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Abstract 

 
The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a 

non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system 
because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve 
switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the 
non-overshoot performance is better illustrated by the boundary integral error plane than the proportional–integral (PI) plane in 
windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with 
respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, 
conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The 
controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller 
shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both 
conditions. 
 
Key words: Anti-windup, Integral state prediction, PI plane, Speed control, Steady-state integral proportional integral control, 
Tracking back calculation 
 

I. INTRODUCTION 
Several classical and artificial intelligence [1] control 

schemes have been developed to better track performance, 
robustness, and stability. These schemes include the H∞ 
method [2], neural network [3], fuzzy logic control [4], 
evolutionary algorithms [5], and hybrid control system [6], 
which show robustness and better performance in the control 
of induction and permanent magnet synchronous motors. 
However, the classical proportional integral derivative (PID) 
controller has attracted much attention because of its 
simplicity and ease of implementation. These advantages are 

reflected by many works that involve optimization and hybrid 
control system using PID [6]. 

The inner feedback loop in a variable-speed motor drive is 
conducted by current control, where the current command 
must be limited within a prescribed maximum value to 
prevent any magnetic saturation, motor overheat, and 
converter protection. The current command generated by the 
controller exceeds this maximum prescribed input limit when 
the motor is subjected to sudden input or loading changes. 
Moreover, the motor exhibits large overshoot, long settling 
time, and even instability if the PID controller pushes the 
system into a non-linear region and experiences windup [7]. 
Based on the reviews in Ref. [7], such performance 
degradation has been studied since the 1940s. Accordingly, 
several works have been conducted to investigate the local 
stability, enforcing stability, and performance properties of 
the anti-windup compensator. 

Several PI-related anti-windup methods (e.g., conditioning 
technique [8]) have been developed. These methods utilize a  
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Fig. 1. Block diagram for conditional integral control system. 

 
state feedback integral control with the integrator in the 
forward path and a dead-zone non-linearity as a feedback. 
The suitable H and β parameters used in this method promise 
fast response with little overshoot. The authors in Ref. [9] 
proposed a variable structure PID (VSPID) to prevent 
integrator windup. According to Ref. [10], this VSPID allows 
a system to regain its linearity faster than the anti-windup 
bumpless transfer technique. 

The conditional integration, tracking back calculation, and 
integral state prediction schemes are the most preferred 
techniques among the various methods available [11]-[13]. 
These techniques switch back to the conventional PI control 
mechanism when the system operates under the linear state. 
The integral control in the conditional integration system (Fig. 
1) stops the error signal accumulation when saturation is 
detected, thereby separating the integral component from the 
saturation effect. Accordingly, Ref. [14] also attempted to 
switch the integral component on and off based on the 
frequency-domain analysis of the actuator-input command, 
which ensures a desired tracking performance with minimal 
oscillation and settling time irrespective of the change in 
operating conditions. 

Meanwhile, Ref. [11] introduced the tracking back 
calculation scheme (Fig. 2) with a controller feedback signal 
that consists of the difference between the saturated and the 
unsaturated control signals. This scheme properly controls the 
integral state to ensure that the integral state stays within the 
prescribed control limit. Refs. [11] and [12] introduced the 
use of the PI plane to inspect the behavior of the control 
system using the portrayed PI controller output trajectory. 
The overshoot and the setting time when the PI plane is used 
are more tightly linked to the attractivity condition. This 
condition is satisfied if it exhibits asymptotic stability 
following Lyapunov stability theory. The rise time for any 
anti-windup scheme is mainly related to the control input 
limit. Accordingly, Ref. [13] proposed an integral state 
prediction (ISP) scheme (Fig. 3) based on an analysis using 
the PI plane. This scheme states that the linear response will 
have less overshoot and shorter settling time if the integral 
state right before the system crosses the 
unsaturation–saturation boundary is close to the steady state 
integral value. The integral component in this PI control 
switches between two input channels (i.e., error signal when 
it is operating in the linear region and the feedback signal 
during windup). The feedback signal together with the  

 
Fig. 2. Block diagram for tracking back calculation scheme. 
 

 
Fig. 3. Block diagram for integral state prediction scheme. 

 
necessary parameters seek an integral steady state. 
Subsequently, the feedback signal channels the steady state as 
the input of the integral control component. Therefore, the 
integral seeks the integral steady state during the saturation 
state. 

