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Abstract 

 

In this paper, a model predictive torque control (MPTC) without the use of a weighting factor for surface mounted permanent- 
magnet synchronous machine (SPMSM) drive systems is presented. Firstly, the desired voltage vector is predicted in real time 
according to the principles of deadbeat torque and flux control. Then the sector of this desired voltage vector is determined. The 
complete enumeration for testing all of the feasible voltage vectors is avoided by testing only the candidate vectors contained in 
the sector. This means that only two voltage vectors in the sector need to be tested for selecting the optimal voltage vector in 
each control period. Thus, the calculation time can be reduced when compared with the conventional enumeration method. On 
the other hand, a novel cost function that only includes the dq-axis voltage errors between the desired voltage and candidate 
voltage is designed to eliminate the weighting factor used in the conventional MPTC. Thus, the control complexity caused by the 
tuning of the weighting factor is effectively decreased when compared with the conventional MPTC. Simulation and 
experimental investigation have been carried out to verify the proposed method. 
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I. INTRODUCTION 

The direct torque control (DTC) method is widely applied 
in PMSM systems. The applied voltage vector of the DTC 
method is obtained according to a switching table, which is 
established based on the error signs of both the torque and the 
flux. It has a very fast dynamic response by directly controlling 
the stator flux magnitude and torque. However, disadvantages, 
i.e., torque fluctuations and an unfixed switching frequency, 
obviously exist in the conventional DTC method [1], [2]. As a 

possible alternative control strategy, model predictive torque 
control (MPTC) has recently gained a lot of attention. In the 
MPTC method, the torque and stator flux at the next instant 
are predicted based on a discrete model of the motor. Then 
the optimal voltage vector is determined in each control 
period according to the optimization of an operating cost 
function. The selected optimal voltage vector, which is one of 
the seven basic voltage vectors and can minimize the torque 
and flux errors, is applied to the motor by an inverter [3]-[5]. 
The major advantages of MPTC include its intuitive concept, 
straightforward implementation, good capability in terms of 
handling the constraints of system states and the fact that it 
does not require a vector modulation strategy. However, this 
method has high computational burden on the system hardware, 
which is undesirable in the real-time implementations. This is 
especially true in the case of multilevel converters and long 
horizon prediction, where the calculation time rises 
exponentially [6], [7]. 
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To solve this problem, a sphere decoding algorithm that 

can effectively reduce the computational burden is adopted in 
[8] and [9] to implement long horizon predictions. In order to 
implement a low calculation burden model predictive control, 
the binary search tr ee is introduced in [10]. To reduce the 
calculation effort and to extend the prediction horizon, a 
heuristic voltage vector pre-selection method, which uses the 
multiparametric programming from the Multiparametric 
Toolbox of Matlab software, is introduced in [11]. In addition, 
the results show the superior performance of the control 
system during transients and in the steady state. 

In addition, in order to control both the torque and the 
stator flux simultaneously, an appropriate weighting factor of 
the conventional MPTC needs to be carefully designed, since 
the weighting factor selection is directly related to the control 
performance of the whole system. The existing design 
strategies for weighting factors usually require an exhaustive 
search, which is time consuming, and not intuitive [13], [14]. 
To improve the design process of the weighting factor, some 
methods have been proposed. In [15], a fuzzy decision- 
making strategy is introduced into the model predictive 
control of a matrix converter to adjust the value of the 
weighting factor. According to the basic principle of torque 
ripple minimization, an online weighting tuning method is 
presented in [16] to improve speed control performance. 
Although the aforementioned methods to find appropriate 
weighting factors have been reported, there is no universal 
theory to guide weighting factor design. Therefore, some 
model predictive control methods without a weighting factor 
have been presented. In [16], the control of the torque and 
stator flux are replaced by voltage control to avoid the 
weighting factor. However, the main optimization objective 
is not clear due to the lack of a theory analysis. In order to 
avoid the selection process of the weighting factors, a torque 
error based cost function and a stator flux error based cost 
function are established in [17]. Then, the voltage vector, 
which minimizes the sum of two cost functions, is selected as 
the optimal vector. Recently, a new duty cycle control 
method has been proposed in [18] to reduce the torque and 
flux ripples of the conventional direct torque control. In order 
to eliminate the weighting factor between the torque and 
stator flux, the torque is considered as the main control goal 
of the system while the stator-flux is included in the cost 
function as a constraint. This means that the stator-flux can 
be controlled within a limited hysteresis band. 

