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Abstract 

 

The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for 
automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as 
measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain 
vehicular applications, such as idle stop–start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in 
restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this 
paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead–acid battery is proposed to deal 
with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion 
effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified 
through experiments by using an absorbed glass mat valve-regulated lead–acid battery and a battery sensor cable for commercial ISS 
vehicles. 
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I. INTRODUCTION 

In most countries, global warming has become a significant 
issue that requires urgent action in terms of decreasing 
greenhouse gas emissions, particularly in the automotive sector. 
Electric vehicles (EVs), such as battery EVs, hybrid EVs 
(HEVs), and plug-in HEVs, are promising solutions that can 
considerably lower the amount of greenhouse gas emissions 
and achieve better fuel efficiency than conventional vehicles. 
Electric cars will undoubtedly play an increasingly large role in 
many countries in the decades ahead as energy independence 
and environmental concerns intensify. However, EVs are 
estimated to gain only a modest ground up to 2020 [1]. 
Gasoline- and diesel-powered vehicles are improving faster 
than expected and will continue to dominate the global 
landscape. In addition, carmakers are trying to meet future 
emission targets mainly through improvements in internal 

combustion engines (ICEs). Idle start–stop (ISS) systems are 
becoming increasingly prevalent in ICEs because of their 
ability to reduce emissions and fuel consumption in a 
cost-effective manner. An ISS system is an easy and low-cost 
technology that enables an ICE to power off automatically 
when the car is stopped and to restart upon demand. As a result, 
the ICE undergoes far more starting events, and the behavior of 
the ICE during startup becomes more critical. In this kind of 
vehicle, valve-regulated lead–acid (VRLA) batteries are often 
employed because of their maintenance-free characteristics and 
higher resistance to shock and vibrations. Batteries operate 
under intense conditions because of their frequent charge and 
discharge cycles and cranking; therefore, accurately estimating 
the state of charge (SOC) and state of health (SOH) of batteries 
is crucial to avoid failures of restarting the engine after being 
shut down. Moreover, battery state information is essential to 
enhance the efficiency of battery energy utilization, lengthen 
the lifetime of the battery, and prevent permanent damage to 
the battery. 

Several methods of estimating the SOC and SOH of a 
battery have been proposed by using coulomb counting, 
artificial neutron networks (ANNs), fuzzy logic (FL), and 
extended Kalman filters (EKFs) [2]-[10]. The coulomb 
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counting method can be simply implemented by integrating the 
battery current over time [11]. However, the reliability of SOC 
estimation cannot be maintained when errors accumulate over 
the operation time and when the initial value of the SOC is 
wrong. The ANNs and FL approaches can estimate the SOC of 
a battery with an arbitrary initial SOC value. However, these 
methods are relatively expensive to implement and require the 
training data of the battery [12]. The EKF is a popularly 
accepted tool that provides a theoretically well-designed and 
time-proven method to filter the measurements of the system 
input and output to produce an intelligent estimation of the 
dynamic state of a system [13]-[15]. The dual EKF (DEKF) 
algorithm is a combination of two EKFs, in which the SOC is 
estimated by the first EKF, and the capacity is estimated by the 
second EKF [16]. The main advantage of this method is that it 
can provide reliable estimation results while the battery is in 
operation. As a result, the DEKF algorithm is preferred among 
the abovementioned methods. However, because the estimation 
accuracy depends mainly on the adoption of a comprehensive 
and well-parameterized battery model, robust SOC/SOH 
estimation is possible only when the model is accurate enough. 

Although precise modeling of a battery plays an important 
role in estimating SOC/SOH accurately, it is a complicated and 
challenging task because VRLA batteries show nonlinear 
characteristics, and various factors should be considered. For 
example, the parameters of the equivalent circuit model of a 
battery depend mainly on operating conditions, such as the 
SOC of the battery, charge/discharge current, and temperature 
[17]. The hysteresis phenomenon is a history-dependent 
characteristic caused by internal chemical processes that cause 
difficulties in estimating the SOC, particularly when the battery 
state turns over from a partial charge or discharge [18], [19]. In 
addition, the diffusion effect, which has a relatively long time 
constant, has to be considered to improve the estimation 
accuracy. 

