameter τHL must be determined from the diode turn-off waveform such as the one shown in Fig. 7. Under this circumstance, τHL can be calculated by Equ. (17) [14].

그림입니다.
원본 그림의 이름: CLP00001524000c.bmp
원본 그림의 크기: 가로 709pixel, 세로 141pixel                   (17)

Where α is the current slope from T0 to T1. T0 is the zero-crossing point during the turn-off transient, and T1 is the moment the reverse recovery current reaches its peak value. τrr is the reverse recovery time constant, which can be measured from the current waveform.

Another important parameter is the drift region width Wd, which can influence the breakdown voltage of bipolar semiconductor devices. The approach to extracting Wd is based on Equ. (18) [15], and the PiN diode parameters extraction results are listed in Table I.

그림입니다.
원본 그림의 이름: CLP00001524000d.bmp
원본 그림의 크기: 가로 422pixel, 세로 166pixel                     (18)

Where VBR is the avalanche breakdown voltage. In addition, a and b represent two constants that are related to the semiconductor technology.


TABLE I PARAMETERS EXTRACTION RESULTS OF A DIODE

그림입니다.
원본 그림의 이름: CLP000015240010.bmp
원본 그림의 크기: 가로 314pixel, 세로 66pixel

0.376cm2

그림입니다.
원본 그림의 이름: CLP000015240011.bmp
원본 그림의 크기: 가로 597pixel, 세로 71pixel

0.12us

그림입니다.
원본 그림의 이름: CLP000015240012.bmp
원본 그림의 크기: 가로 559pixel, 세로 71pixel

139.7um

그림입니다.
원본 그림의 이름: CLP000015240013.bmp
원본 그림의 크기: 가로 822pixel, 세로 80pixel

10-14cm4/s

그림입니다.
원본 그림의 이름: CLP000015240014.bmp
원본 그림의 크기: 가로 911pixel, 세로 69pixel

1014cm2/s


C. PiN Diode Model Verification

With all of the above equations, the PiN diode model is simulated in SIMetrix. SIMetrix is a mixed-signal circuit simulator with its core algorithms based on the SPICE program. The simulation parameters are listed in Table II.


TABLE II SIMULATION PARAMETERS

그림입니다.
원본 그림의 이름: CLP000015240015.bmp
원본 그림의 크기: 가로 394pixel, 세로 53pixel

31.5u

그림입니다.
원본 그림의 이름: CLP000015240016.bmp
원본 그림의 크기: 가로 235pixel, 세로 53pixel

203m

그림입니다.
원본 그림의 이름: CLP000015240017.bmp
원본 그림의 크기: 가로 252pixel, 세로 61pixel

178.133n

그림입니다.
원본 그림의 이름: CLP000015240018.bmp
원본 그림의 크기: 가로 308pixel, 세로 62pixel

470

그림입니다.
원본 그림의 이름: CLP000015240019.bmp
원본 그림의 크기: 가로 378pixel, 세로 53pixel

2.205k


To verify the simulation results of SIMetrix, a double- pulse test circuit was developed as shown in Fig. 8, and the DUT (Device Under Test) is an IRD3CH53DB6. A 42.3 mH inductor served as a load and the value of the driver resistance Rg was chosen as 7.5 Ω. In order to avoid the spurious triggering caused by the Miller capacitance, Vgoff was set at -9 V. Fig. 9 shows a comparison of simulation and experimental results.


그림입니다.
원본 그림의 이름: CLP00001524001a.bmp
원본 그림의 크기: 가로 961pixel, 세로 771pixel

Fig. 8. Double-pulse test with the proposed diode model.


Fig. 9. Double-pulse test with the proposed PiN model (Vgon=15V, Vgoff=-9V, Rg=7.5Ω, L= 42.3 mH). (a) Under a DC bus voltage of 100V. (b) Under a DC bus voltage of 200V.