In this paper, an improved MPTC algorithm for PMSM 
drives is presented, in which the computation burden 
reduction and weighting factor elimination are implemented 
simultaneously. Firstly, the desired voltage vector is predicted 
in real time according to deadbeat control technology. In 
addition, the sector position of the predicted desired voltage 
vector is used to optimize the selection range of where the 
candidate vector can be located. The optimal vector for 

minimizing the cost function can be selected from the vectors 
contained in the sector. This means that the selection range of 
the optimal vector can be narrowed down to two vectors, 
which avoids evaluating all of the feasible vectors (six 
nonzero vectors and two null vectors). Thus, the computation 
burden is reduced when compared with that of the 
conventional MPTC. On the other hand, a novel cost function 
is proposed to eliminate the complicated weighting factor 
design in the conventional MPTC. In this cost function, 
d-axis and q-axis voltage errors are adopted to replace the 
torque/flux error. In addition, the relationship between the 
proposed cost function and conventional cost function is 
derived, which shows that the control objective for both of 
the cost functions is the same. Therefore, the control 
complexity caused by the weighting factor is significantly 
reduced. Finally, simulations and experiments are carried out 
to verify the proposed method. 

 

II. SPMSM MATHEMATICAL MODEL 

The model of a SPMSM is given as [20],[21]: 

d
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where: 
ud, uq          are the d- axis and q-axis stator voltages, 
respectively; 
id, iq          are the d- axis and q-axis stator currents, 
respectively; 
ψd, ψq       are the d- axis and q-axis flux linkage, 
respectively; 
Ld=Lq=L    is the stator inductance; 
R                is the stator resistance; 
ψf               is the permanent magnet flux linkage;  
                is the angular velocity; 
p                is the number of pole pairs. 

 

III. CONVENTIONAL MODEL PREDICTIVE  
TORQUE CONTROL 

The basic control structure used in the conventional MPTC 
is displayed in Fig. 1(a). The torque and flux command is 
obtained based on the outer speed control loop, in which the 
flux command is obtained from the MTPA equation, namely,

  2
2 1.5s f q e fL T p        . In digital implementation, a 

one-step control delay exists in the MPTC, which influences  
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Fig. 1. Images of the: (a) Structure of the conventional MPTC, (b) Control structure of the proposed MPTC method, (c) Sector of the 
voltage vector, (d) Experiment platform of the control system. 

 

the control performance of the digital control system. Thus, 
the compensation equation of the one-step control delay 
shown in [21] and [22] is adopted to predict the current 
values of the next control period and to replace the sampled 
currents id

k and iq
k. 

The conventional cost function, which contains the 
prediction errors of the torque and stator flux, is expressed as 
follows: 

2 2k k
e e s sg T T w                    (4) 

Generally, in order to balance the control importance of the 
stator flux and the electromagnetic torque, the weighting 
factor w used in (4) should be designed according to the 
following expression [23]: 

 /N sNw T                     (5) 

where TN is the rated torque, and ψsN is the rated stator flux 
amplitude. However, in most cases, the control responses of 
the torque and the stator flux are not satisfactory when the 
weighting factor is designed based on (5). Therefore, a lot of 
tuning work for the weighting factor is necessary by the way 
of simulations or experiments. If the weighting factor w in (4) 
is too high, which means that the control ability of the stator 
flux is more important than the control ability of the torque, 

the tracking performance of the torque performs poorly. 
Conversely, if the weighting factor w is selected too small, 
the control capability of the torque is more important when 
compared with the control ability of the stator flux. Under 
this control condition, fluctuations exist in the amplitude of 
the stator flux and the stator currents. 