In this paper, an accurate SOC/SOH estimation method 
using DEKF for absorbed glass mat (AGM) type VRLA 
batteries is proposed. A practical battery model that considers 
hysteresis and diffusion phenomenon is introduced. The 
hysteresis effect is modeled by calculating the normalized 
integration of the charge throughput during a partial cycle, and 
the diffusion phenomenon is considered by reconstructing the 
open circuit voltage (OCV) decay depending on the rest time. 
The size of the state matrix calculation for the Kalman filter 
operation can be significantly reduced by incorporating the 
diffusion effect into the OCV. In addition, the dependency of 
the battery parameters on various internal and external 
conditions, such as SOC, temperature, and charge/discharge 
current and their combinations, are considered based on pretest 
results from the battery. All the test methods for modeling 
hysteresis, diffusion, and parameter variations are detailed in 
the following sections. The proposed algorithm is implemented 
in a battery sensor cable (BSC) with an ARM7 microprocessor  

 
Fig. 1. Popular model of a lead–acid battery. 

 
and validated through experimental results. 

 

II. PRETEST METHODS FOR MODELING AN AGM 

VRLA BATTERY 

A. Popular Model of a Lead–Acid Battery 

Fig. 1 shows a popular model of a lead–acid battery that 
consists of a voltage source, a series resistor, and two sets of 
parallel resistor–capacitor circuits. In the figure, Eeq represents 
the equilibrium voltage of the battery, and Ri represents the 
resistance of the contacts, the inter cell connections, and the 
electrolyte. Rct and Cdl are the charge-transfer resistor and 
electric double-layer capacitor, respectively, which represent 
the charge transfer reaction; Rd and Cd are the diffusion resistor 
and diffusion capacitor, respectively, which represent the 
diffusion phenomenon caused by the grade of the concentration 
of the electrolyte near the electrode [20]. The phenomenon 
causes a second overvoltage on the electrode potential called 
“diffusion overvoltage.” This model is suitable for describing 
the dynamic behavior of a VRLA battery. However, the model 
is unsuitable for a Kalman filter operation because using the 
model would lead to computational overkill. 

A lithium–ion battery, a simple method that uses a single 
average OCV–SOC relationship, can be employed because 
the hysteresis phenomenon is negligible. Hence, SOC 
estimation can be achieved with high precision without 
considering the hysteresis effect [22]-[24]. However, 
modeling an AGM VRLA battery is not feasible without 
considering the hysteresis phenomenon because a large error 
can result from estimating the OCV of a battery during a 
dynamic operation. In this study, the hysteresis is modeled by 
approximating it with a parallelogram. Then, the hysteresis 
factor is introduced to track the voltage variations caused by 
hysteresis depending on the charge throughput. 

All the parameters of the model vary sensitively depending 
on the SOC, temperature, and charge/discharge current, as 
previously mentioned. Thus, the parameter variations have to 
be modeled carefully. To model the parameter variations, 
comprehensive pretests have to be conducted by using current 
pulse tests. All the pretests required to model an AGM VRLA 
battery are described in the following sections. 

B. Pretests to Develop the Proposed AGM VRLA Battery 
Model 
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Fig. 2. Full cycle test procedure to obtain the OCV–SOC 
relationship of the AGM VRLA battery. 
 

 
Fig. 3. Measured current and voltage waveforms of the AGM 
VRLA battery during the discharge at 25 °C. 
 

In this section, a comprehensive explanation for the 
pretests required to model an AGM VRLA battery is 
described in detail. The following three kinds of pretests must 
be conducted to model the battery:  

1) Full cycle test to derive the relationship between the 
SOC and the OCV and to extract the diffusion 
overvoltage: 

2) Partial cycle test to model the hysteresis loop; and 
3) Variable current pulse test to model the parameter 

variations. 
An AGM VRLA battery (Solite AGM70L – DIN, 12 V, 70 

Ah) is used for the tests, and all the tests are conducted in a 
constant temperature chamber. The battery is connected to a 
bipolar DC power supply (NF BP4610), and a program 
created in LabView 11.0 is used to perform the tests 
automatically. The charge/discharge cycle profile created in 
LabView is transmitted to the external control port of the 
bipolar DC power supply via the D/A converter of the data 
acquisition board (NI PCI DAQ 6154), and the bipolar power 
supply charges and discharges the battery exactly as 
commanded. A sensing circuit for the voltage and current is  

 
Fig. 4. OCV–SOC relationship at each SOC obtained from the 
full cycle test at 25 °C. 
 
