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Abstract 

 
This paper presents a shunt active power filter (SAPF) for compensating inter-harmonics and harmonics when inter-harmonics 

content is evident in the grid. The principle of inter-harmonics generation in the grid was analyzed, and the inter-harmonics effect on 
repetitive controllers was discussed in terms of control performance. Traditional repetitive controllers are not applicable in 
inter-harmonic compensation. Moreover, the effect of an ideal controller on harmonics signals was analyzed on the basis of the 
internal model principle. The repetitive controller was improved in the form of a basis function according to theoretical analysis. The 
finite-dimensional repetitive controller, which is also called the multiple-period repetitive controller, was designed for the control of 
multiple periodic signals. A selective harmonic compensation system was developed with SAPF. This system can be used to 
compensate harmonics and inter-harmonics in the grid. Finally, system control performance was verified by simulation and 
experimental results. 
 
Key words: Inter-harmonics, Multiple-periodic repetitive controller (MPRC), Selective harmonic compensation 
 

I. INTRODUCTION 
The main harmonics and inter-harmonics sources in coal 

mine gridare inverters, electric arc furnaces, and other 
electronic equipment [1]-[3]. Nonetheless, the harmonics 
characteristics of the inverter and of the electric arc furnace are 
dissimilar [4], [5]. The measured harmonics spectrum of a fan 
inverter for coal mining enterprises is shown in Fig. 1.  
Characterized harmonics are the main component of harmonic 
currents for the harmonic sources of inverters [6]-[8]. 
Harmonic sources do not affect the safe operation of the grid 
given the selective compensation of harmonics. Thus, all 
harmonics need not be compensated. Selective harmonic 
compensation increases the robustness of the control system to 
avoid mutual interference. Furthermore, it can reduce overall 
power consumption through the shunt active power filter 

(SAPF). 
The selective harmonic compensation of SAPF is a new 

method of compensating harmonic currents and is a new 
control strategy [9], [10]. This compensation control is 
advantageous over the harmonics compensation mode as a 
whole in the following ways: first, SAPF can compensate for 
harmful harmonics with the limited capacity of the system 
when capacity exceeds the rated capacity of harmonic 
compensation in SAPF. Second, the system parameters vary at 
different frequencies; thus, selective harmonic compensations 
can be designed individually for different frequency harmonics 
to improve the robustness of the system. 

At present, selective harmonic current compensation is often 
implemented by extracting the desired harmonics from a 
detection system. The harmonics are then compensated in the 
controller. However, the conventional proportional—integral 
(PI) controller induces static error. Repetitive controllers can 
improve compensation accuracy; however, their robustness is 
poor. Furthermore, disturbances easily destabilize the control 
system [11]. 

Repetitive control can track the reference signal and 
suppress the periodic disturbance signal. Pulse-width  
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Fig. 1. Measured harmonics spectrum of a fan inverter for coal 
mining enterprises. 

 
modulation (PWM) converters can be implemented to improve 
current control performance. However, the repetitive control 
system is ineffective in terms of non-periodic control and the 
suppression of non-period interference signals. Thus, we must 
improve the repetitive control system of non-period signals. 

Concepts developed in this respect include the high-order 
repetitive controller (HORC) [12] and the adaptive repetitive 
controller [13]. The latter consists of two parts: a controller that 
can adapt to the internal signal generator period and a 
controller that can adjust to the sampling period. Both methods 
are based on adaptive control and still need a frequency 
observer. As a result, control system stability is difficult to 
analyze. HORC can also solve the conventional repetitive 
control problem. 

Kim [14] and Inoue [15] proposed an HORC to reduce the 
effect of the non-periodic signal under the constraints of 
periodic signal control. Steinbuch [16] designed a robust 
repetitive controller based on convex optimization to improve 
the robustness of the control signal given the relative sensitivity 
of the error and shaping functions. 