 

IV. MODEL PREDICTIVE TORQUE CONTROL 

WITHOUT THE WEIGHTING FACTOR 

According to above analysis, it can be found that the 
conventional method needs to test all of the feasible voltage 
vectors to select the optimal vector at every control period, 
which means lots of computations must be completed in one 
sampling interval. However, in order to improve the control 
performance of the MPTC, the sampling frequency generally 
needs to be selected so that it is as high as possible. Therefore, 
further practical application of the MPTC method is limited 
due to the dilemma between a large volume of computations 
and a short control period. In addition, since the stator flux 
and electromagnetic torque have different units and 
dimensions, the weighting factor of the cost function in the 
conventional method is required to balance the control 
between the torque and the stator flux. However, the design 
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of the weighting factor is complicated, because tuning the 
weighting factor for optimum control performance is an 
iterative process. 

To solve the above mentioned problems, an improved 
MPTC method, which eliminates the weighting factor and 
reduces the computation burden of the conventional MPTC, 
is proposed in this section. The control structure of the 
proposed method is displayed in Fig.1(b). 

A. DB-DTC Based Desired Voltage Vector Prediction 

In this paper, the DB-DTC algorithm is adopted to 
calculate the desired voltage vector, which ensures the 
convergence of the torque and stator flux error in one control 
period and is considered to be the desired voltage vector to 
reduce the range of the tested voltage vector. This means that 
the number of the candidate voltage vector is reduced. The 
concrete calculation procedure is presented as bellow. 

The one-step delay compensation method reported in [21] 
and [22] is used to predict the current values of the next 
control period. Then the measured currents of the model (1), 
(2) and (3) are replaced. At this point, the following equation 
can be obtained according to (1) and (2): 

   

(6)

 

Then the torque equation (7) can be obtained by substituting 
the q-axis stator flux of (2) into (3). 
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Taking the time derivative of the torque yields: 
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Then substituting (6) into (8), the torque discrete equation 
can be obtained as [12], [24]: 
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In addition, the relation equation between the stator flux 
and the voltage can be expressed as follows: 
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According to the basic principle of the deadbeat control, 
the torque and stator flux in the next period are used as 

reference commands, i.e., 2 *k
e eT T   and 2 *k

s s   . Then 

based on equations (9) and (10), the desired voltage vector 
can be predicted as follows: 

2
1 1 21

1

k
d

s

k
q

s

X X X
u

T

B
u

T





   
 


 

            (11) 

where: 

 
2 1 1 1 2 1 2

2

2 2 1 2 1 2 * 2

2 ( ) ( ) ( )

[( ) ( ) ] ( )

k k k k
q d s d q

k k
s d q s

X B B T

T

   

   

   

 

    

  
 

1
1 12

( ) .
3

k
q s s qk k

e e s d
f q

L R T
B T T T

p L


 




     

 

In order to obtain the phase angle of the desired voltage 
vector, the voltage vector obtained by (11) needs to be 
transformed to the α-β frame using the following equation 
[19]: 
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Based on (12), the phase angle of the desired voltage 
vector can be obtained by: 
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B. Cost Function Design and Optimal Vector Selection 

In order to quickly select the optimal voltage vector, the 
entire α-β plane is divided into six sectors, as shown as Fig. 1 
(c). It can be seen that two basic vectors are contained within 
each sector. The two vectors are an active voltage vector and 
a null voltage vector. Then quickly judging the sector of the 
desired voltage vector can be implemented based on the angle 
calculation equation (13). Therefore, the candidate voltage 
vectors that need to be tested by the cost function are 
determined. Table I lists the relationship between the sector 
of the desired voltage vector and the candidate voltage vector. 
For example, if the desired voltage vector (uref) is located in 
sector 1, as shown in Fig. 1(c), the active vector u1 and the 
null vectors are the candidate voltage vectors to be evaluated. 
The optimal vector is selected from u1 and the null vector by 
minimizing the cost function. This means that only two 
voltage vectors need to be evaluated by the cost function in 
each control period, which avoids the evaluation of all of the 
voltage vectors. Therefore, the calculation burden is reduced 
when compared with the conventional MPTC method. 