used to measure the terminal voltage and the current of the 
battery and the data acquisition board record them. 
1) Full Cycle Test to Derive the Relationship between the 
SOC and the OCV: To derive the OCV–SOC relationship, a 
charge/discharge test that uses variable current pulses is 
performed, as shown in Fig. 2. The magnitude and duration 
of the current pulse are C/20 and 1 h, respectively. Hence, 
each pulse is equivalent to 5% of the actual capacity. Twenty 
of these discharge current pulses are applied to the fully 
charged battery to fully discharge the battery. Then, the 
battery is charged again with the same current pulse until it 
reaches 60% of the SOC. Then, the duration of the current 
pulse is reduced to 0.5 h, and the current pulse is applied to 
the battery until it reaches 90% of the SOC. At this point, the 
battery is fully charged by a constant voltage charge until it 
reaches 100% of the SOC. The relaxation time between each 
pulse is 3 h, thereby ensuring that the measurement of the 
true OCV is possible. Fig. 3 shows the measured voltage and 
current of the battery obtained through the discharge test at 
25 °C. The charge/discharge current and the terminal voltage 
of the battery are recorded at every second in a host computer 
through a data acquisition board. The full cycle test procedure 
is then repeated at -18, 0, and 45 °C The measured terminal 
voltages of the battery at 25 °C after charge and discharge at 
different SOC values are presented using three-dimensional 
plots in Fig. 4. The OCV–SOC curve with a 3 min relaxation 
and a 3 h relaxation can be obtained as the projections of the 
battery voltage at 3 min and 3 h after the charge/discharge 
pulse current are removed. The OCV during charging is 
higher than that during discharging at the same SOC because 
of the hysteresis effect [21]. 

On the basis of the full cycle test results, the measured 
OCV curves at 25 °C with a 3-min relaxation and a 3 h 
relaxation and the difference between them are depicted in 
Fig. 5. Each of the OCV–SOC curves can be modeled by a 
fifth-order polynomial function and represented as follows: 
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(a) 
 

 
 

(b) 
 

Fig. 5. (a) OCV–SOC curve with 3-min and 3-g relaxation at 
25 °C. (b) OCV difference between 3-min and 3-h relaxation 
curves. 

TABLE I 
COEFFICIENTS OF THE POLYNOMIAL EQUATIONS FOR EACH 

OCV–SOC CURVE AT 25 °C 

OCV-SOC a0 a1 a2 a3 a4 a5
 

OCVc3h 11.449 3.279 - 6.783 11.510 -9.719 3.442
OCVc3m 11.486 3.805 - 8.984 16.349 -14.593 5.301
OCVd3h 11.323 3.215 - 6.334 10.827 -9.016 2.853
OCVd3m 11.314 2.565 - 2.889 3.396 -1.915 0.329

 
2 3 4 5

50 1 2 3 4OCV( )SOC a a SOC a SOC a SOC a SOC a SOC      . (1) 

The coefficients of the polynomial equations are listed in 
Table I. The measured curves at -18, 0, and 45°C are also 
modeled with Equ. (1), and the OCV value at a certain 
temperature can be determined by using an interpolation 
technique that can construct new data based on the range of 
the obtained data of the OCV from the full cycle tests [25]. 

The OCV lies between the OCV curve with the 3 min 
relaxation and the 3 h relaxation after the charge transfer 

overvoltage vanishes; thus, it can be modeled by using 
diffusion factor ζ, which can be calculated with time constant 

τd of the Rd–Cd circuit as 

1                           if 180

( ) 180
exp   if 180

rest

rest rest
rest

d

t s

t t
t s





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 

.           (2) 

During the charge, the OCV can be reconstructed by using 
diffusion factor ζ as follows: 

3

3 3

( , ) ( ) ( )

( ) ( ) ( )
c c h d

d c m c h

OCV SOC OCV SOC V SOC

V SOC OCV SOC OCV SOC

  
  

.   (3) 

Thus, during the charging, the OCV can be calculated as 
Equ. (4) depending on the relaxation time, and the OCV can 
also be calculated in the same manner as follows: 

 
(a) 

 
(b) 

 

Fig. 6. Voltage variation after a charge current pulse at 65% of 
SOC at 25 °C. (a) Measured voltage and fitted results with the 
model in Fig. 1. (b) Extracted charge transfer overvoltage and 
diffusion overvoltage. 