그림입니다.
원본 그림의 이름: CLP00001524001b.bmp
원본 그림의 크기: 가로 1271pixel, 세로 663pixel

(a)

그림입니다.
원본 그림의 이름: CLP00001524001c.bmp
원본 그림의 크기: 가로 1299pixel, 세로 622pixel

(b)



Ⅳ. IGBT MODEL IMPLEMENTATION

The basic unit cell structure of an IGBT is shown in Fig. 10. The N+ zone is called the source region, and the electrode attached to it is called the source electrode. The N plus area is called the drift region. The control area of the IGBT is the gate area, and the channel is formed near the boundary of the gate.


그림입니다.
원본 그림의 이름: CLP000040780003.bmp
원본 그림의 크기: 가로 1490pixel, 세로 568pixel

Fig. 10. Physical structure of an IGBT.


A. Physics Method for IGBT Modeling

The basic IGBT dynamic model consists of three state equations: the current continuity equation, the voltage drop equations and the IGBT driver equations. The current continuity equation governing the behavior of IGBT is describe as Equ. (19).

그림입니다.
원본 그림의 이름: CLP00001524001e.bmp
원본 그림의 크기: 가로 1001pixel, 세로 83pixel                (19)

Where In1=qAihppl2, In2=Imos and the specific descriptions of Idisp2 and ICG are described in [16].


그림입니다.
원본 그림의 이름: CLP00001524001f.bmp
원본 그림의 크기: 가로 1140pixel, 세로 771pixel

Fig. 11. Typical IGBT application circuit.


그림입니다.
원본 그림의 이름: CLP000015240020.bmp
원본 그림의 크기: 가로 1404pixel, 세로 568pixel

Fig. 12. Equivalent circuit of Miller capacitance.


The voltage drop of an IGBT is comprised of three parts: the voltage across the junctions J1, the voltage across the depletion region Vd2, and the voltage across the drift region VB. Similarly, the three voltages can be describe as Equ. (20), Equ. (21) and Equ. (22).

그림입니다.
원본 그림의 이름: CLP000015240021.bmp
원본 그림의 크기: 가로 446pixel, 세로 184pixel                (20)

그림입니다.
원본 그림의 이름: CLP000015240022.bmp
원본 그림의 크기: 가로 870pixel, 세로 171pixel              (21)

그림입니다.
원본 그림의 이름: CLP000015240023.bmp
원본 그림의 크기: 가로 1426pixel, 세로 190pixel                (22)

A typical IGBT application circuit is illustrated in Fig. 11. According to Kirchhoff’s law, the current flowing into the gate terminal is equal to the current flowing out of it. Consequently, IG and ICG can be described as Equ. (23) and Equ. (24), respectively. Combining Equ. (23) with Equ. (24), the IGBT driver equation is derived as Equ. (25). The MOS part of the IGBT can be directly implemented with a PSPICE MOSFET model.

그림입니다.
원본 그림의 이름: CLP000015240024.bmp
원본 그림의 크기: 가로 990pixel, 세로 146pixel                (23)

그림입니다.
원본 그림의 이름: CLP000015240025.bmp
원본 그림의 크기: 가로 649pixel, 세로 145pixel                 (24)

그림입니다.
원본 그림의 이름: CLP000015240026.bmp
원본 그림의 크기: 가로 1011pixel, 세로 176pixel                (25)


B. Miller Plateau Implementation

The Miller plateau caused by Miller capacitance can lead to a loss of control over the turn-on di/dt [17] and snap-off during the turn-off process, which can result in device failures. The Miller capacitance forms from an overlap of the gate metallization and the N-drift region [18]. It can be described as a voltage-controlled capacitance that is not available for SPICE simulations.

In this paper, voltage-controlled current sources are used to simulate the charge process of ICG. The moment the Miller Plateau occurs is related to the threshold voltage of the elemental MOSFET. This phenomenon is shown in Fig. 13.


그림입니다.
원본 그림의 이름: CLP000015240027.bmp
원본 그림의 크기: 가로 1310pixel, 세로 753pixel

Fig. 13. Miller plateau characteristics with values of different Vth.