After determining the range of the candidate voltage vector, 
the evaluation of the candidate voltage vector by the cost 
function to select the optimal voltage vector is important. In 
this paper, a novel cost function, which contains the d-axis 
voltage error and the q-axis voltage error, is proposed as 
below: 
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TABLE I 
RELATIONSHIP BETWEEN THE SECTOR OF THE DESIRED VOLTAGE 

VECTOR AND THE CANDIDATE VOLTAGE VECTOR 

Sector 
location 

one two three four five six 

Candidate 
Vectors  

u0,u1 u7,u2 u0,u3 u7,u4 u0,u5 u7,u6

Vector  
selection 

000, 
100 

111, 
110 

000, 
010 

111, 
011 

000, 
001 

111,
101 

 

dref di qref qi prog u u u u I             (14) 

where udref and uqref are d-axis and q-axis components of the 
desired voltage vector uref; and udi and uqi represent d-axis and 
q-axis components of the candidate voltage vectors ui, which 
are selected according to the sector of the desired voltage 
vector and Table I. From (14), it can be seen that the 
weighting factor is eliminated due to the same dimension 
between the d-axis voltage and the q-axis voltage. In addition, 
the current limitation Ipro is included in (14) to limit the 
overcurrent problem. Its expression is shown as follows: 

max
pro

max

0 ( ( 2) )
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          (15) 

If the predicted current corresponding to the tested vector 
is less than the current limitation, Ipro is equal to zero, which 
means that overcurrent does not occur using this tested vector. 
On the other hand, if the currents of the tested voltage vector 
are over the current limit, Ipro is infinite. 

According to the motor model, i.e., equation (1), (2) and 
(3), the following equations can be obtained: 
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where Te
i is predictive torque of the candidate voltage vector 

ui; and ψd
i and ψd

i are the predictive flux of candidate voltage 
vector ui. Therefore, the cost function can be rewritten as 
follows: 
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Then, the discrete form of (18) can be obtained: 
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 From equations (18) and (19), it is obvious that the 
minimizing equation (19) necessarily minimizes the stator- 
flux error and the torque error. In addition, it can be found 
that this cost function is similar to the conventional cost 
function (4) with a weighting factor, since they are both torque 
error and flux error based cost functions. However, the 
proposed cost function of this paper no longer needs a 
weighting factor. The control balance between the torque and 
the flux is automatically implemented according to the present 
operating condition, which means that the tedious work of 
tuning the weighting factor in the conventional MPTC can be 
avoided. 

According to the above analysis, it can be found that the 
core ideas of the conventional method and the proposed 
method are the same, i.e., selecting an optimal voltage vector. 
However the implementation method is different for both of 
the methods. In the conventional method, the indirect voltage 
selection mode is adopted in the cost function, which means 
that the flux error and torque error are used as criterion to 
select the best vector. On the other hand, in the proposed 
method, the direct voltage selection mode is presented to 
construct the cost function. The best voltage vector is selected 
by directly comparing the desired voltage vector with the 
candidate voltage. The important advantage of this direct 
voltage selection mode is that the tedious work of tuning the 
weighting factor in the conventional MPTC can be avoided. 

 

V. SIMULATION AND EXPERIMENTAL RESULTS 

Simulations of the conventional MPTC and the proposed 
MPTC have been carried out in this section by MATLAB/ 
Simulink. In addition, the conventional MPTC method and 
the proposed MPTC method have been verified on a SPMSM 
drive system based on a floating point digital signal processor 
28335. The experimental setup is shown in Fig. 1(d). The 
PMSM parameters and sampling frequency are listed in 
Table II. 

