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Abstract 

 

This paper presents a new orthogonal signals generator (OSG) with DC Offset rejection for implementing a phase locked loop 
(PLL) in single-phase grid-connected power systems. An adaptive filter (AF) based on the least mean square (LMS) algorithm is 
used to constitute the OSG in this study. The DC offset in the measured grid voltage signal can be significantly rejected in the 
developed OSG technique. This generates two pure orthogonal signals that are free from the DC offset. As a result, the DC offset 
rejection performance of the presented single-phase phase locked loop (SPLL) can be enhanced. A mathematical model of the 
developed OSG and the principle of the adaptive filter based SPLL (AF-SPLL) are presented in detail. Finally, simulation and 
experimental results demonstrate the feasibility of the proposed AF-SPLL.  
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I. INTRODUCTION 

Nowadays, a lot of single-phase power converters such as 
DC/AC converters, UPSs and active power filters are being 
connected to the utility grid. One of the most important features 
of their control strategies is to synchronize the power 
converters with the grid at the point of common coupling (PCC). 
To achieve this goal, grid voltage information such as the 
frequency and phase angle should be obtained in a rapid and 
precise way. At present, the single-phase phase locked loop 
(SPLL) technique is the most widely used method to estimate 
grid voltage information. In addition, the SPLL method can 
also be adopted to monitor the performance of grid-connected 
power systems [1].  

The instant measurement of the grid voltage information in 
single-phase power systems is more difficult than that in 
three-phase balanced power systems where the three phase grid 
voltage vectors can be easily converted into two orthogonal 
variables. However, there is only one phase voltage signal 
available in single-phase systems. In order to mimic the 
three-phase power systems, an orthogonal signals generator 
(OSG) should be used to create an orthogonal signal for the 
single-phase grid voltage. Subsequently, it is possible to use 

existing PLL algorithms in three-phase power systems to 
estimate the grid voltage information in single-phase power 
systems. 

In the past few years, various kinds of OSG techniques have 
been proposed in the literature. In [2] and [3], the orthogonal 
frame was created through the use of an inverse park 
transformation. This method is simple. However, the included 
low-pass filters reduce the synchronizing speed and degrade the 
dynamic performance. As pointed out in [4] and [5], it is 
feasible to use the Hilbert transformer to build the desired 
orthogonal frame. However, the Hilbert transformer suffers 
from instability because it is implemented with derivative 
operations. The transport delay block which introduces a 90 
degrees phase shift was adopted in [6] and [7] to produce the 
orthogonal component. Although it is simple to implement, it 
suffers due to its lack of filtering capability and inaccuracies 
under frequency varying applications. The widely used second 
order generalized integrator (SOGI) generates the orthogonal 
signal with a band-pass filter and effectively attenuate the high 
order harmonic components [8]. It is worth mentioning that the 
SOGI is capable of filtering the input sinusoidal signal without 
introducing a phase delay. The all-pass filter method in [9] can 
obtain the orthogonal signal in a similar way but without 
causing attenuation on the high order harmonics. These two 
methods can produce an accurate orthogonal frame through 
feedback of the estimated grid frequency. 

  As an alternative, this paper presents a new OSG technique 
with a least mean square (LMS) algorithm based adaptive filter 
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(AF). In the literature, adaptive filter technology has found 
application in PLL systems [10]-[13]. Since the adaptive filter 
has superior filtering capability, by letting the grid voltage 
signal pass through an adaptive filter before it is connected to 
the PLL, the resulting PLL systems can exhibit enhanced noise 
and harmonics rejection performance. However, the adaptive 
filter has seldom been used as an OSG. The AF based SPLL 
(referred to as OAF-SPLL in this paper) shown in Fig. 1 was 
analyzed in [12] and [13], where it has been shown to have 
some harmonic rejection capability due to the adopted AF. The 
AF was only used for its filtering characteristic. There is no 
evidence that the AF operates as an OSG in the OAF-SPLL. In 
this study, a mathematical model of the LMS based AF when 
imposed on a given sinusoidal signal is derived first. Then the 
developed OSG is introduced. It should be mentioned that the 
developed OSG exhibits DC offset rejection by integrating a 
simple integral loop. This is different from DC offset 
elimination loops based on the error between the input signal 
and the output in-phase signal proposed in [14] and [15]. 
Subsequently, the new AF-SPLL is proposed.   
 This paper is organized as follows. Section II gives a 
description of the conventional SOGI-SPLL. The LMS based 
AF and the developed OSG are illustrated in Section III. Then, 
the proposed AF-SPLL is presented in Section IV. 
Experimental results are given in Section V. Finally, some 
conclusions are given in Section VI.  