In this method, Cox and Cdep are equivalent to CAP and DCAP, respectively. By changing the null-bias capacitance CJO and the junction electric potential VJ of the DCAP, different Miller plateau characteristics can be simulated, as shown in Fig. 14. In addition, Fig. 15 shows a comparison of simulation and experimental results, under the same condition with the diode test.


그림입니다.
원본 그림의 이름: CLP000015240028.bmp
원본 그림의 크기: 가로 1321pixel, 세로 753pixel

Fig. 14. Miller plateau characteristics with different values of CJO.


그림입니다.
원본 그림의 이름: CLP000015240029.bmp
원본 그림의 크기: 가로 1311pixel, 세로 768pixel

Fig. 15. Miller plateau implementation.


C. IGBT Parameters Extraction

The parameters that need to be extracted for the modeling of an IGBT can be divided into five categories: the MOS part parameters, IGBT structure parameters, IGBT drift region parameters, IGBT lifetime parameters and IGBT recombination coefficients.

The structure parameters include the device area 그림입니다.
원본 그림의 이름: CLP00001524002b.bmp
원본 그림의 크기: 가로 55pixel, 세로 65pixel and the oxide capacitance Cox of the IGBT. The device area can be measured or obtained directly from a datasheet. The oxide capacitance is a part of the Miller capacitance. It can be acquired from the Cres curve in the datasheet. When Cres reaches its maximum value, the depletion layer has not formed yet (그림입니다.
원본 그림의 이름: CLP00001524002c.bmp
원본 그림의 크기: 가로 202pixel, 세로 81pixel). This means the value of Cox is the same as Cres.

Other than the PiN diode, the drift region parameter Wi is different between Non-Punch Through (NPT) IGBTs and Punch Through (PT)/Field Stop (FS) IGBTs. Since the electric field in the drift region of an NPT IGBT is a triangular distribution, Wi can be derived by Equ. (26). As for a PT/FS IGBT, the electric field of the drift region is a trapezoidal distribution, and the drift region width of the IGBT can be calculated by Equ. (27).

그림입니다.
원본 그림의 이름: CLP00001524002d.bmp
원본 그림의 크기: 가로 287pixel, 세로 146pixel                (26)

그림입니다.
원본 그림의 이름: CLP00001524002e.bmp
원본 그림의 크기: 가로 945pixel, 세로 169pixel                 (27)

Where Ec is the typical value of the silicon-based electric field, and VBR is the avalanche breakdown voltage of the IGBT.

In order to extract a high-level lifetime τHL of the IGBT, the current tail in the turn-off transient under an inductive load needs to be measured. According to the method in [19], τHL is the time constant of the current tail as shown in Fig. 16.


그림입니다.
원본 그림의 이름: CLP00001524002a.bmp
원본 그림의 크기: 가로 960pixel, 세로 665pixel

Fig. 16. Current tail of an IGBT.


The MOS part of the IGBT can be directly implemented with a PSPICE MOSFET model, the parameters of which include the MOSFET threshold voltage Vth and transconductance Kp. Vth is the threshold voltage of the MOSFET which means the gate voltage at the critical conduction moment. Kp is the channel transconductance of the MOSFET, which represents the ability of the gate voltage to control the collector current. These two parameters can be extracted from Equ. (28), and the IGBT parameters extraction results are listed in Table III.

그림입니다.
원본 그림의 이름: CLP00001524003b.bmp
원본 그림의 크기: 가로 1395pixel, 세로 380pixel                (28)