 
  3 3( , ) 1 ( ) ( )c c h c mOCV SOC OCV SOC OCV SOC        (4) 

and 
  3 3( , ) 1 ( ) ( )d d h d mOCV SOC OCV SOC OCV SOC     .  (5) 

As mentioned in Section II A, the diffusion overvoltage 
needs to be extracted and merged into the OCV to simplify 
the battery model. Fig. 6(a) shows the terminal voltage 
variation of the battery voltage after the C/20 charge current 
is removed at 65% of the SOC. The voltage decay can be 
divided into two parts by the charge transfer overvoltage and 
the diffusion overvoltage, except for the immediate voltage 
drop, because of resistance Ri. The charge transfer 
overvoltage is caused by Rct-Cdl in the battery model and is 
dominant in the transient voltage in the first 3 min and 
vanishes afterwards. Thus, the voltage decay after 3 min can 
be considered diffusion overvoltage that has a relatively long 
time constant. The terminal voltage of the battery can be 
represented by Equ. (6), and the parameters can be extracted 
simply by using the curve fitting 

0 1 2
1 2

(1 exp( )) (1 exp( ))rest restt t
y y A A

 
      ,     (6) 

where y0 is the dc offset, trest is the relaxation time of the 
battery after charging or discharging, and A₁ and A₂ are the 
coefficients of the first and the second exponential terms, 
respectively. τ₁ and τ₂ represent the time constants of the 
Rct–Cdl and Rd–Cd circuit, respectively. This test is repeated at 
each SOC, and the average value of τ₂ is used to calculate 
diffusion factor ζ in Equ. (2).  

In these results, the extracted charge transfer overvoltage 
and diffusion overvoltage can be drawn as Fig. 6(b), and the 
battery model can be simplified by merging the diffusion 
overvoltage into equilibrium voltage Eeq. Eeq is reconstructed 
to a voltage source, which varies not only with the SOC but  
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Fig. 7. Proposed battery model with the reconstructed OCV. 
 

 
Fig. 8. Partial cycle test procedure for the hysteresis loop 
modeling. 
 
also with the relaxation time, as illustrated in Fig. 7 [26]. 
2) Partial Cycle Test to Model the Hysteresis Loop: 
Obtaining the voltage trajectory when hysteresis occurs is 
necessary because the hysteresis loop can be modeled by a 
parallelogram [17], [19], [21]. The partial cycle test is 
conducted to obtain information about the hysteresis loop. 
The current pulses illustrated in Fig. 8 are used for the partial 
cycle tests. In this case, a current pulse equivalent to 4% of 
the actual capacity of the battery is used for the tests. At first, 
a fully charged battery is rested for 3 h. The battery is 
discharged continuously to 66% of the SOC and charged to 
90% of the SOC by using six current pulses. Then, the battery 
is discharged again to 66% of the SOC with the same current 
pulses, as depicted in Fig. 8. This test is repeated at three 
different SOC ranges to derive the average value of the 
parameters to model the hysteresis with a parallelogram. 

In these results, the hysteresis loop can be modeled with 
the partial cycle test results by a parallelogram, as shown in 
Fig. 9. The actual OCV during charging and discharging lies 
somewhere in between the 3 h relaxation charge and 
discharge curves depending on the charge throughput [18]. 

Thus, the transition of the OCV can be empirically 
reconstructed by introducing a hysteresis model. Hysteresis 
factor α is introduced to model the movement of the OCV 
between the lower boundary curve (3 h relaxation discharge 
curve OCVd3h) and the upper boundary curve (3 h relaxation 
charge curve OCVc3h) during a partial charge/discharge cycle. 
The OCV reconstruction considering the hysteresis effect can 
be performed by  

3

3 3
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OCV SOC OCV SOC V SOC
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.   (7) 

Equ. (7) can be simplified as follows: 

  3 3( , ) 1 ( ) ( )d h c hOCV SOC OCV SOC OCV SOC     (8) 

The empirical equation for hysteresis factor α 
corresponding to the charge throughput can be described by 
Equ. (9), as shown in Fig. 9(a): 

1 2    .     (9) 

Hysteresis factor  varies at a different rate according to 

the charge throughput; thus, the values of ₁ and ₂ must 

be calculated by Equs. (10) and (11), and updated with the 
charge throughput at each time index k  
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. (11) 

For instance, when a battery is being charged, ₁ is 

calculated first until the charge throughput reaches 4%, and 

then ₂ is calculated until the charge throughput reaches 

24%. When the charge throughput exceeds 24%, the 
hysteresis effect disappears, and the OCV follows the 
boundary curve. Similarly, when the battery is being 

discharged, ₁ is decreased to 0 first, and then ₂ is 

decreased. The charge throughput can be calculated by 
.

