Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs

Haihong Qin ${ }^{\dagger}$, Ceyu Ma", Ziyue Zhu*, and Yangguang Yan ${ }^{*}$
${ }^{\dagger},{ }^{*}$ Center for More Electric Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Parasitic parameters have a larger influence on Silicon Carbide (SiC) devices with an increase of the switching frequency. This limits full utilization of the performance advantages of the low switching losses in high frequency applications. By combining a theoretical analysis with a experimental parametric study, a mathematic model considering the parasitic inductance and parasitic capacitance is developed for the basic switching circuit of a SiC MOSFET. The main factors affecting the switching characteristics are explored. Moreover, a fast-switching double pulse test platform is built to measure the individual influences of each parasitic parameters on the switching characteristics. In addition, guidelines are revealed through experimental results. Due to the limits of the practical layout in the high-speed switching circuits of SiC devices, the matching relations are developed and an optimized layout design method for the parasitic inductance is proposed under a constant length of the switching loop. The design criteria are concluded based on the impact of the parasitic parameters. This provides guidelines for layout design considerations of SiC-based high-speed switching circuits.

Key words: Layout design, Parasitic capacitance, Parasitic inductance, Silicon Carbide (SiC)

I. INTRODUCTION

When compared with Silicon (Si) based power electronic devices, Silicon Carbide (SiC) materials have a wider band gap, higher electron mobility and higher thermal conductivity. As a result, SiC MOSFETs have a lower resistance, higher blocking voltage and junction temperature, and they have no current trails when compared with Si IGBT. This can reduce the switching losses, improve the switching speed and significantly improve the performance of power electronic converters. A high switching frequency is one of the most important directions in terms of application research for SiC devices [1], [2]. With an increase of the switching frequency, the influences of the parasitic parameters on the dynamic switching process of a device becomes more serious, resulting

[^0]in oscillations in the switching transient and increasing the device stress and electromagnetic interference (EMI). Thus, it cannot give full play to the performance advantages of low switching losses under a high switching speed for SiC devices [3].

In recent years, many scholars have studied the influences of circuit parasitic parameters on the switching characteristics of SiC devices. Most of the research methods are divided into the following three types. For the first type, the parasitic parameters are considered as a network. The parasitic parameters of the circuit or power module are extracted, and the influences of parasitic parameters are simulated by modeling and simulation. The influences of each part of the parasitic parameters have not been studied. The effects of the parasitic parameters on the switching characteristics of SiC devices are not definite [4], [5]. For the second type, a theoretical analysis is made on the influence of the parasitic parameters of each part. However, the nonlinearity of the switching device and the parasitic parameters of the actual circuit lead to a relatively high order for the model. For ease analysis, some approximations and assumptions are required.

The theoretical analysis results are usually complex, and the influences of the parasitic parameters cannot be directly derived from the expression. Moreover, the lack of experimental verification is also an unavoidable problem. Thus, theoretical analysis is of little use for the actual circuit design [6]. For the third type, the experimental method is used to test the effect of the parasitic parameters on the switching characteristics. However, the actual layout limitation is not taken into consideration when setting the value of the parasitic inductance. Only the influence of a single parasitic inductance is studied. The results are still not enough to support appropriate layout designs of the switching circuit for SiC devices [7].

Considering that the accuracy of SiC device modeling is affected by the parasitic parameters of the circuit, it is difficult to get close to real results by theoretically analyzing. Therefore, in this paper, the method of combining a theoretical qualitative analysis with experimental quantitative research is proposed. First, a mathematical model of a SiC MOSFET based a switching circuit considering parasitic parameters is established. The main factors affecting the switching characteristics are confirmed. Then a SiC MOSFET based high-speed double pulse test platform is set up and the influences of the parasitic parameters on the switching performance of the SiC devices is studied. Based on the concept of the current loop, the parasitic inductance of each part is classified into three categories, the main circuit parasitic inductance L_{D}, the gate circuit parasitic inductance L_{G} and the common source parasitic inductance L_{S}. In addition, the parasitic capacitances are classified into four categories, the gate-source capacitance C_{GS}, the gate-drain capacitance C_{GD}, and the drain-source capacitances C_{DS} and C_{J}. Combined with the actual circuit layout, taking the range of the parasitic parameters into account, the influence rules of the parasitic parameters on the characteristics of SiC MOSFET switches are revealed from the prospective of the switching time, the oscillations and the spikes. In addition, the influence extent of the parasitic parameters is quantified. On this basis, according to the limits of the actual layout of a SiC high-speed switching circuit, the matching relationship between the parasitic inductance for each of the parts is studied when the compact degree or total length of the loop line stays the same. By comparing the variation of the switching speed, the switching energy, and the voltage and current stresses of SiC devices with different parasitic parameters, the characteristics of the switching process for SiC devices under the influence of parasitic parameters are concluded. This can then be used to guide the layout design of SiC based high-speed switching circuits.

II. Modeling and Analysis of SiC MOSFET Switching Characteristics

A principle diagram of the SiC MOSFET double pulse test

Fig. 1. Schematic of the double pulse circuit of a SiC MOSFET considering each of the parasitic parameters.
circuit with parasitic parameters is shown in Fig. 1. Q is the SiC MOSFET. $C_{\mathrm{GS}}, C_{\mathrm{GD}}$ and C_{DS} are the gate-source, gatedrain and drain-source parasitic capacitances, relatively. C_{J} is the parasitic capacitance of the freewheeling diode $D_{1} . L_{\mathrm{G}}$ is the parasitic inductance between the gate drive circuit and the gate pin, L_{S} is the parasitic inductance between the source pin and the gate drive circuit, and L_{L} is the load inductor. The parasitic inductance in the main circuit includes the distribution inductance of the drain pin $L_{\mathrm{d} 1}$, the parasitic inductance of the diode $L_{\mathrm{s} 1}$, and the PCB route parasitic inductances $L_{\mathrm{d} 2}$ and $L_{\mathrm{s} 2} . R_{\mathrm{i}}$ and R_{G} are the internal gate parasitic resistance and external drive resistance of the SiC MOSFET. By Faraday's law of electromagnetic induction, it is known that a closed current loop formed by wires produces parasitic inductances, rather than the wire itself [8]. According to this concept, it is possible to simplify the inductance of the main circuit. The parasitic inductance of the main power circuit loop is $L_{\mathrm{D}}=L_{\mathrm{d} 1}+L_{\mathrm{d} 2}+L_{\mathrm{s} 1}+L_{\mathrm{s} 2}$. Thus, the parasitic inductance is classified into three categories, the parasitic inductance of the main power circuit loop L_{D}, the gate circuit parasitic inductance L_{G} and the common source parasitic inductance L_{S}. The induced voltage caused by the parasitic inductance L_{G} is obtained by Equ. (1) [7].