 

II. THE CONVENTIONAL SOGI-SPLL 

A. Review of the SOGI-SPLL 

Fig. 2 describes the widely used SOGI-SPLL. As shown in 
Fig. 2, a virtual orthogonal coordinate consisting of the 
in-phase signal V  and the quadrature signal V  is created by 

using the SOGI. Then, αβ-pPLL is adopted for implementing 
the phase locked function based on the produced in-phase and 
quadrature components. It should be noted that the SOGI is 
dependent of the estimated frequency of αβ-pPLL to make it 
frequency adaptive. The gain K  of the SOGI affects the 
dynamic response speed. It also has a great influence on the 
filtering performance of the SOGI. As stated in [8], a decrease 
of K results in a heavy filtering. However, at the same time the 
dynamic response becomes slower.  
Assume that the grid voltage is of the following form: 

 sin( )  g gm gV V t                             (1) 

where gmV  represents the grid voltage amplitude, g  denotes 

the grid frequency,   is the initial grid voltage phase angle, 

and   is the instantaneous phase angle. From Fig. 2, the 

transfer functions for generating the in-phase and orthogonal 
signals in the SOGI can be expressed as: 
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Fig. 1. The block diagram of the original adaptive filter based 
SPLL (OAF-SPLL). 
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Fig. 2. The SOGI based αβ-pPLL (SOGI-SPLL). 
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It follows from (2) that ( )W s  is a band-pass filter, while 

( )W s  is a low-pass filter. Thus, the generated α-axis and 

β-axis voltages in the SOGI can be written as: 
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Therefore, it follows from Fig. 2 that the input signal to the PI 
regulator of αβ-pPLL can be obtained by: 
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where ˆ
g is the estimated grid voltage phase angle. In normal 

operations, it follows from (5) that the first part goes to zero in 

the steady state as ˆ
g approaches  . At the same time, the  

estimated grid frequency converges to the grid frequency. It 
should be mentioned that a DC offset may exist in the measured 
grid voltage due to the nonlinearity of the voltage sensors, the 
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AD conversion process, and the thermal drift of the analogue 
components. The DC offset can propagate into the produced 
orthogonal signal  V  because of the low-pass characteristic of 

( )W s . This can cause low-frequency oscillations in the grid 

voltage estimation loops.  
 

III. PROPOSED ORTHOGONAL SIGNALS GENERATOR 

A. LMS Based Adaptive Filter 

Fig. 3 depicts a block diagram of the proposed AF-SPLL, 
where the least mean square (LMS) algorithm is used to adjust 

the adaptive weights 1( )w n  and 2 ( )w n  of the AF by 

minimizing the square of the error between the input signal and 
the output signal of the AF. The updating law of the weights 

1( )w n  and 2 ( )w n  based on the LMS algorithm can be 

expressed as: 
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where   is the step size parameter of the AF. For simplicity, 

the gain parameter DCK  of the DC offset elimination loop is 

set to zero when analyzing the AF. Its differential model  can be 
derived from (6) as: 
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where /c sK T , the sampling period is sT , the input signal  

( ) sin( )   g gm gd t V V t , and the input vector of the AF 

is: 
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It follows from (6) and (7) that the AF can be expressed with 
the state-space model as: 

2

1

2
2

2
1

( ) ( ) ( )

2 ( ) 2 ( ) ( ) 2 ( )
( )

2 ( )2 ( ) ( ) 2 ( )

c c c

cc c

w
W A t W B t d t

w

K i t K i t i t K i tw
d t

w K i tK i t i t K i t

   

  

 
   
 

     
     
       




 (8) 

According to [16] and [17], the AF can be guaranteed to 
converge if the following condition is met: 
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It should be pointed out that formula (9) is a sufficient 
criterion for the convergence of the AF. In practice, (9) can be  
ensured by choosing 0 1  .  