A. Simulation Results 

Fig. 2(a) shows the control performances under the control 
of the conventional MPTC method when different weighting 
factors are selected. If the weighting factor w is designed 
according to (5), i.e., w=20.25, the control performance of the 
conventional MPTC is not satisfactory, as shown in Fig. 2(a). 
However, the control performance becomes better and better  
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TABLE II 

PARAMETERS OF A PMSM 

Sampling frequency 10kHz 

Number of pole pairs p =3 

Stator phase resistance R =3Ω 

Rated speed nN =2000r/min 

Rotational inertia J =0.00129kg·m2 

Flux linkage  ψf =0.295Wb 

d-axis and q-axis inductances Ld =Lq =11mH 
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Fig. 2. Simulation results at a speed of 200r/min with a 50% 
rated load: (a) Conventional MPTC method under different 
weighting factors, (b) Proposed MPTC method. 

 

as w increases. The best performance can be obtained when 
the weighting factor is 150. It should be noted that the control 
performances became bad when w further increases to 450. 
These results show that different values of the weighting factor 
have different control performances in the conventional MPTC 
method. Therefore, in order to gain satisfactory control 
performance, tuning work of the weighting factor is 
necessary. When compared with the conventional MPTC, the 
control performances of the proposed MPTC are shown in 
Fig. 2(b). It can be seen that the control performances are 
similar for the proposed MPTC and the conventional MPTC 
with the optimal weighting factor 150. However, the weighting 
factor in the conventional method is eliminated and the  
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Fig. 3. Robustness test to external load disturbances and the 
harmonic spectrum of the stator current with the rated speed and 
rated torque: (a) Dynamic response of the conventional MPTC, 
(b) Dynamic response of the proposed MPTC, (c) THD of the 
conventional MPTC, (d) THD of the proposed MPTC. 
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tuning weighting factor is also avoided in the proposed 
MPTC, which is an advantage in the practical applications. 

In order to further compare both methods, the dynamic 
responses and the current THD analysis under the rated load 
and rated speed are displayed in Fig. 3. In Fig. 3(a)-(b), the 
motor speed command is step changed from zero to the rated 
value. Then in order to test the dynamic performance, the 
load torque of the motor is suddenly changed from zero to the 
rated value at 0.08 seconds. Then this rated load torque is 
removed at 0.13 seconds. Additionally, the THD analyses of 
the steady state current under the control of both methods are 
shown in Fig. 3(c)-(d). From these simulation results, it is 
seen that the proposed MPTC has dynamic and steady-state 
control performances that are similar to those of the 
conventional method under an optimal weighting factor. 

B. Experimental Results 

In the conventional MPTC, the tuning of the weighting 
factor, which is usually based on error-and-trial measures, is 
a time consuming process. Generally, the weighting factor w 
can be designed according to (5) to balance the control 
importance of the stator flux and the electromagnetic torque, 
which is 20.25 in this paper. However, when the weighting 
factor is designed based on (5), the control responses of the 
torque and the stator flux are not satisfactory according to the 
experimental results in Fig. 4. Fig. 4 shows the control 
responses of the conventional MPTC with different weighting 
factors (from 20.25 to 350) when the motor operates at a low 
speed of 200r/min. In addition, the phase currents shown in 
Fig. 4 are selected as the target of the THD analysis, and the 
analysis results are listed in Table III. It can be seen that 
when the weighting factor is 20.25, the fluctuation of the 
stator flux is 0.11Wb, the torque fluctuation is 0.85N.m and 
the current THD is 53.79%. If the weighting w is increased to 
50, the stator flux ripple is reduced by 29%, from 0.11Wb to 
0.023Wb. However, the ripple of the torque is increased by 
44.7%, from 0.85N.m to 1.23N.m, and the current THD is 
reduced by 30.36%, from 53.79% to 23.43%. When the 
weighting factor varies from 50 to 150, the ripples of the 
stator flux are further reduced from 0.023 to 0.02, and the 
torque ripple is not increased. Instead, it is reduced to 1.2N.m. 
In addition, the current THD is further reduced from 23.43% 
to 19.91%. This means that a good control balance between 
the torque ripples and the flux ripples is achieved. Next, if a 
larger value is selected as the weighting factor, i.e., w=350, 
noticeable changes of the stator flux ripple cannot be seen. 
However, the ripples of the electromagnetic torque and the 
current THD clearly become higher. Experimental results 
indicate that good tuning of the weighting factor is necessary 
to balance the control performance of the electromagnetic 
torque and stator flux for the conventional method. In 
addition, the optimal weighting factor of this machine is 150 
for the conventional MPTC. 