$$
\begin{equation*}
L_{\mathrm{G}} \cdot \frac{d i_{G}}{d \mathrm{t}}<\Delta U_{\mathrm{G}(\max)} \tag{1}
\end{equation*}
$$

Where $\Delta U_{\mathrm{G}(\max)}$ is the maximum allowable gate oscillation peak voltage. The maximum allowable drain peak current caused by the gate voltage spike is limited by (2).

$$
\begin{equation*}
g_{\mathrm{fs}} \cdot \Delta U_{\mathrm{G}(\max)}<10 \% \cdot I_{\mathrm{N}} \tag{2}
\end{equation*}
$$

Where $g_{f s}$ is the transconductance and I_{N} is the rated current. Therefore, the gate circuit parasitic inductance L_{G} can be simplified as follows:

$$
\begin{equation*}
L_{\mathrm{G}} \cdot \frac{\mathrm{~d} i_{G}}{\mathrm{~d} t}<\frac{10 \% \cdot I_{\mathrm{N}}}{g_{\mathrm{fs}}} \tag{3}
\end{equation*}
$$

Fig. 2. Simplified equivalent schematic of a double pulse circuit.

Take a $1200 \mathrm{~V} / 35 \mathrm{~A}$ SiC MOSFET as an example, $g_{\mathrm{fs}}=3 \mathrm{~S}$. When $\mathrm{d} i_{\mathrm{G}} / \mathrm{d} t=4 \mathrm{~A} / 100 \mathrm{~ns}$ and the rated current $I_{\mathrm{N}}=20 \mathrm{~A}$, the gate circuit parasitic inductance L_{G} should be lower than 13 nH . Therefore, in practical designs, there is an urgent need for reducing the gate stray inductance. The greater the current rating of the main power circuit, the larger the peak drive current and the higher $\mathrm{d} i_{\mathrm{G}} / \mathrm{d} t$ need to be. Therefore, the parasitic inductance of the gate circuit must be smaller. In other words, it is necessary to ensure that the parasitic parameters of the gate circuit are very small for the proper design of the driving circuit. Thus, the influence of the parasitic inductance of the gate circuit on the power circuit can be significantly reduced. Therefore, in order to facilitate the analysis and derivation of mathematical models, the order is reduced by ignoring the gate parasitic inductance L_{G} for a moment. A simplified equivalent circuit is obtained as shown in Fig. 2.

Because SiC MOSFETs operate in the saturation area during switching transients, the drain current is obtained as follows:

$$
\begin{equation*}
i_{\mathrm{D}}(\mathrm{t})=g_{\mathrm{fs}}\left(u_{\mathrm{GS}}(\mathrm{t})-U_{\mathrm{TH}}\right) \tag{4}
\end{equation*}
$$

U_{TH} is the threshold voltage for the SiC MOSFET, and g_{fs} is the trans-conductance. Induced voltage is generated on L_{S} and L_{D} due to the high $\mathrm{d} i_{\mathrm{D}} / \mathrm{d} t$ during switching transients. The voltage stress on the SiC MOSFET is the input voltage U_{DC} superimposed with this induced voltage. Thus, the equation of the switching circuit is:

$$
\begin{equation*}
u_{\mathrm{DS}}(t)=U_{\mathrm{DC}}-\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right) \frac{\mathrm{d} i_{\mathrm{D}}(t)}{\mathrm{d} t} \tag{5}
\end{equation*}
$$

The equation of the gate circuit is given by:

$$
\begin{aligned}
& U_{\mathrm{G}}=R_{\mathrm{G}}\left(C_{\mathrm{GS}} \frac{\mathrm{~d} u_{\mathrm{GS}}(t)}{\mathrm{d} t}+C_{\mathrm{GD}} \frac{\mathrm{~d} u_{\mathrm{GD}}(t)}{\mathrm{d} t}\right) \\
& +u_{\mathrm{GS}}(t)+L_{\mathrm{S}} \frac{\mathrm{~d} i_{\mathrm{D}}(t)}{\mathrm{d} t}
\end{aligned}
$$

The second-order differential equation of the gate source voltage $u_{\mathrm{GS}}(\mathrm{t})$ is obtained as Equ. (7) by combining Equ. (5) and Equ. (6).

$$
\begin{align*}
& U_{\mathrm{G}}=R_{\mathrm{G}} C_{\mathrm{GD}} g_{\mathrm{fs}}\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right) \frac{\mathrm{d} u_{\mathrm{GS}}{ }^{2}(t)}{\mathrm{d} t^{2}}+ \tag{7}\\
& {\left[R_{\mathrm{G}}\left(C_{\mathrm{GS}}+C_{\mathrm{GD}}\right)+L_{\mathrm{S}} g_{\mathrm{fs}}\right] \frac{\mathrm{d} u_{\mathrm{GS}}(t)}{\mathrm{d} t}+u_{\mathrm{GS}}(t)}
\end{align*}
$$