As shown in (8), the presented AF is a linear time-variant 
system. According to the characteristics of linear time-variant 

systems, the instantaneous weight matrix ( )W t can be written 

as: 

0
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Usually, it is difficult to calculate the analytical formulation 

of the state transition matrix ( ,0)t in time-variant systems. 

Fortunately, as illustrated in [18], the transition matrix 

( ,0)t of time-variant systems can be expressed as (11) if 

( )A t  is of the form t te Be   where  and B  are constant 

matrices. 
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From (8), the state matrix ( )A t of the AF can be rewritten as: 
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where: 
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Therefore, with any method for calculating the exponential 

matrix, it is possible to calculate the transition matrix ( ,0)t as 

follows: 
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In which, a  and b  are the solutions of (15). 

 2 22 0cs K s                                  (15) 

Without a loss of generality, a  and b are assuming to be (16) 

if cK  . 
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It should be noted that a  and b  should be in complex form if 

cK  . Considering the transitivity of ( ,0)t , the following 

can be obtained: 

 ( ,0) ( , ) ( ,0)t t                           (17) 

Thus: 
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By the substitution of (18) into (10), the weight matrix 

( )W t can be obtained as: 
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Therefore, an accurate weight matrix ( )W t in time domain can 

be derived as: 
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where 1 g    , 2 g     and the phase angle 

difference   satisfies: 
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and the exponential decaying components in (20) are of the 
following form: 
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In the steady state, where the estimated angular frequency   

converges to the grid frequency g , it can be observed from 

(21) that the phase angle difference   becomes zero. Without 

considering the negligible exponential decaying components in 

(20), the steady-state weights 1 ( )Sw t and 2 ( )Sw t  can be 

achieved as: 
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Since the phase error ( )  becomes zero in the steady state, 

the steady-state weights and the output ( )Sy t  of the AF can be 

given by: 
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It can be seen from (23) that the output of the AF is identical 

to the input signal, and that 1w  and 2w  are the amplitude of 

input signal and zero in the steady state, respectively. When 

2w  converges to zero, the input to the DC offset elimination 

loop also becomes zero in Fig. 3. As a result, the DC offset 
elimination loop has no influence on the steady-state 
performance of the presented AF-SPLL in this scenario. 
Assuming that the input signal of the AF is a pure DC signal as 

( ) d t d , the steady-state weights 1 ( )Sw t and 2 ( )Sw t  can be 

achieved from (20) as: 
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Thus, the output of the DC offset elimination loop can be given 
by: 
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       (25) 

It is clear that the output signal DCV  increases until it 

remains constant at the value of a pure input DC signal d . 
In other words, the DC offset elimination loop can be used 
to remove the DC offset of the input signal before it entering 
into the AF. 

B. Proposed Orthogonal Signals Generator 

In this study, the developed OSG method is implemented as 
follows: 

 
1 2

2 1

( ) ( )

( ) ( )

  

  

 

 

V w t i w t i

V w t i w t i
                        (26) 

Considering that the grid voltage contains a DC offset as 

sin( )   g gm gV V t d , according to (22) and (24), the 

instantaneous in-phase signal V  and the orthogonal signal V  

can be rewritten as: 
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              (27) 

As mentioned above, the phase angle difference   becomes 

zero once the estimated grid frequency   approaches the grid 

frequency g  in the steady state. Consequently, in the steady 

state, (27) can be represented by: 
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cos( )
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

 

 

 

  
gm g

gm g

V V t

V V t
                  (28) 

It can be found from (28) that the in-phase signal V  

matches well with the input signal, and that the orthogonal 

signal V  lags behind the in-phase signal V  by exactly 90 

degrees. In addition, both the in-phase and orthogonal signals 
are free from DC offset. Namely, the proposed OSG technique 
can generate a virtual orthogonal coordinate from the 
single-phase grid voltage while significantly rejecting the DC 
offset. 