TABLE III PARAMETERS EXTRACTION RESULTS OF AN IGBT

그림입니다.
원본 그림의 이름: CLP00001524002f.bmp
원본 그림의 크기: 가로 320pixel, 세로 69pixel

0.376cm2

그림입니다.
원본 그림의 이름: CLP000015240030.bmp
원본 그림의 크기: 가로 569pixel, 세로 73pixel

11.9n

그림입니다.
원본 그림의 이름: CLP000015240031.bmp
원본 그림의 크기: 가로 600pixel, 세로 71pixel

0.12us

그림입니다.
원본 그림의 이름: CLP000015240032.bmp
원본 그림의 크기: 가로 560pixel, 세로 70pixel

125.7um

그림입니다.
원본 그림의 이름: CLP000015240033.bmp
원본 그림의 크기: 가로 553pixel, 세로 74pixel

5.3V

그림입니다.
원본 그림의 이름: CLP000015240034.bmp
원본 그림의 크기: 가로 564pixel, 세로 84pixel

13.2AV-2

그림입니다.
원본 그림의 이름: CLP000015240035.bmp
원본 그림의 크기: 가로 826pixel, 세로 89pixel

10-14cm4/s

그림입니다.
원본 그림의 이름: CLP000015240036.bmp
원본 그림의 크기: 가로 916pixel, 세로 72pixel

1014cm2/s


D. Taguchi Method for Calibration

Due to measurement error, the extracted parameters cannot be completely accurate. Consequently, the Taguchi method was adopted to calibrate the model based on the FDM. The Taguchi method is a statistical method, developed by Genichi Taguchi to improve the quality of manufactured goods. More recently, it has been applied to engineering [20].

In the Taguchi method, quantitative indexes are designed to compare the losses of different experimental groups. The purpose of the FDM model is to simulate the switching performances of an IGBT. As a result, a Taguchi loss function is designed as Equ. (29).

그림입니다.
원본 그림의 이름: CLP00001524003c.bmp
원본 그림의 크기: 가로 1348pixel, 세로 178pixel그림입니다.
원본 그림의 이름: CLP00001524003d.bmp
원본 그림의 크기: 가로 361pixel, 세로 197pixel          (29)

The calibration parameters are the threshold voltage Vth, transconductance Kp, oxide capacitance Cox and drift region width of the IGBT Wi. The extracted parameters are taken as median values. The threshold values are generated by 90% and 110% of median values, respectively. A L9 (34) orthogonal table is set as shown in Table IV, and the results of Taguchi experiments are displayed in Table V. Calibration results of the Taguchi method are illustrated in Fig. 17.


TABLE IV L9 (34) ORTHOGONAL TABLE

#

그림입니다.
원본 그림의 이름: CLP000015240037.bmp
원본 그림의 크기: 가로 89pixel, 세로 74pixel

그림입니다.
원본 그림의 이름: CLP000015240038.bmp
원본 그림의 크기: 가로 91pixel, 세로 80pixel

그림입니다.
원본 그림의 이름: CLP000015240039.bmp
원본 그림의 크기: 가로 101pixel, 세로 72pixel

그림입니다.
원본 그림의 이름: CLP00001524003a.bmp
원본 그림의 크기: 가로 81pixel, 세로 72pixel

1

4.7

12.0

10.6

111.7

2

5.3

13.2

11.9

125.7

3

5.9

14.4

13.2

139.7


TABLE V RESULT OF THE TAGUCHI METHOD

No

그림입니다.
원본 그림의 이름: CLP00001524003e.bmp
원본 그림의 크기: 가로 90pixel, 세로 79pixel

그림입니다.
원본 그림의 이름: CLP00001524003f.bmp
원본 그림의 크기: 가로 92pixel, 세로 84pixel

그림입니다.
원본 그림의 이름: CLP000015240040.bmp
원본 그림의 크기: 가로 104pixel, 세로 78pixel

그림입니다.
원본 그림의 이름: CLP000015240041.bmp
원본 그림의 크기: 가로 81pixel, 세로 73pixel

그림입니다.
원본 그림의 이름: CLP000015240042.bmp
원본 그림의 크기: 가로 131pixel, 세로 82pixel

1

1

1

1

1

0.065

2

1

2

2

2

0.062

3

1

3

3

3

0.075

4

2

1

2

3

0.014

5

2

2

3

1

0.051

6

2

3

1

2

0.104

7

3

1

3

2

0.008

8

3

2

1

3

0.046

9

3

3

2

1

0.086

K1

0.202

0.087

0.214

0.201

 

K2

0.169

0.159

0.163

0.175

 