Applying a Laplace transform and solving the differential equation, the subsection expression of $u_{G S}(t)$ is expressed by following equations:
$u_{\mathrm{GS}}(\mathrm{t})= \begin{cases}U_{\mathrm{GH}(1)}-U_{\mathrm{GH}(2)} e^{\left(-\mathrm{t} / T_{1}\right)}\left(\cos \omega_{1} \mathrm{t}+\frac{\sin \omega_{1} \mathrm{t}}{\omega_{1} T_{1}}\right) & , 4 y_{1} \geq y_{2}{ }^{2} \\ U_{\mathrm{GH}(1)}-\frac{U_{\mathrm{GH}(2)}}{T_{2}-T_{3}}\left[T_{2} e^{\left(-\mathrm{t} / T_{2}\right)}-T_{3} e^{\left(-\mathrm{t} / T_{3}\right)}\right] & , 4 y_{1}<y_{2}{ }^{2}\end{cases}$
Where $\quad y_{1}=R_{\mathrm{G}} C_{\mathrm{GD}} g_{\mathrm{fs}}\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right), \quad y_{2}=R_{\mathrm{G}}\left(C_{\mathrm{GS}}+C_{\mathrm{GD}}\right)+L_{\mathrm{S}} g_{\mathrm{fs}}$, $T_{1}=\frac{2 y_{1}}{y_{2}}, \quad T_{2}=\frac{2 y_{1}}{y_{2}+\sqrt{y_{2}{ }^{2}-4 y_{1}}}, \quad T_{3}=\frac{2 y_{1}}{y_{2}-\sqrt{y_{2}{ }^{2}-4 y_{1}}}$ and $\omega_{1}^{2}=\frac{4 y_{1}-y_{2}{ }^{2}}{4 y_{1}{ }^{2}}$.
The initial conditions of the equations are $U_{\mathrm{GH}(1)}=U_{\mathrm{GH}}$, $U_{\mathrm{GH}(2)}=U_{\mathrm{GH}+}-U_{\mathrm{TH}}$ for the turn-on transient, and $U_{\mathrm{GH}(1)}=U_{\mathrm{GH}-}$, $U_{\mathrm{GH}(2)}=-\left(I_{\mathrm{L}} / g_{\mathrm{fs}}+U_{\mathrm{TH}}\right)$ for the turn-off. $U_{\mathrm{GH}+}$ and $U_{\mathrm{GH}-}$ are the positive voltage and negative voltage provided by the gate drive circuit, respectively. Combining the solution of $u_{\mathrm{GS}}(\mathrm{t})$ with Equ. (4) and Equ. (5), the solution of the drain current and drain source voltage can be obtained. However, the solution of the gate source voltage depends on the initial conditions and the parameters of the driving circuit. Therefore, it is difficult for the theoretical analysis results to show the influence of the parasitic inductance on the switching characteristics. In the limit cases, if $4 y_{1} \gg y_{2}{ }^{2}$, the gate source voltage can be simplified as:

$$
\begin{equation*}
u_{\mathrm{GS}}(\mathrm{t}) \approx U_{\mathrm{GH}(1)}-U_{\mathrm{GH}(2)} \cos \frac{1}{\sqrt{y_{1}}} \mathrm{t} \tag{10}
\end{equation*}
$$

The change rate of the leakage current is given by:

$$
\begin{equation*}
\frac{\mathrm{d} i_{\mathrm{D}}(t)}{\mathrm{d} t}=-\frac{g_{\mathrm{fs}} U_{\mathrm{TH}}+I_{\mathrm{L}}}{R_{\mathrm{G}} C_{\mathrm{GD}} g_{\mathrm{fs}}\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right)} t \tag{11}
\end{equation*}
$$

The overshoot of the turn-off voltage oscillation is given by:

$$
\begin{equation*}
\Delta U_{\mathrm{off}} \approx \sqrt{\frac{2 I_{\mathrm{L}}\left(U_{\mathrm{TH}}+I_{\mathrm{L}} / g_{\mathrm{fs}}\right)}{R_{\mathrm{G}}}} \cdot \sqrt{\frac{\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right)}{C_{\mathrm{GD}}}} \tag{12}
\end{equation*}
$$

If $4 y_{1} \ll y_{2}^{2}$, the gate source voltage can be simplified as:

$$
\begin{equation*}
u_{\mathrm{GS}}(\mathrm{t}) \approx U_{\mathrm{GH}(1)}-U_{\mathrm{GH}(2)} e^{\left(-\mathrm{t} / y_{2}\right)} \tag{13}
\end{equation*}
$$

The overshoot of the turn-off voltage oscillation is given by:

$$
\begin{equation*}
\Delta U_{\mathrm{off}} \approx\left(U_{\mathrm{TH}}+I_{\mathrm{L}} / g_{\mathrm{fs}}\right) \cdot \frac{g_{\mathrm{fs}}\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right)}{R_{\mathrm{G}} C_{\mathrm{GD}}+g_{\mathrm{fs}} L_{\mathrm{S}}} \tag{14}
\end{equation*}
$$

From the above discussions, it can be known that the switching characteristics are mainly influenced by the drain and source parasitic inductances L_{D} and L_{S}, as well as the gate-drain capacitance C_{GD} and the gate-source capacitance C_{GS}. With an increase of the parasitic inductance $\left(L_{\mathrm{D}}+L_{\mathrm{S}}\right)$, the change rate of the drain current decreases, and the peak voltage of the turn-off transient increases. In the extreme case when $4 y_{1} \ll y_{2}{ }^{2}$, with an increase of the parasitic inductance L_{S} when the influence of $g_{\mathrm{fs}} L_{\mathrm{S}}$ is in a dominant position, the peak voltage of the turn-off transient decreases. However, when L_{S} keeps increasing, the importance of $g_{\mathrm{fs}} L_{\mathrm{S}}$ decreases. Therefore, the peak voltage of the turn-off transient becomes nearly constant.

III. Influence of Parasitic Inductance on the SwITCHING CHARACTERISTICS

In order to quantify the influence of the parasitic inductance on the switching process, a double pulse circuit test platform was built. Fig. 3(a) and Fig. 3(b) show the schematic and prototype. The device under test is a 1200V/35A SiC MOSFET SCH2080KE from ROHM Co. The diode D_{H} is a SiC Schottky Barrier Diode (SBD) SCS210KG to reduce the influence of the reverse recovery current and to suppress the leakage current spikes caused by the diode. When the SiC MOSFET is switched on, the charge current generated by the equivalent parallel capacitance and the junction capacitance of the diode cause spikes in the drain current, which affects the accuracy of the test results. Therefore, a single-turn winding is used to reduce the equivalent parasitic capacitance. Voltage and current waveforms of the power device are measured by a high voltage differential probe (P5201) and a high frequency current probe (TCP2020) from Tektronix Co. The P5201 is connected directly to the gate and source of Q_{L}. The TCP2020 detects the drain current of Q_{L} by a piece of yellow wire as shown in Fig. 3(b). The oscilloscope used is a Tektronix DPO3034, and the switching conditions are as follows: $U_{\mathrm{DC}}=600 \mathrm{~V}, L=180 \mu \mathrm{H}$, the positive driving voltage is set to +18 V , and the negative driving voltage is set to -2.6 V . The total pulse time for the two pulses is $\Delta t_{\mathrm{p}}=5 \mu \mathrm{~s}$, and the maximum inductance current is $I_{\mathrm{L} \max }=17 \mathrm{~A}$ when $U_{\mathrm{DC}}=600 \mathrm{~V}$.