eTs

ai

(0.25 Wb/ div) (6N m/div)

(5A/div)

 
(a) 

eTs

ai

(0.25Wb/ div) (6N m/div)

(5A/div)

 
(b) 

eTs

ai

(0.25Wb/ div) (6N m/div)

(5A/div)

 
(c) 

eTs

ai

(0.25 Wb/ div) (6N m/div)

(5A/div)

 
(d) 

Fig. 4. Experimental results of the conventional MPTC with 
different weighting factors at 200r/min and the rated load: (a) 
w=20.25, (b) w =50, (c) w =150, (d) w =350. 

 

TABLE III 
QUANTITATIVE COMPARISON UNDER DIFFERENT WEIGHTING 

FACTORS 

Weighting factor ψs ripple(Wb) Te ripple(N.m) THD(%)

20.25 0.11 0.85 53.79 

50 0.023 1.23 23.43 

150 0.02 1.2 19.91 

350 0.021 6.1 25.44 

 

In order to further compare the performances of both 
methods, the control responses of the proposed MPTC method 
when the motor operates at a low speed of 200r/min are shown 
in Fig. 5(a). Fig. 5(b)-(c) display THD comparisons of the  



1376                        Journal of Power Electronics, Vol. 18, No. 5, September 2018 

 

eTs

ai

(0.25Wb/ div) (6N m/div)

(5A/div)

 
(a) 

0 0.1 0.2 0.3 0.4 0.5
-10

0

10

Time (s)

0 200 400 600 800 1000
0

1

2

3

Frequency (Hz)

Fundamental (10Hz) = 3.57 , THD= 19.91%

M
ag

 (
%

 o
f 

F
un

da
m

en
ta

l)

 
(b) 

0 0.1 0.2 0.3 0.4 0.5
-10

0

10

Time (s)

0 200 400 600 800 1000
0

0.5

1

1.5

Frequency (Hz)

Fundamental (10Hz) = 3.491 , THD= 19.62%

M
ag

 (
%

 o
f 

F
un

da
m

en
ta

l)

 
(c) 

Fig. 5. Experimental results of the proposed MPTC, and a THD 
comparison between the conventional MPTC with w =150 and 
the proposed MPTC: (a) Steady response of the proposed MPTC 
at 200r/min and the rated load, (b) THD of the conventional 
MPTC with w =150, (c) THD of the proposed MPTC. 

 
conventional MPTC and the proposed MPTC. A comparison 
of Fig. 4 and Fig. 5 show that the control performances of the 
proposed MPTC method are similar to those of the 
conventional MPTC with the optimal weighting factor. 
However, unlike the conventional MPTC, the proposed 
MPTC method is able to balance the control performance of 
the stator flux and the electromagnetic torque without the 
weighting factor, which avoids the tuning that must be 
completed in the conventional MPTC. Similar conclusions can 
be obtained at a high speed of 2000 r/min, as shown in Fig. 6. 