Pipeleers [17] proposed an HORC that introduces a trade-off 
curve through which it considers the different control 
commands and levels of uncertainty periodic signals. This 
system can then account for uncertain periods or the robustness 
of changed cycle signals in addition to inter-harmonics 
sensitivity. Although these methods improved control 
performance, they enhanced the complexity of the system. As a 
result, the system is difficult to stabilize. A multiple-period 
repetitive controller (MPRC) was proposed for periodic signals 
containing both fundamental and harmonic period signals. This 
controller was extended to multiple input-multiple output 
systems [18]-[20]. MPRC is advantageous over the 
conventional repetitive controller given its slight delay, fast 
convergence, low discrete mold order, and limited storage 
space, among others. 

In this study, SAPF is used to compensate inter-harmonics 
and harmonics in situations wherein the inter-harmonics 
content in the grid is evident. Unlike traditional methods, the 
selective harmonic compensation method was designed in the 
current loop of the SAPF compensation controller to avoid 
incurring problems in the proposed detection system. The  

TABLE I 
CHARACTERISTICS OF DIFFERENT FREQUENCY COMPONENTS  

Terminology Characteristic 
Direct current k = 0 

Fundamental wave k = 1 
Harmonic k is a positive integer 

Inter-harmonic m < k < m + 1，where m = 0, 1, 2, … 
Sub-harmonic 0 < k < 1 

 

Source Converter Inverter Motor

60Hz ripple50Hz ripple
50Hz 60Hz

DC link

 
Fig. 2. Generation of inter-harmonics. 
 
MPRC was improved on the basis of the same internal model 
principle to enhance the performance of the control system 
and to eliminate static error control on different periodic 
signals. The simulation and experiment results verify that the 
designed control system is reliable. 

 

II. COMPENSATION WITH SAPF IN THE 
INTER-HARMONICS ENVIRONMENT 

A. Inter-Harmonic Generation Principle 
On the basis of the different frequency components, 

voltages and currents can be classified as direct, fundamental, 
harmonic, inter-harmonic, and sub-harmonic components. 
The differences among these components are presented in 
Table I. The component frequency is set as f = k × f1, where 
f1 is the fundamental frequency (50 Hz). 

The main sources of inter-harmonics are variable 
frequency drives, high-voltage direct currents, and other 
static frequency converters. The input power of these devices 
changes into another frequency component as the output. 
This system can be considered a bi-directional system 
because the voltages and currents at the side of the motor can 
be converted to the power supply side. For example, the input 
power frequency is 50 Hz, as shown in Fig. 2. The operating 
frequency of the motor is 60 Hz. This frequency is the ripple 
of the frequency on the DC side. Thus, the DC-side current 
contains both a 50 Hz ripple (from supply side) and a 60 Hz 
ripple (from the motor side). The current of the power supply 
side is connected to the DC side through the rectifier; 
therefore, the 60 Hz ripple manifests as the inter-harmonics 
of the power supply side given that 60 Hz is not an integer 
multiple of 50 Hz. 

When a certain amount of inter-harmonics is observed in 
the grid, problems are encountered during SAPF operation.  
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Fig. 3. Bode diagram of the repetitive controller. 

 
The accuracy of frequency-domain methods and of 

reactive instantaneous power theory in inter-harmonic 
detection is inadequate, and test results are not completely 
accurate [21]. After compensation, the grid current is not as 
good as expected in the SAPF with repetitive controllers 
regardless of the adjustments made within the allowable 
range to the repetitive controller parameters. Harmonic 
compensation effect can be improved once SAPF capacity 
increases. However, voltage fluctuates significantly on the 
DC side with the large compensation current generated by the 
inverter. 

B. Influence of Inter-harmonics on the SAPF Repetitive 
Control System 

The accuracy of the SAPF detection system should be 
improved to enhance the compensation effect of the SAPF. In 
addition, the performance of the SAPF compensation 
controller must be improved. Many current repetitive 
controllers are used in compensation. To simplify the analysis 
process, a repetitive controller is given by: 

Nz
zG −−
=

1
1)(RE ,               (1) 

where N = T/Ts; T is the period of the command signal; and 
Ts is the sampling period. The frequency characteristic is 
depicted in Fig. 3. 