A. The Influence of the Gate Parasitic Inductance L_{G}

In order to analyze the influence of parasitic inductance on switching characteristics, small inductors were fabricated to simulate parasitic inductance. The test values of the four kinds of small inductors were $25 \mathrm{nH}, 50 \mathrm{nH}, 79 \mathrm{nH}$ and 95 nH . The small inductors were connected between the gate pin and the drive circuit. Fig. 4 shows waveforms of the gate-source voltage u_{GS}, drain-source voltage u_{DS} and drain current i_{D} with

Fig. 3. Images showing: (a) Schematic of the double pulse test circuit; (b) Experimental platform.

Fig. 4. Switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of L_{G} : (a) Turn-on waveforms; (b) Turn-off waveforms.
different gate parasitic inductances L_{G}. The gate parasitic inductance L_{G} was resonant with the input capacitance $C_{\mathrm{iss}}\left(=C_{\mathrm{GS}}+C_{\mathrm{GD}}\right) \quad$ (the damping coefficient $\xi=\frac{R}{2} \sqrt{\frac{C_{\mathrm{iss}}}{L_{\mathrm{G}}}}$), causing an oscillation in the waveforms of the gate source voltage u_{GS}. With an increase of L_{G}, the amplitude of the
oscillation in u_{GS} increases as well. This phenomenon is particularly obvious in the turn-off waveform. However, the effects of L_{G} on u_{DS} and i_{D} are not obvious. When L_{G} increased from 25 nH to 95 nH , the waveforms of u_{DS} and i_{D} during the turn-on transient almost stay the same. For the turn-off transient, the overshoot voltage of u_{DS} only increased from 630 V to 650 V .

From the above discussion, it can be known that L_{G} has a great influence on the gate circuit. However, it has little influence on the power circuit. The main purpose of reducing L_{G} is to avoid the large gate-source voltage spikes or the shoot-through caused by erroneous triggering of switches during the turn-off transient. Due to the fact that the design of the driving circuit guaranteed a very small gate parasitic inductance, the influence on the power circuit has been limited. It further illustrates the practical feasibility of the theoretical derivation while ignoring L_{G} in Fig. 2.

B. The Influence of the Drain Parasitic Inductance L_{D}

In high speed switching processes, the change rate of the drain current ($\mathrm{d} i / \mathrm{d} t$) is very high, and the induction electromotive force is induced on the drain parasitic inductance. The direction of the induced electromotive force is opposite that of the bus voltage during a turn-on transient. Therefore, the drain source voltage is reduced by $U_{\mathrm{LD}}=L_{\mathrm{D}} \cdot \mathrm{d} i / \mathrm{d} t$. The direction of the induced electromotive force is the same as that of the bus voltage during a turn-off transient, which is superimposed on the drain-source voltage of the switches and causes voltage spikes. In addition, during a switching transient, the power circuit parasitic inductance L_{D} is resonant with the output capacitance $C_{\mathrm{OSs}}\left(=C_{\mathrm{GD}}+C_{\mathrm{DS}}\right)$ of the SiC MOSFET, the junction capacitance of the diode and the parasitic capacitance of the inductor. Furthermore, the oscillation can be coupled with the gate circuit by the Miller capacitance, causing oscillations on $u_{\mathrm{DS}}, u_{\mathrm{GS}}$ and i_{D}. The drain parasitic inductance is simulated by small inductances of $25 \mathrm{nH}, 50 \mathrm{nH}, 79 \mathrm{nH}$ and 90 nH connected to the drain of the SiC MOSFET.

Fig. 5 shows waveforms of the gate-source voltage u_{GS}, drain-source voltage u_{DS} and drain current i_{D} with different drain parasitic inductances L_{D}. With an increase of L_{D}, the amplitude of the oscillation for i_{D} increases. However, u_{DS} is essentially unchanged during turn-on transients. In addition, during a turn-off transient, the amplitudes of the oscillations for both i_{D} and u_{DS} increase, as well as the turn-off energy.

C. The Influence of the Source Parasitic Inductance L_{S}

The change rate of the source current $\mathrm{d} i / \mathrm{d} t$ during high speed switching induces an electromotive force in the opposite direction to the driving voltage. Therefore, the amplitudes of the driving voltage for turn-on and turn-off transients are reduced, which slows down the switching speed. It also causes negative feedback between the main circuit and

Fig. 5. Switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of L_{D} : (a) Turn-on waveforms; (b) Turn-off waveforms.

(a)

(b)

Fig. 6. Switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of L_{S} : (a) Turn-on waveforms; (b) Turn-off waveforms.
the drive circuit. The source parasitic inductance is simulated by small inductances of $25 \mathrm{nH}, 50 \mathrm{nH}, 79 \mathrm{nH}$ and 90 nH connected to the source of the SiC MOSFET. Fig. 6 shows waveforms of the gate-source voltage u_{GS}, the drain-source voltage u_{DS} and the drain current i_{D} with different source parasitic inductances L_{S}. As shown in Fig. $6, L_{\mathrm{S}}$ has an obvious effect and causes a significant delay on the turn-on and turn-off times.

Fig. 7. Relationship curve of voltage and current overshoot versus parasitic inductance: (a) Overshoot of u_{DS} during turn-on transients; (b) Overshoot of i_{D} during turn-on transients.

Fig. 8. Relationship curves of the turn-on and turn-off times versus the parasitic inductance: (a) Turn-on time; (b) Turn-off time.

Fig. 9. Relationship curves of the turn-on and turn-off energy losses versus the parasitic inductance: (a) Turn-on energy; (b) Turn-off energy; (c) Total switching energy.

D. Quantitative Analysis of the Influence of Parasitic Inductance

1) The Influence on the Voltage and Current Overshoot:

In order to compare the influences of different parasitic inductances on the switching characteristics, the relationships between the voltage and current overshoot with different values of $L_{\mathrm{G}}, L_{\mathrm{D}}$ and L_{S} are given in Fig. 7. Consistent with the foregoing analysis, the effects of L_{G} on u_{DS} and i_{D} are not obvious. With an increase of L_{G}, the amplitude of the oscillation of u_{DS} and i_{D} stays nearly the same. However, L_{D} and L_{S} have a significant influence on u_{DS} and i_{D}. As shown in Equ. (13), the overshoot of the turn-off voltage oscillation is related to three parasitic parameters: $C_{\mathrm{GD}}, L_{\mathrm{D}}$ and L_{S}. For the parasitic inductance, when L_{D} is increased, $\Delta U_{\text {off }}$ increases. When L_{S} is increased, $\Delta U_{\text {off }}$ decreases. The experimental results are in good agreement with the theoretical analysis, as
shown in Fig. 7(b). The turn-off overshoot increases with an increase of L_{D} and decreases with an increase of L_{S}. The negative feedback effect caused by L_{S} in the drive circuit has a suppressing effect on the oscillation caused by L_{D}.