This study proposes a steady-state integral PI controller 
(SIPIC) with a built-in integral controller for variable-speed 
motor drives that have a different structure from that in the 
previous work [15]. The proposed SIPIC has a closed-loop 
integral component that controls and tracks a set reference 
based on the available system’s output and error, and the 
controller’s command signals. Inspired by works on the PI 
plane, this reference is designed to be the desired steady state 
integral value even when the system is acted on by an 
external disturbance/torque. The SIPIC does not involve any 
switching of the control scheme like those in the other 
preceding methods. Hence, the SIPIC is free from instability 
associated with such switching. 
The theoretical analysis, simulation, and experimental results 
for the speed control on a direct current (DC) motor under no 
load and loading conditions show that the proposed approach 
with decoupling capability shows a smooth performance 
curve with no overshoot, zero steady state error, and 
well-controlled rising time. 

 

II. PI PLANE 
 

The PI plane plots the integral control component (k iq) 
against the proportional control component (kpe). It also 
represents the controller's output state at any instant with the 
allowable maximum and minimum limits for a PI controller’s 
output denoted as Bh  and B l  limits, respectively. The 
following condition [Eq. (1)] is satisfied for the linear 
operating system: 
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Fig. 4. PI plane. 

 

hpil BekqkB £+£                (1) 

where kp  and k i  are the proportional and integral tuning 
parameters, respectively; and e and q are the error and the 
integral states, respectively. The constraint stated in Eq. (1) is 
represented as a point in the PI plane within the region 
bounded between Bh  and B l  depicted as a shaded region in 
Fig. 4. The system operates in a non-linear/saturated state 
outside this bound. 

According to Ref. [13], the amount of overshoot 
experienced by a system is predicted from the relative value 
of the integral component when it enters the linear region to 
its target steady state integral value. A large integral 
component relative to its steady state value at the time the 
system regains linearity is found. Accordingly, a large 
overshoot corresponds to a lower integral component than its 
target steady state value and slow error response. The path 
with q(0) and qss denotes the integral state at the point where 
the system regains linearity and the target steady state 
integral value, respectively (Fig. 4). Any trajectory crossing 
k iq  implies an overshoot as the error changes sign. The 
shortest response time happens when q(0) ≈ qss, which is 
explained in the discussions that follow. 

The following equation is obtained starting with the 
dynamics error equation for a generic PID controller [Ref. 
[13] and Eq. (9)]: 
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where m, kt, kd, and E(s) are the time constant, motor-torque 
constant, derivative gain, and Laplace form of error signal, 
respectively. Taking the terms 1/m + ktkp as b and ktki as c 
and considering that kd = 0 for the PI control, the dynamic 
error equation for the PI controller is expressed in Eq. (3) 
with its time domain in Eq. (4). Both the kp and ki tuning  
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gains appear in the time constant for both terms that describe 
the system response in Eq. (4). An implication of this is that it 
is not possible to tune the attribution of each of these terms 
independently which may be termed as coupled tuning gains. 
Hence, the rising time of the system cannot be tuned without 
affecting the settling time, and vice versa. However, the later 
findings show the possibility of engineering a solution that 
decouples kp  and k i . 
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The time constant for the second term in Eq. (4) is more 
significant. Hence, the second term dictates the system 
response from the moment it regains linearity until it arrives 
at its new steady state. The coefficient of the second term 
must be positive if no overshoot exists and if the value of the 
error at the time the system regains linearity e(0) is greater 
than 0. This result is achieved by equating the coefficient of 
the second term larger than 0. The condition stated in Eq. (5) 
must be met, which results from equating the coefficients of 
the second term to be more than 1. Similarly, the condition 
for no overshooting stated in Eq. (6) must be met if e(0) < 0. 
Condition (7) must also be met for e(0) = 0. Hence, Eqs. 
(5)–(7) must be met to achieve non-overshoot performance. 
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Based on Eqs. (5)-(7), the boundary integral state, q(0), 
need not always be close to q s s  to avoid overshoot. 
Conversely, q(0) can have a range of values different from 
q s s  as depicted by the shaded region in Fig. 5 and still not 
experience overshoot. Therefore, q(0)-e(0) plane is a good 
alternative as a prediction tool for overshoot performance. 
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III. STEADY STATE INTEGRAL 
The operating principle of a PI controller is to have tuning 

parameters that allow the control system to attain the set 
reference while performing as desired. The controller’s 
output eventually carries a steady state value that maintains 
this system output with zero steady state error. 