Fig. 3 indicates that amplitude gains are infinite and that all 
phases are zero given the fundamental frequency and its 
multiples. These settings meet the integrator requirements; 
therefore, the static error of harmonics can be tracked. 
However, the frequency characteristic of the repetitive 
controller is not ideal for the non-integer multiples of the 
fundamental frequency. Thus, a satisfactory control effect 
cannot be exerted with only a repetitive controller under the 
inter-harmonic environment. This controller should be 
combined with other control methods to realize SAPF 
control.  

The amplitude-frequency curve of the sensitivity function 
of a traditional repetitive controller was determined. The 
conventional repetitive controller suppresses disturbances 
more effectively with a fundamental frequency f = 50 Hz and 
with the multiple frequencies of the integer, as illustrated in  

M
ag
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Frequency(Hz)
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Line 2

 
Fig. 4. Amplitude frequency of the traditional repetitive 
controller. 

 
Fig. 4 line 1. However, disturbance rejection at other 
frequencies is worse than that in the aforementioned case. 
That is, the repetitive controller does not reject disturbance 
effectively given non-integer multiple frequencies. This 
finding is depicted in Fig. 4 line 2. This phenomenon can be 
explained by Bode integral theorem. The control performance 
of the system inevitably deteriorates in another band; thus, 
the band whose performance is declining should be disposed 
of in the signal band. This disposal has little effect on the 
system. 

Therefore, inter-harmonics detection accuracy is inadequate. 
The capability of controllers to compensate for harmonics 
under the inter-harmonics environment worsens. To address 
this problem, finite-dimensional repetitive control is proposed 
to compensate the characterized harmonics and 
inter-harmonics of the grid and to improve the inter-harmonics 
compensation effect of SAPF. 

 

III. PRINCIPLE OF MULTIPLE-PERIOD PARALLEL 
REPETITIVE CONTROL AND STABILITY 

ANALYSIS 
A. Principle of Multiple-period Repetitive Control 

Repetitive controller design is usually applicable only for 
one cycle. That is, a given period of fundamental frequency 
and its integer multiples harmonic frequencies. However, 
repetitive controller performance is not ideal for traditional 
harmonic and inter-harmonics when the control signal 
contains other periodic components and given the 
fundamental that is part of the inter-harmonic component. 
When the control system contains both harmonics and 
inter-harmonics, these systems can be regarded as two 
independent control systems. Both systems can be designed 
separately. 

The function for system transfer as a whole can be 
obtained by: 

)()]()(1[)()( zezGzRzdzur +=− ,      (2) 
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R1 and R2 are the individually designed repetitive 
controllers for harmonics and inter-harmonics, respectively. 
When Q(z) = F(z)I(z), the following equations are derived: 
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Once Equation (6-21) is applied, the following can be 
generated: 
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That is, 
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Sensitivity function is an important indicator of the 

robustness and stability of the control system. As indicated in 
Equation (2), this function is defined as a repetitive control 
transfer function between the input and error for multiple 
periods. That is, 

)()(1
)(

)()()( zGzR
ze

zdzuzS r +=
−

= .     (9) 

The repetitive controller ideal is set as in Equation (5). 
This ideal meets Q(z) = 1 and C(z)G(z) = 1. Let N1 = N2 = N. 
The following can be obtained: 
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(10) 
The main principle of repetitive control is based on the 

error signal of the previous cycle, and the output control 
signal of the next cycle is obtained by the controller. The 
repetitive control system is defined by Equation (2). The 
input control signal may be superimposed on by sine waves 
of different frequencies, which includes the fundamental 
frequency and its harmonics. However, this signal also has 
inter-harmonic components. The MPRC can control all of the 
remaining cycles from the perspective of the entire band 
along with the high-frequency component, which is filtered 
out. When the control signal includes the harmonic 
components of various frequencies, the advantages of MPRC 
are enhanced. However, the control system design is 
complicated. 