2) The Influence on the Switching Time:

Fig. 8 shows the impacts of $L_{\mathrm{G}}, L_{\mathrm{D}}$ and L_{S} on the turn-on and turn-off times. As shown in Equ. (14), u_{GS} is mainly determined by $C_{\mathrm{GS}}, C_{\mathrm{GD}}$ and L_{S}, while L_{G} and L_{D} have almost no influence on u_{GS}. With an increase of L_{S}, the turn-on and turn-off times are significantly increased. As can be seen in Fig. 8, the impacts of L_{G} and L_{D} on switching time are not obvious.

3) The Influence on the Turn-On and Turn-Off Energy:

Fig. 9 shows the relationship between the switching energy losses and the parasitic inductance. With an increase of L_{G}, the turn-on and turn-off energy barely changes. With an
increase of L_{D}, the turn-on and turn-off energy slightly decrease. Due to negative feedback, L_{S} has a great influence on the switching energy. When L_{S} is 95 nH , the total switching energy is about 3 times L_{D} with the same inductance.
From the above analysis, it can be seen that in the case of high speed switching, the gate parasitic inductance L_{G} has a great influence on oscillations in the gate circuit. However, it has little influence in the power circuit. The drain parasitic inductance L_{D} has a great influence on the current spikes and turn-off voltage spikes. It also has a certain effect on the oscillation of the waveform. A negative feedback effect is formed between the main circuit and the gate circuit through the source parasitic inductance L_{S}, which can restrain the oscillation and voltage spike caused by L_{D}. However, it also reduces the change rate of the drain current, which significantly affects the switching speed and switching energy.

IV. Optimized Layout Design Method of the PARASITIC INDUCTANCE

In high-speed switching drive circuits, the layout of the drive circuit and the main power circuit needs to be more compact. However, the PCB routes are limited by the actual layout. Therefore, it is difficult to take account of all the parasitic inductance at the same time. Due to the high priority of a compact layout, the total length of the loop routes is limited. Therefore, a comprehensive consideration between L_{S} and L_{D} is needed. Thus, the characteristics of the switching circuit can be optimized to meet the system performance requirements. In the experiments, four different combinations of L_{D} and L_{S} are selected (see in Table I) while keeping the sum of L_{D} and L_{S} almost unchanged.

Fig. 10 shows switching waveforms with different combinations of L_{D} and L_{S}. The relationship between $\mathrm{d} i_{\mathrm{D}} / \mathrm{d} t$ and L_{S} during a switching transient is shown in Fig. 11 with a constant sum of L_{D} and L_{S}. During the turn-on process, the rising speed of u_{GS} is reduced with an increase of L_{S}, a rising speed of i_{D} and a falling speed of u_{DS}. As a result, the turn-on speed of the SiC MOSFET is reduced. Therefore, the energy of turn-on transient increases with an increase of L_{S} as shown in Fig. 12.
In the turn-off process, when the sum of L_{D} and L_{S} is constant, with an increase of L_{S}, the falling speed of u_{GS} is also decreased. Therefore, the falling speed of i_{D} and the rising speed of u_{DS} are reduced and the turn-off speed is reduced, as shown in Fig. 11(b). These experimental results also verify Equ. (14). Since $L_{\mathrm{D}}+L_{\mathrm{S}}$ stays constant, the turn-off voltage overshoot is determined by L_{S}. With an increase of L_{S}, the turn-off energy increases. However, the voltage spike in turn-off transients decreases. The overshoot of u_{DS} during a turn-off transient and the overshoot of i_{D} during a turn-on transient are given in Fig. 13 with different combinations of L_{D} and L_{S}. With an increase of L_{S}, the overshoots of u_{DS} and i_{D} are reduced.

TABLE I
Different Combinations of L_{D} AND L_{S}

Group Number	1	2	3	4
Experiment Condition	$L_{\mathrm{S}}=40 \mathrm{nH}$	$L_{\mathrm{D}}=120 \mathrm{nH}$	$L_{\mathrm{S}}=56 \mathrm{nH}$	
$L_{\mathrm{D}}=104 \mathrm{nH}$	$L_{\mathrm{S}}=80 \mathrm{nH}$	$L_{\mathrm{D}}=80 \mathrm{nH}$	$L_{\mathrm{S}}=104 \mathrm{nH}$	
$L_{\mathrm{D}}=56 \mathrm{nH}$				

(a)

(b)

Fig. 10. Switching waveforms of $u_{\mathrm{GS}}, i_{\mathrm{D}}$ and u_{DS} under different values of L_{S} (under a constant sum of L_{D} and L_{S}): (a) Turn-on waveforms; (b) Turn-off waveforms.

Fig. 11. Relationship curve of the switching speed under different values of L_{S} (under s constant sum of L_{D} and L_{S}): (a) Turn-on speed; (b) Turn-off speed.

Fig. 12. Comparison of the switching energy under different values of L_{S} (under a constant sum of L_{D} and L_{S}).

Fig. 13. Relationship curves of voltage and current overshoots under different values of L_{S} (under a constant sum of L_{D} and L_{S}): (a) Overshoot of u_{DS} during a turn-off transient; (b) Overshoot of i_{D} during a turn-on transient.

From the above experimental results analysis, it can be seen that when the layout has been limited by actual factors and the sum of L_{D} and L_{S} cannot be further reduced, the distribution of L_{D} and L_{S} should be carefully considered to meet the requirements of the actual circuit. The basic laws are as follows. (1) If L_{S} increases and L_{D} decreases, the voltage spike in a turn-off transient and the current spike in a turn-on transient significantly decrease. However, due to the negative effect of L_{S}, the switching time increases, resulting in a significant increase in the switching energy loss. (2) If L_{D} increases and L_{S} decreases, the switching energy is reduced. However, this also increases the voltage spike in a turn-off

Fig. 14. Layout design of a SiC MOSFET driver: (a) Top layer; (b) Bottom layer.
transient and the current spike in a turn-on transient, which increases the voltage and current stresses of the SiC MOSFET.