  

IV. PROPOSED AF-SPLL 

A. Principle Description  

Fig. 3 depicts a block diagram of the proposed AF-SPLL 
approach, which is comprised of an AF based OSG and a 
αβ-pPLL block. The AF based OSG produces in-phase and 
orthogonal components from the available grid voltage signal 
while maintaining the DC offset rejection performance. Based 
on the created orthogonal signals, both the grid voltage 
frequency and the phase angle are estimated in the αβ-pPLL  

TABLE I 
SPECIFICATIONS OF SPLLS 

SPLLs 
 
Parameters 

 
SOGI-SPLL 

 
AF-SPLL

K 1.55 N/A 

pK 0.493 0.493 

iK 19 19 

  N/A 0.025 

f 314 rad/s 314 rad/s 

DCK  N/A 15 
 

block.  

B. αβ-pPLL 

It can be seen from Fig. 3 that the input signal pe  to the PI 

unit of αβ-pPLL is determined by: 

 0 ( )pe V i V i                             (29) 

Thus, substitution of (27) into (29) yields: 
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      (30) 

It follows from (30) that the error pe converges to zero only 

when the estimated grid frequency   and phase angle 

( )t   approach the actual grid frequency g  and phase 

angle ( )gt  , respectively.  

 

V. EXPERIMENTAL DISCUSSION 

To evaluate the presented AF-SPLL, several simulations 
have been implemented and the simulation results are discussed 
below. In addition, the AF-SPLL is compared with the 
conventional SOGI-SPLL under different conditions. The key 
parameters of the SOGI-SPLL and AF-SPLL are listed in Table 
I. The gain K  of the SOGI is set to 1.55 for the fastest dynamic 
response, and the step size parameter   is set to 0.025. In order 

to make a comparison under the same conditions, the 
proportional and integral parameters of the PI unit in both the 
SOGI-SPLL and the AF-SPLL are chosen to be the same. They 
are 0.493 and 19 to achieve a settling time of 0.06 s and a 
unitary damping factor [8]. 

In order to further validate the feasibility of the AF-SPLL, 
several experiments were implemented. The experimental 
setup, as shown in Fig. 4, has one integrated circuit board. The 
developed AF-SPLL was implemented on a DSP 
(TMS320F28335). For the purpose of comparison, a 
SOGI-SPLL was also tested on the same DSP. All of the  
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Fig. 4. Experimental setup.  
 

 
 

(a) AF-SPLL. 
 

 
 

(b) SOGI-SPLL. 
 

Fig. 5.  Grid frequency jumps from 50Hz to 52Hz. 
 

realizations operated at a 10 kHz sampling frequency.  

A. Dynamic Response to a 2 Hz Frequency Jump  

To test the dynamic performance of the proposed AF-SPLL 
to grid frequency jumps, a 2 Hz frequency jump was triggered 
as depicted in Fig. 5. It can be seen from Fig. 5(a) that the 
AF-SPLL tracks the changed grid frequency in about 30ms, 
that and the SOGI-SPLL spends nearly the same amount of 
time to finish the grid frequency estimation as shown in Fig. 
5(b).  

B. Dynamic Response to a 30 Degree Phase Jump 

Then, comparative tests were carried out to test the dynamic  

 
(a) AF-SPLL. 

 

 
(b) SOGI-SPLL. 

Fig. 6.  Grid voltage phase jumps to 30 degrees from zero. 
 

performance of the AF-SPLL and SOGI-SPLL with respect to 
grid voltage phase jumps. A 30 degree phase jump was 
stimulated, and the corresponding results are depicted in Fig. 6. 
As shown in Fig. 6(a) and Fig. 6(b), both the AF-SPLL and 
SOGI-SPLL can obtain accurate grid frequency and phase in 
about 40 ms.  

C. Dynamic Response to a Grid Voltage Sag 

To evaluate the dynamic response of the AF-SPLL and 
SOGI-SPLL to a grid voltage sag, a 30V drop in the grid 
voltage amplitude was tested, and the experimental results are 
illustrated in Fig. 7. It can be seen that the estimated grid 
frequency converges to the steady-state value and that the phase 
angle estimation error becomes zero in about 40ms in both the 
AF-SPLL and the SOGI-SPLL. In fact, the AF-SPLL and 
SOGI-SPLL give nearly the same response to a grid voltage 
sag. 