 

 R2(z)

d(z)

ur(z) y2(z)+ G(z)
e(z)

d(z)

ur(z)

y1(z)
+ e(z)

 R1(z)
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 R2(z)

 R3(z)

 R1(z)G(z)
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Fig. 5. MPRC system. 

 

B. Principle of Multiple-Period Parallel Repetitive 
Control 

Multiple-period parallel repetitive control (MPPRC) was 
proposed based on the concept of the basis function. A 
repetitive controller is individually designed for each 
frequency; thus, MPPRC is suitable for the limited control of 
harmonic component signals. The advantage of this approach 
is that multiple frequencies are designed in a simple 
controller to reduce MPRC complexity. Individual controllers 
can be designed for inter-harmonics, and inter-harmonic 
control performance can be improved. 

The frequency response of the repetitive control system is 
input u r(k) = cos(ωkT), where T is the sampling time, and 
output y(k) = bn(ωkT+φ). The input—output function can be 
given as the base form of the following: 

)cos(1)( ϕω −= kT
b

kU
n

.          (11) 

)cos()( kTkY ω= .             (12) 
The desired signal was influenced by basis function 

amplitude and phase adjustment. The input basis functions in 
the repetitive control system can generate output basis 
functions. For the repetitive control system with many 
periodic components, the input basis function can be 
expressed as: 

∑
=

=
N

n
nn kUaku

0
)()( .            (13) 

The corresponding output for Equation (13) can be 
obtained on the basis of the input basis functions that 
correspond to each frequency. The MPPRC system is shown 
in Fig. 6. Considering the entire closed-loop control system, 
repetitive controller R(z) is defined as follows: 

)()()()()]()([1)]()(1)][()(1[)]()(1[ 2
212121 zGzRzRzGzRzRzGzRzGzRzGzR +++=++=+ ,         (3)
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Fig. 6. MPPRC. 
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C. Stability Criterion of Small Gain Theorem  
The characteristic polynomial for the MPPRC system 

depicted in Fig. 6 is given as: 
1)()]()()([ 1100 −=+++ zGzrazrazrak NN .  (16) 

The controlled object G(z) is assumed to be the stability 
system. Its characteristic roots are within the unit circle. 
Given the different basis functions rN(z), Equation (16) on 
the left can be combined into a common characteristic 
polynomial. Characteristic polynomial poles are 
combinations of basic function poles. When k = 0, MPPRC 
poles are basis function poles. When z is arbitrarily close to 
one pole pN, the characteristic polynomial basis function aN 
that is included in z-pN items is close to zero. The other basis 
function aM (M≠N) is far from zero. In this case, the 
characteristic polynomial can be written as: 

1)()]()([
)()()()]()([
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
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When k = 0, the first and the third terms of Equation (17) 
constitute an arbitrary function multiplied by zero. Thus, the 
result is zero. The conditions of Equation (17) are dictated by 
the middle term. Basis function aN contains k = 0 and the 
denominator includes z-pN = 0. Equation (17) can then be 
written as: 

1)()( −=zGzrka NN .            (18) 
The various repetitive controllers for MPPRC system are 

independent for each specified period. These controllers are 
individually designed, and their stabilities are independent of 
one another.  

D. Sensitivity Function Analysis  
The sensitivity function can reflect the performance of a 

repetitive control system. Thus, the sensitivity function of the 
MPPRC system was analyzed to verify the control 
performance of this system. Using Equation (16), the  

 

 
Fig. 7. Comparison of the sensitivities of MPRC and MPPRC. 

 
sensitivity function of MPPRC system was obtained as 
follows: 

)()]()([1)()(1)( 21 zGzRzRkzGzRzS ++=+= .  (19) 
Given that R(z) is the traditional repetitive controller and 

that the basis function satisfies Equation (11), substituting 
R(z) into Equation (19) yields the following equation: 

)(]
)(
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)()(95.0[1)(
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zCzQ
zQz

zCzQkzS NN −
+

−
+= . (20) 

Q(z) = 1, N1 = 25, and N2 = 50 are set. The 
amplitude-frequency characteristics of the sensitivity function 
of the control methods with MPRC and MPPRC can be 
calculated separately with Equations (6-41) and (7-10). The 
results are depicted in Fig. 7. The control system displays 
good control performances at 50 and 25 Hz. 