3600. b

t I
SOC

C


               (12) 

where Cb (Ah) is the capacity of the battery, and Δt is the 

sampling time. The K value, SOC1max, and SOC2max can be 
simply extracted by using least square fitting with the test 
data and a parallelogram, as shown in Fig. 9(a). 

Fig. 9(b) shows three hysteresis test results performed at 
different SOC values, and the results are used to calculate 

hysteresis factor  , which exhibits small differences at each 
SOC value. Table II shows the variation of the K values at 
three different SOC ranges for the partial cycle tests. The 
average value of K can be used to simplify the hysteresis 
voltage calculation because the values of K are almost the 
same regardless of the SOC range. 
3) Variable Current Pulse Tests to Model Parameter 
Variations: DEKF is a popular technique that can provide a 
powerful and intelligent solution for the online state 
estimation of a battery [16]. However, the accuracy of DEKF 
depends significantly on the accuracy of the parameter values 
in the battery model. As previously mentioned, battery 
parameters vary according to the operating conditions of the 
battery, such as the SOC, temperature, and charge/discharge 
current value [27], [28]. Thus, the parameter variations of the 
battery model have to be modeled carefully and taken into 
account for the DEKF operation. To model the parameter 
variations of the battery, variable charge/discharge current 
pulses, which have different amplitudes (C/1, C/2, C/5, C/10, 
C/20, and C/40 [A]) and durations (1, 2, 5, 12, 24, and 51 
[min]), are applied to the battery, as shown in Fig. 10. 
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(a) 

 
(b) 

Fig. 9. (a) Modeling of the hysteresis loop with the partial cycle 
test results by a parallelogram. (b) Partial cycle tests performed 
at three different SOC ranges. 
 

TABLE II 
K VALUES OBTAINED AT THREE DIFFERENT SOC RANGES BY THE 

PARTIAL CYCLE TESTS 

SOC range for the partial cycle tests K 

A–A` (66%–90%) 0.74

B–B` (46%–70%) 0.76

C–C` (26%–50%) 0.75

 

 
Fig. 10. Variable current pulse tests to model the parameter 
variation. 

 
Tests are conducted at each SOC level (10% SOC step 

from 100% to 40%) to obtain information about the 
parameter variations. Thereafter, the tests are repeated at 

different temperatures (-18, 0, 25, and 45 C) to investigate 
the temperature dependency of the battery parameters. After 
all the data are collected, the curve fitting technique is used to 
extract battery parameters, such as Rᵢ, Rct, and Cdl. As a result, 
the parameter variations caused by changes in the SOC, 
temperature, and charge/discharge current value can be 
modeled.  

Fig. 11 shows the variation of charge transfer resistance Rct 
at different temperatures. Rct varies exponentially depending  

 
Fig. 11. Variation of Rct according to the charge/discharge 
current at each temperature. 
 

 
Fig. 12. Variation of Rct depending on the charge/discharge 
current at 25 C fitted by the exponential functions. 
 
on the current values. Fig. 12 shows the variation of Rct 

depending on the charge/discharge current at 25 C, and Rct is 
fitted by the exponential function as  

( ) . Rct

ct ct

n
R Rf I m I

 .          (13) 

The coefficients of Equ. (13), namely, mRct and nRct, are given 
in Table III. 

Fig. 13 shows the variation of Rct depending on the SOC of 
the battery. In this case, the normalized value of Rct with 
respect to its value at SOC = 70% depending on the SOC is 
drawn and fitted by the second-order polynomial equation in 

2( ) . .
ct ct ct ctR R R Rg SOC a SOC b SOC c   .    (14) 

The coefficients of Equ. (14), namely, aRct, bRct, and cRct, 
are given in Table III. 

Fig. 14 shows the variation of Rct depending on 
temperature. In this case, the normalized value of Rct with 

respect to its value at 25 C depending on the temperature is 
drawn and fitted by the exponential function in 
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Fig. 13. Variation of the normalized Rct value with respect to its 
value at 70% SOC depending on the SOC fitted by a 
second-order polynomial function. 
 

 
Fig. 14. Variation of the normalized Rct value with respect to its 
value at 25 C fitted by an exponential function. 
 