Therefore, when the PCB layout is limited by physical constraints, it is necessary to optimize the design according to the requirements. If the purpose is to reduce the voltage and current spike, reducing L_{S} and increasing L_{D} appropriately is a good choice. However, when a low switching energy loss is needed, it is helpful to reduce L_{D} and increase L_{S}.

Fig. 14(a) and Fig. 14(b) show the top layer and bottom layer of the proposed layout design for a SiC MOSFET driver, respectively. Since L_{G} influences the gate-source voltage spike, the length of the gate loop should be as short as possible. As shown in Fig. 14(a), the gate and source connectors are three pins in parallel, which can minimize L_{S} and L_{G} introduced by pins. L_{S} plays a more important role in the switching characteristics when compared with L_{G}. Therefore, as shown in Fig. 14(b), in order to achieve a higher switching speed, the driver output area has been covered with copper connected to the source.

V. INFLUENCE OF PARASITIC CAPACITANCE ON THE SWITCHING CHARACTERISTICS

The capacitances of SiC MOSFETs have a significant influence on the waveforms during switching transients. There are three parasitic capacitances in a SiC MOSFET: the gate-source capacitance C_{GS}, the gate-drain capacitance C_{GD} and the drain-source capacitance C_{DS}. In order to quantify the

Fig. 15. Switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of C_{GS} : (a) Turn-on waveforms; (b) Turn-off waveforms.

Fig. 16. Turn-on and turn-off times under different values of C_{GS}.

Fig. 17. Turn-on and turn-off energy under different values of C_{GS}.
influence of the parasitic capacitances on the switching process, voltage and current waveforms of the power device are measured P5201 and TCP2020 just like in section IV. The switching conditions are the same as in section IV: $U_{\mathrm{DC}}=600 \mathrm{~V}, L=180 \mu \mathrm{H}$, the positive driving voltage is set to +18 V , and the negative driving voltage is set to -2.6 V . The

Fig. 18. Voltage overshoot for u_{DS} and current overshoot for i_{D} under different values of C_{GS}.
total pulse time for the two pulses is $\Delta t_{\mathrm{p}}=5 \mu \mathrm{~s}$, and the maximum inductance current is $I_{\mathrm{L} \max }=17 \mathrm{~A}$ when $U_{\mathrm{DC}}=600 \mathrm{~V}$.

A. The Influence of the Gate-source Capacitance $C_{G S}$

Small capacitors are paralleled between electrodes to simulate the parasitic capacitance of a SiC MOSFET in order to analyze the influence of the parasitic capacitance on the switching characteristics. The test values of the four kinds of small capacitors are $2.2 \mathrm{nF}, 3.3 \mathrm{nF}, 6.8 \mathrm{nF}$ and 18.0 nF . Fig. 15 shows waveforms of the gate-source voltage u_{GS}, drainsource voltage u_{DS} and drain current i_{D} with different gatesource parasitic capacitors C_{GS}. Because the gate-source parasitic capacitor $C_{G S}$ is a part of the input capacitance $C_{\mathrm{iss}}\left(=C_{\mathrm{GS}}+C_{\mathrm{GD}}\right)$, it is resonant with the gate parasitic inductance (the damping coefficient $\xi=\frac{R}{2} \sqrt{\frac{C_{\text {iss }}}{L_{\mathrm{G}}}}$), causing an oscillation in the waveform of the drain current i_{D}. With an increase of C_{GS}, the amplitude of the oscillation in i_{D} decreases. Moreover, $C_{G S}$ mainly determines the switching time before and after the Miller platform. However, it has little effect on the Miller platform. In a turn-on transient, with an increase of C_{GS}, the Miller platform is almost unchanged. Therefore, the $\mathrm{d} v / \mathrm{d} t$ of the drain-source voltage u_{DS} stays almost the same. However, the rise time of u_{GS} increases because the time constant is determined by C_{GS}. The $\mathrm{d} i / \mathrm{d} t$ of the drain current i_{D} significantly decreases, causing an increase in the rise time for i_{D} and a decrease in the oscillation and spike for i_{D}. With an increase of C_{GS}, the delay of u_{DS} increases due to an additional demand in the gate charge. In a turn-off transient, when C_{GS} is increased, the falling speed of u_{GS} decreases. However, it has little effect on u_{DS} and i_{D}. For a turn-on transient, when C_{GS} is increased from 2.2 nF to 18.0 nF , the overshoot current of i_{D} is decreased from 19A to 16.5 A .

With an increase of C_{GS}, as shown in Fig. 16 and Fig. 17, the turn-on time $t_{\text {on }}$ and turn-off time $t_{\text {off }}$ of a SiC MOSFET are increased. In addition, the turn-on energy and turn-off energy are also increased. As shown in Fig. 18, the turn-on current spikes and turn-off voltage spikes are also slightly increased.

Fig. 19. Switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of C_{GD} : (a) Turn-on waveforms; (b) Turn-off waveforms.

Fig. 20. Turn-on and turn-off times under different values of C_{GD}.

Fig. 21. Turn-on and turn-off energy under different values of C_{GD}.

B. The Influence of the Gate-drain Capacitance $C_{G D}$

Because the value of the Miller capacitance C_{GD} is two orders of magnitude smaller than that of C_{GS}, the influence on the switching waveform for $C_{G D}$ can be ignored when compared with C_{GS}. However, the Miller platform is largely determined by C_{GD}. According to an analysis of the ideal

Fig. 22. Voltage overshoot for u_{DS} and current overshoot for i_{D} under different values of C_{GD}.
switching process, the length of the Miller platform effects the falling speed during a turn-on transient and the rising speed during a turn-off transient for u_{DS}. As shown in Fig. 19(a), in the turn-on time, with an increase of C_{GD}, the falling rate of u_{DS} decreases. However, the rising rate of the drain current does not change. As shown in Fig. 19(b), in the turn-off time, with an increase of C_{GD}, the length of the Miller platform is extended and the rising rate of u_{DS} is decreased. Since the drain current i_{D} does not decrease until u_{DS} rises to the DC bus voltage, i_{D} is delayed by an increase of C_{GD}. However, the current rate $\mathrm{d} i / \mathrm{d} t$ stays the same.