 

IV. BASIS FUNCTION SELECTION AND 
PARAMETER DESIGN 

With reference to Eq. (1), the frequency domain 
characteristics of repetitive controller can be given as: 

TjTe
jG

kk
Tjk k ωω

ω ω sincos1
1

1
1)(

+−
=

−
= − , 

where T is the fundamental component cycle of a periodic 
reference signal. This signal contains the following frequency 
component: 

,2,1,02
== k

T
k

k
πω . 

Given G(jω) = ∞, the repetitive controller experiences 
infinite gain at each harmonic frequency of the periodic 
signal. 

Furthermore, the repetitive controller generates infinite 
poles in the imaginary axis, which are expressed as jkω, k = 0, 
1, 2.... However, only a finite number of poles in the 
low-frequency part can affect control system performance. 
The infinite poles of repetitive controllers are unnecessary for 
steady-state performance. These poles influence the stability 
and transient performance of the system. 

To generate the finite-dimensional repetitive controller that 
has the same effect as G(s), G(s) is written in the form of 
multiple poles multiplied. 
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where kω corresponds to the different period signals. When k 
is a finite integer, G(s) is a finite-dimensional repetitive 
controller. This variable can be used to eliminate the 
fundamental disturbance signal and its limited harmonics. 
When the power grid supplies power to inverters and other 
power electronic devices, 5th and 7th characteristic harmonics 
are mainly generated, along with 1.5th inter-harmonics. Once 
the characteristic harmonics of the power grid are 
compensated, the situation can be improved. 

A. Analysis of Basis Function 
The ideal controller for the signal with a resonance 

frequency similar to the 5th and 7th harmonics may refer to the 
PI controller in controlling the DC in the rotating coordinate 
system and realizing infinite gain for the resonant frequency 
signal in a two-phase stationary coordinate system. The static 
error of the signal is not controlled. Furthermore, phase 
offsets and gains are not generated at other frequencies. In 
general, the transfer function is given as follows:  

22
2)(

ω+
=

s
sKsr i ,               (21) 

where K i is the integral coefficient and ω is the resonant 
frequency. 

However, the frequency characteristic described above is 
observed only in the ideal controller. Thus, this characteristic 
is difficult to realize in practice. First, a resonance controller 
with an infinite gain is difficult to implement in an analog or 
a digital system. The ideal frequency characteristic of the 
controller is displayed in Fig. 8.  

Second, reducing the gain of the basis function at other 
frequencies of the current cannot eliminate the harmonics 
effect caused by voltage. Therefore, the basis function of the 
transfer function is written as: 

22 2
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Fig. 9. Bode diagram of the basis function. 
 
where ωc is the cutoff frequency. 

The frequency characteristic of the basis function is 
exhibited in Fig. 9. 

In this case, controller gain is sufficiently large at the 
resonance frequency and a certain bandwidth is achieved. 
The effect generated by changes in voltage frequency can 
therefore be avoided.  

B. Design of Basis Function Parameters 
The basis function has two control parameters, namely, the 

integral coefficient K i and the cutoff frequency ωc. To 
determine the effect of each parameter on controller 
performance, one parameter remains unchanged, whereas 
another parameter is changed. This process is illustrated in 
Fig. 10.  

First, ωc = 15 is set to obtain the frequency characteristic 
curve with the variation of K i. This variation is depicted in 
Fig. 6. K i can influence system gain, but it does not affect 
system bandwidth. The gain at the resonance frequency 
increases when K i increases.  