TABLE III 
COEFFICIENTS OF EQUATIONS (13), (14), AND (15) 

Function Factors 

fRct(I) 
mRct = 0.05462;  nRct = 0.4762 during discharging 
mRct = 0.21951;  nRct = 0.6242 during charging 

gRct(SOC) aRct = 4.1964e-4; bRct = -0.5312; cRct = 2.26625 

hRct(T) m’Rct = 1.5838; n’Rct = 0.02 

 
' .

( ) ' . Rct

ct ct

n T
R Rh T m e

 .           (15) 

The coefficients of Equ. (15), namely, m’Rct, and n’Rct, are 
given in Table III. 

As investigated in [29], the parameters can be adjusted 
according to the SOC, temperature, and charge/discharge 
current value by using the following: 

( ). ( ). ( )
ct ct ctct R R RR f I g SOC h T .         (16) 

The parameters of the battery model in the DEKF can now 
be updated by using Equ. (16) on a real-time basis, thereby 
maintaining the accuracy of the battery model.   

 

III. STATE ESTIMATION TECHNIQUE OF AN AGM 

VRLA BATTERY BY USING THE DEKF ALGORITHM 

A. DEKF Algorithm for SOC/SOH Estimation 

The SOC indicates the relative level of charge presently 
held by a battery, whereas the SOH refers to the general 
decline in battery performance with respect to usage or aging. 
Therefore, estimating the SOC and SOH of a battery is 
important to predict the remaining useful energy and the 
remaining service life of the battery. In this paper, the DEFK 
approach is used to estimate the SOC and SOH of a battery. 
The DEFK process essentially combines two EKFs that run 
in parallel, where one is the state filter for estimating the SOC, 
and the other is the weighting filter for estimating the 
capacity [16, 30]. At each time interval, the state filter uses 
the priori value of the weight filter and vice versa. The 
step-by-step calculation procedure is summarized as follows. 

The nonlinear state–space model can be represented as  

1 1f( , , ) ,k k k k k k k k    x x u θ w θ θ r    (17) 

and 

g( , , ) , g( , , )k k k k k k k k k k   y x u θ v d x u θ e ,  (18) 

where kx  is the state vector of the battery model, kθ  is the 

time varying battery capacity, ku  is the exogenous input, 

ky  is the system output, and wk , vk , kr , and ke  are 

independent Gaussian noise processes with covariance 

matrices x
kQ , x

kR , k
Q , and k

R , respectively. 

f( , , )   represents a nonlinear transition matrix function, and 

g( , , )    represents a nonlinear measurement matrix function. 

The computing procedure for the DEFK can be 
summarized as follows [16]. 

Step 1: Initializing at k=0. 
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where E[.] is the statistical expectation operator. 
Step 2: Approximating the nonlinear functions. 
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 (20) 

Step 3: Updating the time for each filter. 
State filter: 
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 1 1
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  
 x x u θ              (21) 

 , 1 , 1 1
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x k k x k k k
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Step 4: Updating the measurement for each filter. 
State filter: 

   
1

,

T Tx x x x x
k x k k k k k k


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K Ρ G G Ρ G R     (25) 
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k k k k k k ky      x x K x u θ       (26) 
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Weight filter: 
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k k k k k k ky      θ θ K x u θ       (29) 

 , ,k k k k
 

 
  Ρ I K G Ρ

      
(30) 

B. SOC/SOH Estimation using the DEKF Algorithm 

The state space equation for the proposed battery model in 
Fig. 7 in a discrete form can be represented as  

1
1

, 1 , , ,
, ,

1 0
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Cdl k Cdl k b k dl k
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 

x
(31) 

and 

 ,k b kC     . (32) 

The terminal voltage of the battery model can be 
represented by using a nonlinear function as follows: 

  ,OCV , ,k k k k Cdl k i k kSOC V R I v    y . (33) 

The OCV value at each time index k can be reconstructed 
by using Equs. (4), (5), and (6)  
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. (34) 

Equation (34) can be rewritten in a compact form as  

 
5

,
0

, , i
k k k i k k

i

OCV SOC a SOC 


         (35) 

where 

     
, , , ,, 3 3 3 31 1 1

i k i k i k i ki k k k d m k d h k k c m k c ha a a a a                  . 