The generic block diagram for a closed-loop system, where 
the system response [Yp(s)] is detailed in Eq. (8), is presented 
in Fig. 6. C(s) and G(s) denote the transfer function of the 
controller and the plant, respectively. U(s) and T(s) are the 
input reference and the torque that affects the plant, 
respectively. 
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The controller’s output signal is obtained by taking its 
output as the output of a closed-loop system (Fig. 7). 
Similarly, the output of the controller is described in detail as 
follows: 
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The DC gain of the PI controller in the closed-loop 
configuration for an nth order plant with a generic transfer 
function described in Eq. (10) is depicted in Fig. 7. Its steady 
state is described in Eq. (11). ai and bi are the coefficients in 
Eq. (10) along with m, n  ℕ+, and m ⩽ n. 

The steady state output of the PI controller is affected by 
the input reference, plant parameters, and the torque that 
affects the system. The torque term is not present in the 
steady state expression if no external torque acts on the plant. 
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This finding is used to verify the validity of the analysis in 
the subsequent section. 

 

IV. LINEAR RANGE OF PI CONTROL 
A variable-speed motor drive is usually designed with an 

inner current controller having a much faster dynamics than 
its outer speed controller. Accordingly, the dynamics of a 
variable-speed motor drive considering the loading effect is 
given by Eq. (12), where ω r ,  T l ,  and v  denote the rotational 
motor speed, external torque/disturbance, and plant input, 
respectively. The output of the PI controller, u, which 
comprises proportional gain, kp , integral gain, k i , input error, 
e, and integral state, q, parameters, is indicated in Eq. (13). 
The error of the closed-loop system for a variable-speed 
motor drive is obtained from the difference between the 
current speed of the motor and the set reference [Eq. (14)] 

with *
rw  as the set reference or command. 

 
Fig. 5. Graph of q(0) against e(0) and regions where a PI control 
system is free from overshoot as it recovers from windup. 

 

 
Fig. 6. Block diagram of a closed loop system. 
 

 
Fig. 7. Block diagram of a closed loop system with the controller 
as output. 
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At steady state, Eq. (12) is rewritten as Eq. (15) because ωr 

remains constant, the error is eliminated, and v = kiqss. The 
equation is further rearranged to show that kiqss, which is the 
steady state integral component of the PI controller, has an 
expression described in Eq. (16). Correspondingly, Eq. (16) 
has a similar structure to Eq. (11). Tl is not a signal that is 
readily available as input to a controller in practice. However, 
Tl from Eq. (12) is derived from available signals. 
Substituting Eqs. (12) and (14) into Eq. (15), the steady state 
integral is expressed in terms of the available signals 
described in Eq. (17). 
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V. PROPOSED SIPIC 
Continuing with our line of analysis, the output of the PI 

controller, u, for a PI-controlled variable-speed motor drive is 
identical to the input to the motor drive, v, when it is 
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operating in the linear region. The dynamics of the 
PI-controlled variable-speed motor drive is described in Eq. 
(12) in a closed-loop configuration. The rotational motor 
speed is specified in terms of the closed-loop error shown in 
Eq. (18) substituted into Eq. (12). The error of the 
closed-loop PI-controlled variable-speed motor drive system 
is expressed in Eq. (19). 

err -= *ww                (18) 
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The last two terms in Eq. (19) at steady state denote the 
steady state integral in Eq. (16). The Laplace domain form of 
the error dynamics is presented in Eq. (20). 
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For a good system design, there ought to be no steady state 
error in the system, e(∞) = 0. This essentially translates to the 
design for the integral component in (20) such that the 
condition stated in equation (21) is met. This can be further 
translated into the condition that the expression in the bracket 
of Eq. (21) reduces into a function of s that does not have any 
pole at the origin. With this, a possible generic format for this 
function may be that described in Eq. (22) where A and B are 
constant and n is a non-negative integer. 