K i = 200 is then set to determine the frequency 
characteristic curve with the variation of ωc. Changes in ωc 
affects both system gain and phase. Specifically, gain and 
phase increase with the increase in ωc; however, these factors 
vary only slightly at the resonance frequency.  

In summary, K i = 200 and ωc = 15 are selected as basis 
function parameters. 

 

V. MULTIPLE-PERIOD PARALLEL REPETITIVE 
CONTROL FOR SELECTIVE HARMONIC 

COMPENSATION 

The basis function is designed for the 5th harmonic, and the 
transfer function is expressed as: 

22 )5(2
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ωω
ω
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ss

sKsr
c

ci .           (4) 
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Fig. 10. Frequency responses of the basis function. 
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Fig. 11. Bode diagram of the basis function for the 5th harmonic. 

 
The Bode diagram of the system is shown in Fig. 11. The 

controller performs well given the 5th harmonic. 
The MPPRC structure is depicted in Fig. 12. 
Similarly, designed basis functions are developed for the 

5th, 7th, 11th, and 13th harmonics currents. The system transfer 
function is represented by: 

∑
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The Bode diagram of the system is illustrated in Fig. 13. 
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Fig. 12. MPPRC system. 
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Fig. 13. Bode diagram of the basis function for harmonics. 
 

The controller performs well for the 5th, 7th, 11th, and 13th 
harmonics. The basis function for the inter-harmonics is 
designed in consideration of the situation wherein a grid 
contains 1.5th inter-harmonics. The system transfer function is 
expressed as: 

∑
= ++

=
13,11,7,5,5.1

22 )(2
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n c
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nss
sKsR
ωω

ω .       (6) 

The Bode diagram of the system is presented in Fig. 14. 
The controller performs well given the 1.5th 

inter-harmonics. Nonetheless, a certain bandwidth must be 
achieved to meet the need for inter-harmonics frequency 
variation and to avoid the effect on the fundamental and the 
2nd harmonics. 

 

VI. EXPERIMENT RESULTS 
A. Simulation Results 

Simulation experiments are presented to verify the 
accuracy of the method in terms of selective harmonic current 
control, which is based on the MPRC of the three-phase 
SAPF and on the situation wherein the converter is used as 
the harmonic source. Inverter harmonic sources normally 
generate 1.5th inter-harmonics. When the inter-harmonics  
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Fig. 14. Bode diagram of the basis function for inter-harmonics. 
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Fig. 15. Waveforms of selective harmonic compensation under 
the inter-harmonics environment. (a) Grid voltage waveform. (b) 
Grid current waveform. (c) Grid current waveform after 
compensation. 

 
content is not obvious, the characteristic harmonics of the 
grid can be chosen for compensation. These harmonics 
include the 5th, 7th, and 11th harmonics. In the preceding 
analysis, the post-compensation current after compensation 
can already satisfy the requirement for safe grid operation. 
However, the branch of inter-harmonics compensation must 
increase when inter-harmonics content is evident. 

Fig. 15 shows that when the grid contains inter–harmonics, 
MPRC is used for the 1.5th inter-harmonic and for the 5th and 

7th harmonics. The current waveform of the grid after 
compensation is depicted in Fig. 15(c). The control of 
selective harmonic compensation with MPRC for harmonics 
currents can facilitate effective compensation.  

In summary, grid currents can be compensated effectively 
using the MPRC-based selective harmonic compensation 
system whether or not these currents contain inter-harmonics. 
Moreover, the influence of grid voltage on the system is 
insignificant regardless of variation. When load mutates, the 
system can track the compensation signal of the grid current 
quickly. Therefore, this system exhibits good dynamic 
performance. 

B. Experiment Result  
The characteristics of SAPF selective harmonic 

compensation were verified experimentally on the three-level 
SAPF experimental platform. The performance of the control 
system was validated under different situations, such as 5th 
harmonic compensation and the common compensation of 
the 5th and 7th harmonics. 