While the state equation in Equ. (36), as shown below, 
does not require an approximation, the nonlinear 
measurement function g(.,.) requires an approximation 
because the OCV–SOC relationship is nonlinear: 

1

1 0

0 1k

ct dl

t

R C


 
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 

F .             (36) 

Thus, the Taylor series approximation described in the 
following equations is used for linearization: 
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. 

The partial derivatives are computed at each time step, 
whereas the total derivatives are computed recursively with 
zero as initial values. 
 

IV. EXPERIMENTAL VERIFICATION OF THE 
PROPOSED ALGORITHM 

To verify the validity of the proposed estimation algorithm 
by using the DEKF, the proposed algorithm is tested with an 
AGM VRLA battery. A Solite AGM70L-DIN (12 V, 70 Ah) 
battery is used to verify the proposed method. The algorithm 
is implemented by using C language in the ARM7 TDMI 
microprocessor integrated into the BSC for the ISS EV 
application, as shown in Fig. 15. 

The battery is fully charged up to 100% of the SOC and 
then discharged to 50% of the SOC. Thereafter, the battery is 
charged and discharged repeatedly with different amounts of 
charge, and eventually, charging is stopped at 78% of the 
SOC. In this experiment, coulomb counting is considered the 
reference value of the estimation for the performance 
comparison. 

The DEKF algorithm initially uses the coulomb counting 
method to estimate the SOC value. Then, the error between 
the measured terminal voltage and the estimated terminal 
voltage is used to correct the priori SOC value that is 
calculated by the coulomb counting method in a real-time 
update step. In this way, the DEKF can solve the problem of 
determining the initial SOC and eliminate the accumulated 
error caused by coulomb counting over long-term operation. 
Fifty percent of the SOC is used as an initial value instead of 
100% of the SOC to verify that the DEKF converges to the 
true SOC value with a wrong initial SOC value. As shown in 
Fig. 16, the SOC estimation error at the beginning is 50%. 
After 1.5 h of operation, the SOC error is reduced to less than  
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Fig. 15. Implementation of the proposed algorithm in the 
ARM7TDMI microprocessor of the battery sensor cable. 
 

 
Fig. 16. SOC estimation results and errors of the proposed 
algorithm. 
 

 
Fig. 17. Capacity estimation results with the different initial 
capacity values. 
 
15%, and afterward, it remains less than 5%. The error 
becomes larger when the battery changes its state from 
charged to discharged, and vice versa, because of the strong 

hysteresis effect. 
However, the error in the SOC estimation is still less than 

5% over the entire test period. On the basis of these results, 
the proposed battery model, which includes the hysteresis, 
diffusion effect, and parameter variations, is good enough to 
reproduce the electric behavior accurately to provide reliable 
SOC estimation. 

To guarantee the operation of the DEKF algorithm for 
estimating battery capacity, a pulse current cycle test that 
comprises a sequence of discharge pulses and relaxation, 
followed by a sequence of charge pulses and relaxation, is 
conducted. The terminal voltage and the current of the battery 
are recorded by the host computer and data acquisition board 
every second during the 450 h of the test. The proposed 
algorithm is also coded by LabView and tested with the 
recorded data. Capacity estimation results with a true initial 
value (0.98 Cn = 68.6 Ah) and wrong initial values, which are 
smaller and larger than the true value, are shown in Fig. 17. 
Five different initial capacity values (0.8, 0.9, 1.0, 1.1, and 
1.2 Cn) are used in this test. As shown in Fig. 17, the real 
capacity of the battery can be estimated successfully by the 
proposed algorithm with less than 5% error after 
approximately 300 h in all cases. Results demonstrate the 
performance of the proposed algorithm in predicting the SOH 
of the battery; the proposed algorithm is determined to be 
suitable for ISS EV applications. 

 

V. CONCLUSION 

In this paper, a novel technique for estimating the 
SOC/SOH of AGM VRLA batteries based on the DEKF 
algorithm has been proposed, and its performance has been 
verified by experiments with an AGM VRLA battery. The 
battery model is simplified by reconstructing the OCV, 
considering the diffusion and hysteresis effects of the battery 
for the light computation of the Kalman filter. The parameter 
variations of the battery model according to the SOC, current, 
and temperature have been modeled by using pretest results 
with the battery and applied to the model during operation in 
a real-time basis. The observed error of the SOC and SOH 
estimation is less than 5%. The proposed method can be used 
in any kind of battery management system for vehicle and 
energy storage applications. 
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