The preceding discussion indicates that the integral 
component and structure of the PI controller depend on how 
the function on the right-hand side of Eq. (22) is defined. 
Moreover, the pole(s) of this integral component will 
eventually be the pole(s) for the error response in Eq. (20). 
This finding is important because each pole contributes and 
determines the system performance. One of the poles of the 
error in Eq. (20) already consists of the kp  tuning parameter. 
Hence, designing the right-hand side of Eq. (22) with only the 
k i  tuning parameter and without the kp  tuning parameter 
would decouple kp  and k i . Consequently, decoupling solves 
the difficulty of choosing controller gains that allow the 
coexistence of non-overshoot and short settling time. The 
function that ultimately defines Q(s) needs to be a function 
that can be implemented in practice. 
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One possible combination of A, B, and n is described in Eq. 
(23), which introduces an integral component of the PI 
controller in Eq. (24) (Fig. 8). The k iq s s  in Fig. 8 is 
implemented using known terms, speed derivative, error 
signal, and plant input expressed in Eq. (17) by channeling 
the necessary feedback signals. This setup leads to the PI 
controller depicted in Fig. 9. 

 
Fig. 8. Proposed integral component of SIPIC. 

 

 
Fig. 9. Block diagram for the proposed SIPIC. 
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A. Characteristic Analysis 
Instead of a straight integration of the error to derive the 

integral component of the PI controller from Eq. (23), the 
integral component of the SIPIC is expressed in Eq. (25). The 
error equation for the SIPIC is shown in Eq. (26) through the 
substitution of Eq. (25) into Eq. (20). The SIPIC is easily 
proven to have a zero steady state error when s approaches 
zero. Compared with the existing anti-windup schemes, the 
SIPIC does not need to switch its integral control component 
to another scheme during saturation and also does not suffer 
from any associated adverse effect. 
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The error response of the SIPIC, which is translated into 
the time domain, is described in Eq. (27). The first term of 
this expression determines the response of the SIPIC to a 
perturbation, whereas the second term gives its error 
convergence pattern. The kp  and k i  tuning parameters are 
separated in the error response expression. Hence, these 
parameters can be tuned to have no overshoot and still 
maintain a zero steady state error. In contrast, it is common 
for a conventional PI controller where a short rise time will 
induce overshoot. 
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TABLE I 
PARAMETERS OF DC MOTOR 

Moment of inertia (J) 
Viscous damping coefficient (B) 

Time constant (tm)
 Torque constant (kT) 

Inductance (L) 
Resistance (R) 

2.14 × 10−5 kg m2 
2.11 × 10−4 kg m2/s 

0.02 s 
0.09 N m/A 

0.005 H 
7.8 Ω 
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B. Lyapunov Stability 
The Lyapunov function candidate described in Eq. (28) is 

considered to examine the SIPIC stability. For simplicity and 
since the integral controller in the SIPIC has embedded in it 
the theoretical steady state value, the time derivative of the 
Lyapunov function candidate can be written as shown in Eq. 
(29). Substituting the derivative of e with the expression in 
Eq. (19) gives the expression in Eq. (30). Moreover, 
substituting k iq s s  with its equivalent from Eq. (16) gives Eq. 
(31). )(eV&  <	0 indicates that the system is asymptotically 
stable. 
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C. q(0)–e(0) Graph for SIPIC 
The natural frequency (wn) and the damping ratio (z) of 

the SIPIC are described in Eqs. (32) and (33), respectively, as 
extracted from the denominator of Eq. (26). The damping 
ratio (z) in Eq. (33) must be less than 1 for this system to 
exhibit overshoot. Equating Eq. (33) to be less than 1 and 
rearranging eventually translate into the condition detailed in 
Eq. (34). This condition is only satisfied if the expression in 
the bracket is a complex number. However, this condition is 
never satisfied because these gains and system parameters are 
real numbers. This result indicates that the SIPIC will not 
experience an overshoot irrespective of the values of these 
controller gains and system parameters. As discussed in 
Section IIA, the SIPIC is also free from the constraints on 
e(0) and q(0) to avoids overshoots unlike a generic PID 
controller. 