Comparison experiments of the dynamic responses also are 
completed, as shown in Fig. 7. It should be noted that the 
experimental results of the conventional MPTC are obtained 
under the condition of the optimal weighting factor. Fig. 7(a)-  
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Fig. 6. Control performances of both methods with the rated 
speed and rated load: (a) Conventional MPTC with w=20.25, (b) 
Conventional MPTC with w=150, (c) Conventional MPTC with 
w =350, (d) Proposed MPTC. 

 
(b) show the performance when the motor accelerates from 
500r/min to the rated speed 2000r/min. These results prove 
that rapid and non-overshoot speed tracking performance can 
be achieved under the control of both methods, when the 
speed reference suddenly varies. Experimental results of both 
methods at the rated speed are demonstrated in Fig. 7(c)-(d), 
when the load torque is suddenly changed from zero to a 
rated value. These results illustrate that both methods are able 
to achieve excellent anti-disturbance capability and quick 
dynamic performance. 

In addition, in order to further verify the validity of the 
proposed MPTC, the line voltage and voltage vector trajectory 
are shown in Fig. 8(a)-(b), when motor operate at 500r/min 
with the rated load. The average switching frequencies of  
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Fig. 7. Dynamic responses of both methods: (a) Response to 
speed reference variation with the rated load under the control of 
the conventional MPTC, (b) Response to speed reference 
variation with the rated load under the control of the proposed 
MPTC, (c) Response to a rated load disturbance at the rated 
speed under the control of the conventional MPTC, (d) Response 
to a rated load disturbance at the rated speed under the control of 
the proposed MPTC. 

 

both methods at different speeds are shown in Fig. 8(c). This 
switching frequency is computed by counting the total 
switching jumps of the six switches of an inverter during a 
fixed period of 0.05s. According to Fig. 8(c), it can be seen 
that the switching frequencies of both methods are similar. 

Based on the above experimental results, it can be clearly 
seen that the proposed MPTC inherits the advantage of the 
conventional MPTC, i.e., a quick torque response, while 
avoiding the disadvantage of the existence of the weighting 
factor. Therefore, the proposed method is more attractive and  
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Fig. 8. Voltage waveform of the proposed MPTC and the 
average switching frequencies of both methods: (a) Line voltage 
waveform of the proposed method, (b) Voltage vector trajectory 
of the proposed method, (c) Average switching frequencies for 
the conventional MPTC and the proposed MPTC. 

 

practical than the conventional MPTC. 
Finally, a computation burden comparison between the 

proposed MPTC and the conventional MPTC is shown in 
Table IV, when the prediction step is one. The time in table 
refer to the time of code implementation. The conventional 
MPTC algorithm requires 65.11us to complete code operation. 
By comparison, 57.56us is required in the proposed method. 
This shows that the proposed MPTC method is able to reduce 
the calculation time by up to 11.6%. On the other hand, if the 
prediction step increases, such as two step prediction, the 
computation burden using the proposed method are 
significantly reduced, since the number of the candidate 
voltage vectors can be reduced from 49 to 4. 

In summary, based on simulation and experimental results, 
it can be clearly seen that when compared with the conventional 
MPTC, the proposed MPTC can reduce the calculation time 
and eliminate the weighting factor. 
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TABLE IV 

CALCULATION TIMES OF BOTH METHODS 

Method Conventional MPTC Proposed MPTC 

Times(us) 65.11 57.56 

Call times of vectors 7 2 

Time reduction(us) 7.55 

 

VI. CONCLUSIONS 

An improved MPTC method is proposed in this paper, 
which has two main advantages when compared with the 
conventional MPTC method. Firstly, the candidate voltage 
vectors in the proposed method are reduced from eight to two 
based on the voltage sector of the desired voltage vector. 
Therefore, the calculation time can be significantly reduced 
when compared with the conventional enumeration method. 
Secondly, the weighting factor is eliminated in this paper by 
designing a cost function that only includes the voltage errors 
between the desired voltage and the candidate voltage. Thus, 
the control complexity caused by the tuning of the weighting 
factor is effectively decreased. 
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