First, waveforms are presented in Fig. 16 to verify the 
performance of the control system under 5th harmonic 
compensation. Fig. 16(a) shows the waveforms of the grid 
current before and after compensation. The three curves from 
top to bottom are the DC-side voltage curve, the grid current 
curves before and after compensation, and the SAPF output 
compensation current. The scenario presented in Fig. 16(b) is 
generated when the curve after compensation is amplified. 
The DC-side voltage of SAPF stabilizes, and the distortion 
situation improves after compensation. To determine the 
compensation of the 5th harmonic, the grid current is 
measured before and after compensation. The grid current 
spectra are displayed in Figs 16(c) and 16(d). The 5th 
harmonic is significantly reduced after compensation; thus, 
the designed control system can compensate the current of 
this harmonic effectively. 

We can compensate harmonics and inter-harmonics with 
different branches for the characteristic harmonic 
compensation of the grid using MPRC, as presented above. A 
compensation system was designed for the 5th and 7th 
harmonics to verify the performance of the control system. 
The generated waveform is depicted in Fig. 17. Fig. 17(a) 
shows the comparison of the grid current waveforms before 
and after compensation. The three curves from top to bottom 
are the DC-side voltage curve, the grid current curves, and 
the SAPF output compensation current. The situation 
depicted in Fig. 17(b) is generated when the current after 
compensation is amplified. The DC-side voltage stabilizes, 
and the distortion situation improves after compensation. The 
grid current is detected before and after compensation to 
determine the compensation effect on the 5th and 7th 
harmonics. Furthermore, grid current spectra are illustrated in 
Figs. 17(c) and 17(d). The 5th and 7th harmonics were 
significantly reduced after compensation; thus, the control  
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Fig. 16. Comparison of grid currents before and after 
compensation. (a) Grid current waveform before and after 
compensation. (b) Grid current waveform after compensation. (c) 
Grid current spectrum before compensation. (d) Grid current 
spectrum after compensation. 
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Fig. 17. Comparison of grid currents before and after 
compensation. (a) Grid current waveform before and after 
compensation. (b) Grid current waveform after compensation. (c) 
Grid current spectrum before compensation. (d) Grid current 
spectrum after compensation. 
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system designed for the current of these harmonics is reliable. 

In summary, harmonics content was significantly reduced 
after compensation as a result of selective harmonic 
compensation control with MPRC for both single harmonic 
compensation and for the combination of different harmonics 
compensations. Therefore, the control system designed is 
reliable based on the experimental results. In addition, the 
control performance is ideal, and the compensation effect is 
evident. 

 

VII.  CONCLUSION 
This paper presented a SAPF to compensate 

inter-harmonics and harmonics for situations in which the 
inter-harmonics content of a grid is evident. The principle of 
inter-harmonics generation in the grid was analyzed, and the 
inter-harmonics effect on repetitive controllers was discussed 
with respect to control performance. The traditional repetitive 
controller is not applicable to inter-harmonic compensation. 
Furthermore, the effect of an ideal controller on harmonics 
signals was analyzed from the perspective of the internal 
model principle. The repetitive controller was improved in 
the form of basis functions on the basis of theoretical analysis. 
The finite-dimensional repetitive controller, which is also 
called the MPRC, was designed for the control of multiple 
periodic signals. A selective harmonic compensation system 
was designed with SAPF, which can be used to compensate 
for the harmonics and inter-harmonics of the grid. Finally, 
system control performance was verified by simulation and 
experimental results.  
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APPENDIX 
Parameters of the three-level SAPF: 
Frequency of grid voltage f = 50 Hz; line voltage ea = 180 

V; line inductance of SAPF L = 1.5 mH; DC-side capacitor C 
= 2200 μF; DC bus voltage Udc = 360 V; sampling frequency 
fk = 10 kHz; and load RL = 8 Ω. 
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