 

 
Fig. 10. Experimental setup for DC motor speed control. 
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VI. SIMULATION AND EXPERIMENTAL RESULTS 
The performance of the SIPIC for controlling the speed of a 
direct current (DC) motor is compared with that of the 
conventional PI, conditional integration, tracking back 
calculation, and integral state prediction schemes to validate 
the SIPIC characteristic. These comparison analyses were 
performed using ScicosLab simulations and hardware testing 
for no-load and loading conditions. A metal plate is attached 
to the motor shaft to introduce a 8.63 ´ 10−5 kg m2 moment of 
inertia into the motor serving as a constant loading condition. 
Table I presents the DC motor specifications used in these 
simulations and testing. The experimental test rig with a PC 
base DAQ and a two-time voltage amplifier is shown in Fig. 
10. The speed command for these simulations and testing is 
set to 100 rad/s from the start and decreased to −100 rad/s at 
time t = 1s with a voltage limiter of 15 V. Different sets of PI 
gains are used for the no-load and loading conditions to better 
illustrate the significant improvement in both conditions 
when the SIPIC is used. 

A. No-Load Scenario 
The simulated motor speed of the proposed SIPIC controller, 
conventional PI, conditional integration, tracking back 
calculation, and integral state prediction schemes under the 
no-load condition for two different sets of tuning gains is 
presented in Fig. 11 and 12. All these methods ultimately 
reach the desired speed. However, they differ in their integral 
component [Fig. 11(b) and 12(b)]. On the one hand, the 
conditional integration scheme switches off its integral 
component during saturation. On the other hand, the integral 
of the tracking back calculation, ISP, and the proposed SIPIC 
determines the steady state value with respect to the input 
command and external torque condition regardless if the 
system is operating in the linear or the non-linear region or 
not. The proposed SIPIC has the shortest settling time. 
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(a) 

 

(b) 

 

(c) 

Fig. 11. Simulation comparison of the anti-windup schemes for the 
DC motor control with a changing step input at the no-load 
condition for kp = 1 and ki = 10 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
The experimental results for the motor speed and its 

integral component for different tuning parameter sets are 
shown in Figs. 13 and 14, respectively. These two parameters 
perform similarly in the simulation. The existing anti-windup 
schemes still behave differently because of the difference in  

 

(a) 

 

(b) 
 

 

(c) 

Fig. 12. Simulation comparison of the anti-windup schemes for the 
DC motor control with a changing step input at the no-load 
condition for kp = 2 and ki = 10 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
their q(0) and e(0) values even though they switch to a 
conventional PI controller in the unsaturated region. The 
conditional integration scheme does not suffer from any 
overshoot. However, it takes a longer path than the SIPIC and 
experiences a slower error response. The settling time of the  
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(a) 

 

(b) 

 

(c) 

Fig. 13. Experimental comparison of the anti-windup schemes for 
the DC motor control with a changing step input at the no-load 
condition for kp = 1 and ki = 10 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
conditional integration, tracking back calculation, and ISP 
reduces when the kp value is increased. By comparison, the 
proposed SIPIC experiences little to no overshoot and has the 
shortest settling time among the schemes. This finding is 
supported by the torque response curve. Based on Figs. 11(c),  

 

(a) 

 

(b) 

 

(c) 

Fig. 14. Experimental comparison of the anti-windup schemes for 
the DC motor control with a changing step input at the no-load 
condition for kp = 2, ki = 10 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
12(c), 13(c), and 14(c), the SIPIC has better control on the 
torque change. 

B. Loading Scenario 
The simulated motor performance of the five schemes  
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(a) 

 

(b) 

 

(c) 

Fig. 15. Simulation comparison of the anti-windup schemes for the 
DC motor control with a changing step input under the loading 
condition for kp = 0.1 and ki = 5 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
under the loading condition at the kp and ki values is 
presented in Figs. 15–17. All schemes have longer rise and 
settling times compared with that in the no-load scenario. 
Furthermore, the existing schemes experience overshoot 
under a low kp value. The SIPIC produces the shortest settling  

 

(a) 
 

 

(b) 

 

(c) 

Fig. 16. Simulation comparison of the anti-windup schemes for the 
DC motor control with a changing step input under the loading 
condition for kp = 0.5 and ki = 5 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, band lack: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
time and with no overshoot. The short settling time without 
overshoot at high kp value is actually attributed to the 
decoupling mode, which provides the possibility of having 
the desired short settling time while maintaining 
non-overshoot performance. The same observation, which  
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(b) 

 

(c) 

Fig. 17. Simulation comparison of the anti-windup schemes for the 
DC motor control with a changing step input under the loading 
condition for kp = 1 and ki = 5 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
corresponds to their integral components reaching the steady 
state slower than the SIPIC, is shown in Figs. 18–20. The ISP 
slants in reaching the desired state even though it has a rapid 
rise of integration. 