D. DC Offset Rejection 

10V DC offset is artificially added into the grid voltage signal 
to investigate the DC offset rejection performance of AF-SPLL 
and SOGI-PLL, and the according results are described in Fig. 
8. It can be seen from Fig. 8(a) that both the frequency error and 
the phase error converge to zero after about 60 ms in AF-PLL. 
However, it is shown in Fig. 8(b) that SOGI-PLL suffers from 
periodical oscillations in both the grid frequency and phase 
estimations after the DC offset is added. 
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(a) AF-SPLL. 
 

 
 

(b) SOGI-SPLL. 
 

Fig. 7. Grid voltage amplitude drops to 260V from 311V.  
 

 
 

(a) AF-SPLL. 
 

Grid Voltage(500V/div)

Frequency(5Hz/div)

Frequency error(5Hz/div)

Phase error(25°/div)

50Hz

25ms/div

 
(b)   SOGI-SPLL. 

Fig. 8. 10 V DC offset is added into the measured grid voltage.  

Frequency(5Hz/div)

Frequency error(5Hz/div)

Phase error(25°/div)

50Hz

Grid Voltage(500V/div)

10ms/div

 
 

 

(a) AF-SPLL. 
 
 

 
 

 

(b) SOGI-SPLL. 
 
 

Fig. 9. 5% total harmonics are added. 

 
 

E. Harmonics Rejection 

To compare the performance of harmonic suppression, a 
total 5% harmonic (3.2% 5rd and 1.8% 7th) was added to the 
measured grid voltage, and the corresponding results are 
described in Fig. 9. It follows from Fig. 9 that both the 
AF-SPLL and the SOGI-SPLL cannot totally reject the added 
harmonic, and that the estimated grid frequency and phase 
contain distortions. It should be mentioned that other SPLLs 
with enhanced harmonic rejection capability should be used 
instead of the AF-SPLL or the SOGI-SPLL in seriously 
distorted applications, or more work should be done to improve 
the harmonic rejection performance of the AF-SPLL and the 
SOGI-SPLL.  

F. Summary Sheet  

Table II shows a comparison of the AP-PLL and the 
SOGI-PLL in the different conditions shown above. From this 
comparison it is known that the proposed AF-PLL has similar 
performance under most general grid voltage distortions. In 
addition, the conventional SOGI-PLL has a little better 
performance under the condition of a voltage sag. However, it 
cannot reject the DC offset in the grid voltage. The proposed 
OSG based AF shows its feasibility in PLL applications. 
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TABLE II 
COMPARISON OF SPLLS 

Dynamic 
cases 

Setting times 
and errors 

AF-SPLL SOGI-SPLL

Frequency 
(2Hz) 

(ms)setT  31 30 

( )m


 4.7 5.3 

( )mf Hz  2.0 2.0 

Phase 

(30
。

)
 

(ms)setT  30 30 

( )m


 30 30 

( )mf Hz  4.2 4.5 

Voltage Sag 
(20%) 

(ms)setT  38 30 

( )m


 7.0 9.0 

( )mf Hz  1.8 1.7 

DC Offset 
(10V)

 

(ms)setT  60 - 

( )m


 5.8 - 

( )mf Hz  1.2 - 

Harmonics 
(5%) 

(ms)setT  32 30 

( )m


 6.2 5.6 

( )mf Hz  2.2 2.5 

 

VI. CONCLUSIONS 

A new AF based OSG structure is proposed in this paper. It is 
discussed in detail together with the working principle of the 
newly built AF-SPLL. Firstly, a mathematical model of the 
LMS based AF is derived in the time domain. Subsequently, the 
proposed OSG technique and a DC offset elimination strategy 
are introduced. Finally, the AF-SPLL is tested on a laboratory 
experimental setup and is compared with the conventional 
SOGI-SPLL. All of the experimental results demonstrate the 
feasibility of both the presented OSG technique and the 
AF-SPLL.  
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