K3

0.139

0.265

0.134

0.135

 

*

그림입니다.
원본 그림의 이름: CLP000015240043.bmp
원본 그림의 크기: 가로 110pixel, 세로 78pixel

그림입니다.
원본 그림의 이름: CLP000015240044.bmp
원본 그림의 크기: 가로 111pixel, 세로 89pixel

그림입니다.
원본 그림의 이름: CLP000015240045.bmp
원본 그림의 크기: 가로 128pixel, 세로 79pixel

그림입니다.
원본 그림의 이름: CLP000015240046.bmp
원본 그림의 크기: 가로 98pixel, 세로 76pixel

 


그림입니다.
원본 그림의 이름: CLP000015240047.bmp
원본 그림의 크기: 가로 744pixel, 세로 622pixel

Fig. 17. Calibration results of the Taguchi method.


E. IGBT Model Verification

With all of the above equations and parameters, an IGBT model is simulated in SIMetrix. The simulation conditions are the same as those of the PiN diode. To verify the simulation results of the SIMetrix, a double-pulse test circuit was developed to compare the switching transients and the Miller plateau with the simulation results as shown in Fig. 18. The DUT (Device Under Test) is an IRG8CH97K10F. Fig. 19 illustrates the switching transients of the proposed IGBT.


그림입니다.
원본 그림의 이름: CLP000015240048.bmp
원본 그림의 크기: 가로 539pixel, 세로 431pixel

Fig. 18. Double-pulse test with the proposed IGBT model.


Fig. 19. Switch transients of the proposed IGBT (Vgon=15V, Vgoff=-9V, Rg=7.5Ω, L= 42.3 uH). (a) Turn-off transient under a DC bus voltage of 100V. (b) Turn-on transient under a DC bus voltage of 100V. (c) Turn-off transient under a DC bus voltage of 200V. (d) Turn-on transient under a DC bus voltage of 200V. (e) Turn-off transient under a DC bus voltage of 300V. (f) turn-on transient under a DC bus voltage of 300V.

그림입니다.
원본 그림의 이름: CLP000015240049.bmp
원본 그림의 크기: 가로 1031pixel, 세로 692pixel

(a)

그림입니다.
원본 그림의 이름: CLP00001524004a.bmp
원본 그림의 크기: 가로 1033pixel, 세로 752pixel

(b)

그림입니다.
원본 그림의 이름: CLP00001524004b.bmp
원본 그림의 크기: 가로 1015pixel, 세로 753pixel

(c)

그림입니다.
원본 그림의 이름: CLP00001524004c.bmp
원본 그림의 크기: 가로 1026pixel, 세로 739pixel

(d)

그림입니다.
원본 그림의 이름: CLP00001524004d.bmp
원본 그림의 크기: 가로 1023pixel, 세로 742pixel

(e)

그림입니다.
원본 그림의 이름: CLP00001524004e.bmp
원본 그림의 크기: 가로 1001pixel, 세로 726pixel

(f)



Ⅴ. CONCLUSIONS

This paper proposes a practical SPICE model for an IGBT and a PiN diode based on Finite Differential Method. The model relates well to experiment results during turn-on and turn-off transients. The Miller plateau and reverse characteristics of the PiN diode are also included. The key point of this modeling is to solve the Ambipolar Diffusion Equation in a SPICE simulation. Taking into account the charge dynamics within the base region of the device, the presented model provides great improvements in terms of model speed and accuracy.


APPENDIX

The FDM part of the IGBT SPICE model proposed in this paper is:

**************************************************

*************** Differential Coefficients ************

**************************************************

.PARAM C11 = {((N-1)/Wd)**2*D*1.0E2}     

.PARAM C12 = {-2*C11-1/Td}    

.PARAM C13 = {C11}

.PARAM E11 = {-(N-1)/Wd}  

.PARAM E12 = {-E11} 

.PARAM E13 = {1/(2*q*Ad*Dp)*1E-16} 

.PARAM E14 = {-hp*1E8/D}

.PARAM E15 = {1/(2*q*Ad*Dn)*1E-16}

**************************************************

***************** FDM Part of IGBT ***************

**************************************************

R1 1 12 RX

G1 12 1 POLY(3)  1 12  2 12  14 12  0 E11 E12 E13 E14  

R2 2 12 RX

C2 2 12 CX IC = 0 BRANCH={IF(ANALYSIS=2,1,12)}

G2 12 2 POLY(3)  1 12  2 12  3 12   0 C11 C12 C13


R3 3 12 RX

C3 3 12 CX IC = 0 BRANCH={IF(ANALYSIS=2,1,12)}

G3 12 3 POLY(3)  2 12  3 12  4 12   0 C11 C12 C13


R4 4 12 RX

C4 4 12 CX IC = 0 BRANCH={IF(ANALYSIS=2,1,12)}

G4 12 4 POLY(3)  3 12  4 12  5 12   0 C11 C12 C13


R5 5 12 RX

G5 12 5 POLY(3)  5 12  4 12  15 12  0 E11 E12 E15 E14

**************************************************

***************** Voltage of IGBT***** ***********

**************************************************


EJ1 11 103

VALUE ={LIMIT( 2*VT*LN(V(1,12)/(ni/1e12) ) ,0,10)}


EJ2 103 104

VALUE = {LIMIT(V(14,12) *0.6E5/(1.4E5 +

1850/N*(V(1,12)+V(2,12)+V(3,12)+V(4,12)+V(5,12)))+

2*VT*Dp/(Dn+Dp)*LN(V(5,12)/V(1,12)+10),0,10)}


EJ3 104 105 VALUE = {V(202,12)}

**************************************************

***************** Current of IGBT***** ***********

**************************************************


EP1 14 12 VALUE={I(EJ1)}  

RP1 14 12 1

EP2 15 12 VALUE={I(EJ1)} 

RP2 15 12 1



ACKNOWLEDGMENT

This work is supported by The National key research and development program of China (2016YFB0100600), the Key Program of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (QYZDBSSW-JSC044).



REFERENCES

[1] K. Sheng, B. W. Williams, and S. J. Finney, “A review of IGBT models,” IEEE Trans. Power Electron., Vol. 15, No. 6, pp. 1250-1266, Nov. 2000.

[2] S. Castagno, R. D. Curry, and E. Loree, “Analysis and comparison of a fast turn-on series IGBT stack and high- voltage-rated commercial IGBTS,” IEEE Trans.  Plasma Sci., Vol. 34, No. 5, pp. 1692-1696, Oct. 2006.

[3] Q. Al'Akayshee, A. Sartain, A. Golland, F. Wakeman, M. Talebinejad, and A. D .C. Chan, “Press pack IGBT: High current pulse switch transcranial magnetic simulation,” IET Int. Conference on Power Electronics, 2014.

[4] H. Chang, J. Bu, G. Kong, and R. Bou, “High speed 650V IGBTs for DC-DC conversion up to 200 kHz,” IEEE Int. Symposium on Power Semiconductor Devices & Ics. IEEE., pp. 72-75, 2011.

[5] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love, and N. Zommer, “The insulated gate rectifier (IGR): A new power switching device,” International Electron Devices Meeting, 2005.

[6] E. S. Kim, K. Y. Joe, M. H. Kye, Y. H. Kim, and B. D. Yoon, “An improved soft-switching PWM FB DC/DC converter for reducing conduction losses,” IEEE Trans. Power Electron., Vol. 14, No. 2, pp. 258-264, Mar. 1999.

[7] J. T. Hsu and K. D. T. Ngo, “Behavioral modeling of the IGBT using the Hammerstein configuration,” IEEE Trans. Power Electron., Vol. 11, No. 6, pp. 746-754, Nov. 1996.

[8] A. R. Hefner, “An improved understanding for the transient operation of the power insulated gate bipolar transistor (IGBT),” IEEE Trans. Power Electron., Vol. 5, No. 4, pp. 459-468, Oct. 1990.