The PI control output in both scenarios always suffers  

 

(a) 

 

(b) 

 

(c) 

Fig. 18. Experimental comparison of the anti-windup schemes for 
the DC motor control with a changing step input under the loading 
condition for kp = 0.1 and ki = 5 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
from saturation and exhibits overshoot because of the windup 
and coupling behavior. The integral output graphs show that 
each scheme employs a different integral state value. The 
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(c) 

Fig. 19. Experimental comparison of the anti-windup schemes for 
the DC motor control with a changing step input under the loading 
condition for kp = 0.5 and ki = 5 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
tracking back calculation sets a higher value than the actual 
steady state value. The conditioning scheme remains at zero 

 

(a) 

  

(b) 

 

(c) 

Fig. 20. Experimental comparison of the anti-windup schemes for 
the DC motor control with a changing step input under the loading 
condition for kp = 1 and ki = 5 (purple: reference, green: PI, red: 
conditional integration, yellow: ISP, blue: tracking back 
calculation, and black: SIPIC). (a) Speed, (b) integral output, and 
(c) torque. 

 
integral, whereas the ISP and the SIPIC maintain a constant 
steady state value. The inclined boundary lines promise faster 
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entry to the linear region for boundary integral states lower 
than the steady-state value. The conditional integration 
experiences a short saturation duration, which is followed by 
the SIPIC, ISP, and the tracking back calculation scheme. 
The conventional PI scheme exhibits the longest duration. 
Moreover, uncertainty in the value of the integral state occurs 
when the integral component is switched off. Hence, the 
switching of the integral stage method does not guarantee the 
fastest re-entry into the linear range in every case. The 
conditional integration also suffers from overshoot if the 
value held is higher than the steady state during the switching. 
With regard to the torque, the SIPIC has a faster response to 
torque change and less fluctuation before regaining stability. 

 

VII. CONCLUSIONS 

The proposed SIPIC is another new integral anti-windup 
scheme with a separately sourced integral closed-loop 
controller that carries the desired steady state value based on 
the respective input command throughout the unloading or 
loading operating conditions. The integral signal transfers 
into the system from the closed loop and engages with the PI 
controller, which is directed with the error signal and makes 
the PI controller. As comparison with the existing methods, 
the proposed SIPIC shows promising results. The integral 
control of the SIPIC reaches and stays at the steady state even 
during saturation. In addition, the SIPIC takes a shorter path 
when moving toward the steady state without overshooting. 
As a summary, the SIPIC shows better performance in both 
conditions than the existing methods. Based on the theoretical 
analysis and experimental work, the SIPIC is believed to 
work for any first-order application. 

 

ACKNOWLEDGEMENT 
Thanks to Mr. Tan Chin Luh of Trity Technologies for 

sharing useful information and assisting the simulation and 
hardware testing. 

 

REFERENCES 
[1] R. A. Gupta, R. Kumar, and A. K. Bansal, “Artificial 

intelligence applications in Permanent Magnet Brushless 
DC motor drives,” Artificial Intelligence Review, Vol. 33, 
No. 3, pp. 175-186, Mar. 2010. 

[2] C. L. Lin and H. Y. Jan, “Application of evolution strategy 
in mixed H∞/H2 control for a linear brushless DC motor,” 
in 2003 IEEE/ASME International Conference on 
Advanced Intelligent Mechatronics, 2003. AIM 2003 
Proceedings, pp. 1-6, 2003. 

[3] B. K. Bose, “Neural network applications in power 
electronics and motor drives-an introduction and 
perspective,” IEEE Trans. Ind. Electron., Vol.54, No. 1, 
pp. 14-33, Feb. 2007. 

[4] L. F. Baptista, J. M. Sousa, and J. M. G. Sá da Costa, 
“Fuzzy predictive algorithms applied to real-time force 

control,” Control Engineering Practice, Vol. 9, No. 4, pp. 
411-423, Apr. 2001. 

[5] P. J. Fleming and R. C. Purshouse, “Evolutionary 
algorithms in control systems engineering: A survey,” 
Control Engineering Practice, Vol. 10, No. 11, pp. 
1223-1241, Nov. 2002. 