Due to the Miller effect, a small increase of $C_{G D}$ can result in a significant increase of the turn-on and turn-off times, as well as a large increase in the turn-on and turn-off losses, as shown in Fig. 20 and Fig. 21. However, with an increase of C_{GD}, as shown in Fig. 22, the turn-on current spikes and turn-off voltage spikes barely change since $C_{G D}$ accounts for a small portion of $C_{\text {iss }}$ when compared with C_{GS}.

C. The Influence of the Drain-source Capacitance $C_{D S}$

The additional drain-source parasitic capacitance $C_{D S}$ is simulated by paralleling capacitance between the drain and source pins. As shown in Fig. 23(a), in the turn-on time, with an increase of C_{GD} from 680 pF to 1.5 nF , the turn-on waveform stays almost the same. In addition, the $\mathrm{d} u / \mathrm{d} t$ for u_{DS} and the $\mathrm{d} i / \mathrm{d} t$ for i_{D} stay nearly the same. Furthermore, an increase of C_{GD} has nearly no effect on the oscillation. This is due to the fact that during turn-on transients, the oscillation is mostly determined by the series resonance with $L_{\mathrm{D}}, L_{\mathrm{S}}$ and C_{J}. As shown in Fig. 23(b), in the turn-off time, with an increase of C_{GD}, the $\mathrm{d} u / \mathrm{d} t$ for u_{DS} decreases, and the oscillations for u_{DS} and i_{D} increase. This is due to the fact that during a turn-off transient, the main power circuit can be seen as having a series resonant between $L_{\mathrm{D}}, L_{\mathrm{S}}$ and $C_{\mathrm{OSS}}\left(=C_{\mathrm{DS}}+C_{\mathrm{GD}}\right)$. With an increase of $C_{\mathrm{DS}}, C_{\mathrm{OSS}}$ increases and the resonant frequency decreases. However, the resonance amplitude significantly increases.

With an increase of C_{DS} from 680 pF to 1.5 nF , the turn-on time is almost unchanged while the turn-off time increases

(a)

(b)

Fig. 23. Switching waveforms of $u \mathrm{GS}, u \mathrm{DS}$ and i_{D} under different values of C_{DS} : (a) Turn-on waveforms; (a) Turn-off waveforms.

Fig. 24. Turn-on and turn-off times under different values of C_{DS}.

Fig. 25. Turn-on and turn-off energy under different values of C_{DS}.
from 20 ns to 80 ns , as shown in Fig. 24. Therefore, as shown in Fig. 25, the turn-on loss barely changes, while the turn off loss increases from about $60 \mu \mathrm{~J}$ to $160 \mu \mathrm{~J}$. However, with an increase of C_{DS}, as shown in Fig. 26, the turn-on current spikes slightly increases from 3.0A to 3.5 A while the turn-off voltage overshoot decreases from 90 V to 70 V . Moreover, during turn-off transients, a significant oscillation appeared

Fig. 26. Voltage overshoot for u_{DS} and current overshoot for i_{D} under different values of C_{DS}.
when i_{D} decreased to zero, and the amplitude of the oscillation increased a lot with an increase of C_{DS}. This was due to the resonant caused by $L_{\mathrm{D}}, L_{\mathrm{S}}$ and C_{Oss}.

D. The Influence of the Parasitic Capacitance C_{J}

C_{J} is the parasitic capacitance of the freewheeling diode D_{1} and the inductor L_{L}. C_{J} effects the switching speed, voltage spikes, current spikes and switching energy. The influences of different values of C_{J} on the switching process are showed in Fig. 27 and Fig. 28. Fig. 27 shows switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of C_{J}. With an increase of C_{J}, the peak current and the oscillation amplitude increase during turn-on transients. When the switch turns off, with an increase of C_{J}, it needs to draw more current to discharge C_{J}. Therefore, the $\mathrm{d} i / \mathrm{d} t$ of the drain current increases. In addition, with an increase of C_{J}, the rising speed for u_{DS} slightly decreased. Fig. 28 indicates that with an increase of C_{J}, the turn-on and turn-off times increased. Fig. 29 shows the turn-on and turn-off energy under different values of C_{J}. With an increase of C_{J}, the turn-on energy increased but the turn-off energy decreased. Fig. 30 shows the influence of C_{J} on the voltage overshoot during turn-off transients and the current overshoot during turn-on transients. The current overshoot increased while the voltage overshoot decreased with an increase of C_{J}.
From the above analysis, it can be seen that in the case of high speed switching, the gate-source parasitic capacitance $C_{\text {GS }}$ has a negative influence on the turn-on and turn-off times, and a slight influence on the current spikes and voltage spikes. The gate-drain parasitic capacitance C_{GD} has a large influence on the turn-on and turn-off times, but little influence on the current spikes and voltage spikes. The drain-source parasitic capacitance C_{DS} has a significant influence on the turn-off time, but little influence on the turn-on time. In addition, C_{DS} has a certain influence on the current spikes and voltage

Fig. 27. Switching waveforms of $u_{\mathrm{GS}}, u_{\mathrm{DS}}$ and i_{D} under different values of C_{J} : (a) Turn-on waveforms; (a) Turn-off waveforms.

Fig. 28. Turn-on and turn-off times under different values of C_{J}.

Fig. 29. Turn-on and turn-off energy under different values of C_{J}.
spikes. An increase of the capacitance of the freewheeling diode and the inductor C_{J} has a negative influence on the turn-on and turn-off times.

Fig. 30. Voltage overshoot for u_{DS} and current overshoot for i_{D} under different values of C_{J}.

VI. CONCLUSION

In this paper, the effects of parasitic parameters on the switching processes of SiC MOSFETs are studied systematically, and the influences of parasitic parameters on the switching characteristics are obtained.