[9] P. Leturcq, M. O. Berraies, and J. L. Massol, “Implementation and validation of a new diode model for circuit simulation,” Pesc Record IEEE Power Electronics Specialists Conference. IEEE., pp. 35-43, 1996.

[10] A. G. M. Strollo and D. De Caro, “Low power flip-flop with clock gating on master and slave latches,” Electronics Letters., Vol. 36, No. 4, pp. 294-295, Feb. 1990.

[11] W. R. Zimmerman, “Time domain solutions to partial differential equations using SPICE,” IEEE Trans. Edu., Vol. 39, No. 4, pp. 563-573, Nov. 1996.

[12] B. Baliga, Fundamentals of Power Semiconductor Devices, Science Press, Chap. 2, 2008.

[13] R. H. Caverly and S. Khan, “Electrothermal modeling of microwave and RF PIN Diode switch and attenuator circuits,” IEEE International Microwave Symposium Digest., pp. 1-4, 2013.

[14] A. Barna and D. Horelick, “A simple diode model including conductivity modulation,” IEEE Trans. Circuit Theory, Vol. 18, No. 2, pp. 233-240, Mar. 1971.

[15] M. J. Declercq and J. D. Plummer, “Avalanche breakdown in high-voltage D-MOS devices,” IEEE Trans. Electron. Dev., Vol. 23, No. 1, pp. 1-4, Jan. 1976.

[16] A. R. Hefner, “Device models, circuit simulation, and computer-controlled measurements for the IGBT,” IEEE Workshop on Computers in Power Electronics., pp. 5-7, 1990.

[17] Y. Teng, J. Tan, Q. Yu, and Y. Zhu, “Analysis of the negative Miller capacitance during switching transients of IGBTs,” Tencon IEEE Region 10 Conference., pp. 1-4, 2015.

[18] J. Boehmer, J. Schumann, and H. G. Eckel, “Effect of the miller-capacitance during switching transients of IGBT and MOSFET,” Power Electronics & Motion Control Conference, IEEE., pp. LS6d.3-1 - LS6d.3-5, 2012.

[19] A. R. Hefner and D. L. Blackburn, “An analytical model for the steady-state and transient characteristics of the power insulated-gate bipolar transistor,” Solid State Electronics., Vol. 31, No. 10, pp. 1513-1532, Oct. 1988.

[20] A. Erfani, M. Muhammadi, S. Asgari Neshat, M. M. Shalchi, and F. Varaminian, “Investigation of aluminum primary batteries based on taguchi method,” Energy Technology & Policy., pp. 19-27, 2015.



그림입니다.
원본 그림의 이름: image152.jpeg
원본 그림의 크기: 가로 190pixel, 세로 234pixel

Han Cao was born in Hubei, China. He received his B.S. degree in Electrical Engineering from Harbin Engineering University, Harbin, China, in 2016. He is presently working towards his Ph.D. degree at the Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China. His current research interests include power device modeling and high-density converter designs.


그림입니다.
원본 그림의 이름: image153.jpeg
원본 그림의 크기: 가로 151pixel, 세로 178pixel

Puqi Ning received his Ph.D. degree in Electrical Engineering from the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, in 2010. He is presently working as a Full Professor at the Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China. His current research interests include high temperature packaging and high-density converter designs.


그림입니다.
원본 그림의 이름: image154.jpeg
원본 그림의 크기: 가로 190pixel, 세로 225pixel

Xuhui Wen received her B.S., M.S. and Ph.D. degrees in Electrical Engineering from Tsinghua University, Beijing, China, in 1984, 1989 and 1993, respectively. She is presently working as a Full Professor at the Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China. Her current research interests include high power density electrical drives and generation, especially for electric vehicle applications.


그림입니다.
원본 그림의 이름: image155.png
원본 그림의 크기: 가로 150pixel, 세로 177pixel

Tianshu Yuan was born in Hefei, China. He received his B.S. degree in Electrical Engineering from Shandong University, Jinan, China, in 2017. He is presently working towards his M.S. degree at the Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China. His current research interests include power device modeling and high-density converter designs.