[6] S. M. Gadoue, D. Giaouris, and J. W. Finch, “Artificial 
intelligence-based speed control of DTC induction motor 
drives – A comparative study,” Electric Power Systems 
Research, Vol. 79, No. 1, pp. 210-219, Jan. 2009. 

[7] S. Tarbouriech and M. Turner, “Anti-windup design: An 
overview of some recent advances and open problems,” 
IET Control Theory Appl., Vol. 3, No. 1, pp. 1-19, Mar. 
2009. 

[8] N. J. Krikelis, “State feedback integral control with 
intelligent integrator,” Int. J. Control, Vol. 32, No. 3, pp. 
465-473, Mar. 1980. 

[9] A. S. Hodel and C. E. Hall, “Variable-structure PID 
control to prevent integrator windup,” IEEE Trans. Ind. 
Electron., Vol. 48, No. 2, pp. 442-451, Apr. 2001. 

[10] R. Mantz and H. De Battista, “Authors’ replay to 
comments on “Variable-Structure PID Control to Prevent 
Integrator Windup”,” IEEE Trans. Ind. Electron., Vol. 51, 
No. 3, pp. 736-738, Jun. 2004. 

[11] J. K. Seok, “Frequency-spectrum-based antiwindup 
compensator for PI controlled systems,” IEEE Trans. Ind. 
Electron., Vol. 53, No. 6, pp. 1781-1790, Dec. 2006. 

[12] H.-B. Shin, “New antiwindup PI controller for 
variable-speed motor drives,” IEEE Trans. Ind. Electron., 
Vol. 45, No. 3, pp. 445-450, Jun. 1998. 

[13] X.-L. Li, J.-G. Park, and H.-B. Shin, “Comparison and 
evaluation of anti-windup PI controllers,” Journal of 
Power Electronics, Vol. 11, No. 1, pp. 45-50, Jan. 2011.  

[14] H.-B. Shin and J.-G. Park, “Anti-Windup PID Controller 
With Integral State Predictor for Variable-Speed Motor 
Drives,” IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 
1509-1516, Mar. 2012. 

[15] C. L. Hoo, C. Y. Edwin Chung, S. M. Haris, and N. A. N. 
Mohamed, “New proportional integral controller for Nth 
order transfer function model,” in Third Int. Conf. on 
Control, Automation and Systems Engineering (CASE), pp. 
28-29, 2013. 

 
Choon Lih Hoo graduated from the 
Universiti Kebangsaan Malaysia, Bangi, 
Malaysia in 2009 with a B.Eng. in 
Mechanical Engineering. He is a Ph.D. 
candidate in the same university. He is 
currently a lecturer at Taylor’s University 
Lakeside Campus, Malaysia. His research 
interests include control system, FPGA, and 

artificial intelligence. 
 

Sallehuddin Mohamed Haris obtained his 
B.Eng. degree in Manufacturing Systems 
Engineering in 1993, his MSc degree in 
Mechatronics in 1996, and his Ph.D. in 
Electronics and Electrical Engineering in 
2006 in the United Kingdom. His current 
research interests include the development of 
control algorithms for hybrid and switched 

dynamic systems, autonomous robot control based on monocular 
vision, and mechatronic systems for automotive applications. 



Steady-State Integral Proportional Integral Controller for …                        189 
 

Edwin Chin Yau Chung holds a Ph.D. in 
Electrical and Computer Systems 
Engineering from Monash University 
(Australia). He also has a B.Eng. with First 
Class Honors in the same field and a.Sc. in 
Computer Science. He has published many 
papers on asynchronous circuit design and 
holds a patent in the field of 

telecommunication. Since 1995, he has worked with 
international companies such as Intel, Motorola, and NEC. He is 
currently the director of Taylor’s Technology Innovation Centre. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nik Abdullah Nik Mohamed obtained his 
Ing. Grad. (B.E) at the University of Applied 
Science in Munich, Germany, in 1979. He 
obtained the Diplom-Ingenieur (M.S) in 
1983 followed by his Dr-Ing. (Ph.D) in 1991 
in Germany. He is a professor, and his fields 
of specialization include continuum 
mechanics and constitutive equations, smart 

materials and structures, and reliability and maintainability 
engineering. He is affiliated with the German Academic & 
Career Centre of Universiti Pahang Malaysia. 
 
 
 
 
 
 