A well-considered design has already ensured the minimization of the parasitic inductance of the gate driver loop. Therefore, the influence of L_{G} on the switching characteristics is relatively small. However, the influence of L_{D} on oscillations and voltage spikes is significant. The source parasitic inductance L_{S} has some inhibitory effect on oscillations and voltage spikes, but it increases the switching energy loss. Therefore, an improved layout design method is proposed. The considerations to determine the distribution between the parasitic inductance L_{S} and L_{D} while the sum of L_{S} and L_{D} remains unchanged are also discussed. By this method, the optimization of different switching characteristics under the condition of a limited physical distribution can be reached.
The influences of parasitic capacitances on switching characteristics are also studied experimentally. The parasitic capacitances C_{GS} and C_{GD} have a great influence on switching times. With an increase of C_{GS} and C_{GD}, the turn-on and turnoff times are noticeably increased. While C_{J} can slightly effect the switching times, C_{DS} has nearly no effect on the turn-on time but a large effect on the turn-off time. As for oscillation, an increase of C_{GS} restrain switching resonance. An increase of C_{DS} and C_{J} reduces the turn-off voltage overshoot but increase the turn-on current overshoot. The influence of C_{GD} on the oscillation in a power loop can be ignored.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foundation of China (51677089) and "the Fundamental Research Funds for the Central Universities", NO.NJ201 60047 and NO.NS2015039. The authors also appreciate the
support of Foundation of Graduate Innovation Center in NUAA (kfjj20170308) and the Fundamental Research Funds for the Central Universities.

References

[1] Z. Qian, J. Zhang, X. Xie, Y. Gu, Z. Lv, and X. Wu, "Progress in power electronics system integration," Trans. China Electrotechnical Society, Vol. 3, No. 21, pp. 2-14, Jul. 2006.
[2] J. Wang, G. Zhang, Y. Geng, and Z. Song, "The latest technology research and application prospects of the intelligent electrical apparatus," Trans. China Electrotechnical Society, Vol. 30, No. 9, pp. 1-11, Sep. 2015.
[3] M. Liang, Q. Zheng, C. Ke, Y. Li, and X. You, "Performance comparison of SiC MOSFET, Si CoolMOS, and IGBT for DAB converter," Transactions of China Electrotechnical Society, Vol. 12, No. 30, pp. 41-50, Feb. 2015
[4] "The influence of parasitic network parameters on the switching behavior of power MOSFETs when switching ohmic/inductive loads," http://www.infineon.com, 2016.
[5] S. Clemente, B. R. Pelly, A. Isidori, "Understanding HEXFET switching performance," Application Note- 947, International Rectifier, Inc., www.irf.com, 2013.
[6] P. Nayak, M. V. Krishna, K. Vasudevakrishna, and K. Hatua, "Study of the effects of parasitic inductances and device capacitances on 1200 V , 35A SiC MOSFET based voltage source inverter design," International Conference on Power Electronics, Drives and Energy Systems, Vol. 1, pp. 1-6, 2014.
[7] "Advanced power semiconductor devices- challenges and solutions in applications", http://www.infineon.com, 2016.
[8] Z. Wang, J. Zhang, X. Wu, and K. Shen, "Analysis of stray inductance's influence on SiC MOSFET switching performance," Energy Conversion Congress and Exposition, Vol. 1, pp. 2838-2843, Sep. 2014.
[9] Z. Chen, D. Boroyevich, and R. Burgos, "Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics," Power Electronics Conference, Vol. 1, pp. 164-169, 2010.
[10] A. Anthon, J. C. Hernandez, Z. Zhang, M. A. E. Andersen, "Switching investigations on a SiC MOSFET in a TO-247 package," Industrial Electronics Society, Vol. 1, pp. 18541860, Oct. 2014.
[11] B. Cougo, H. Schneider, and T. Meynard, "High current ripple for power density and efficiency improvement in wide bandgap transistor-based buck converters," IEEE Trans. Power Electron., Vol. 30, No. 8, pp. 4489-4504, Aug. 2015.
[12] J. Wang, H. S.-H. Chung, and R. T.-H. Li, "Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 573-590, Apr. 2013.
[13] Z. Dong, X. Wu, K. Sheng, and J. Zhang, "Impact of common source inductance on switching loss of SiC MOSFET," Future Energy Electronics Conference, Vol. 1, pp. 1-5, 2015.
[14] H. Li and S. Munk-Nielsen, "Detail study of SiC MOSFET switching characteristics," International Symposium on Power Electronics for Distributed Generation Systems, Vol.

1, pp. 1-5, 2014.
[15] J. Noppakunkajorn, D. Han, and B. Sarlioglu, "Analysis of high-Speed PCB with SiC devices by investigating turn-Off overvoltage and interconnection inductance influence," IEEE Trans. Transp. Electrific., Vol. 1, No. 2, pp. 118-125, Aug. 2015.
[16] J. Wang, H. S. Chung, and R. T. Li, "Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance," IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 573-590, Jan. 2013.
[17] Y. Zheng, "The SiC age of power electronics is coming towards us," Electrical Engineering, Vol. 5, No. 1, pp. 1-2, Nov. 2006.

Haihong Qin was born in Jiangsu, China, in 1977. He received his B.S. degree in Aviation Electrical and Electronic Engineering, and his M.S. and Ph.D. degrees in Power Electronics and Motion Control from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 1998, 2002 and 2007, respectively. In 2007 he joined the Aeropower Sci-tech Center of the Nanjing University of Aeronautics and Astronautics. He is presently working as an Assistant Professor in the Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His current research interests include power electronics, motion control and the application of wide band-gap devices to more electric aircraft.

Ceyu Ma was born in Chengdu, Sichuan, China. He received his B.S. degree from the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2015, where he is presently working towards his M.S. degree. His current research interests include the application of wide band-gap devices, PMSM control and PWM converter/inverter systems.

Ziyue Zhu was born in Jiangsu, China, in 1992. She received her B.S. and M.S. degrees in Power Electronics from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2014 and 2017, respectively. She is presently working as an Electrical Engineer at AAC Technologies Holdings Inc. Her current research interests include industrial automation and intelligent manufacturing.

Yangguang Yan was born in Zhejiang Province, China, in 1935. He received his B.S. degree in Electrical Engineering from the Nanjing Aeronautical Institute, Nanjing, China, in 1958. He is presently working as a Professor in the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China. His current research interests include power electronics and electrical machines. Professor Yan was a Second Prize recipient of a State Technology Invention Award.

[^0]: Manuscript received Jul. 3, 2017; accepted Feb. 26, 2018
 Recommended for publication by Associate Editor Sang-Won Yoon.
 ${ }^{\dagger}$ Corresponding Author: qinhaihong@nuaa.edu.cn
 Tel: +86-13951772239, Nanjing Univ. of Aeronautics and Astronautics
 *Center for More Electric Aircraft Power System, Nanjing University of Aeronautics and Astronautics, China

