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Abstract 

 

This paper presents an adaptive observer-based approach to estimate voltage parameters, including frequency, amplitude, and 
phase angle, for single-phase power systems. In contrast to most existing estimation methods of grid voltage parameters, in this 
study, grid voltage is treated as a dynamic system related to an unknown grid frequency. Based on adaptive observer theory, a 
full-order adaptive observer is proposed to estimate voltage parameters. A Lyapunov function-based argument is employed to 
ensure that the proposed estimation method of voltage parameters has zero steady-state error, even when frequency varies or 
phase angle jumps significantly. Meanwhile, a reduced-order adaptive observer is designed as the simplified version of the 
proposed full-order observer. Compared with the frequency-adaptive virtual flux estimation, the proposed adaptive observers 
exhibit better dynamic response to track the actual grid voltage frequency, amplitude, and phase angle. Simulations and 
experiments have been conducted to validate the effectiveness of the proposed observers. 
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I. INTRODUCTION 

Grid voltage parameters, such as frequency, amplitude, and 
phase angle, are important information for many power system 
applications. In recent years, various estimation methods of 
grid voltage parameters have been proposed, such as discrete 
Fourier transform [1], [2], fast Fourier transform [3], Kalman 
filtering [4], zero-crossing detection [5], [6], least squares 
estimation [7], adaptive estimation [8], artificial neural 
networks [9], adaptive notch filter [10]–[13], complex vector 
filter [14], and phase-locked loop (PLL) [15], [16]. 

Among the aforementioned parameter estimation schemes, 
PLL has the capacity to achieve instantaneous tracking of 
single-phase grid voltage parameters. In addition, PLL has 
been the focus of considerable attention because of its more 
simple structure and good performance. In contrast to 
three-phase power systems, single-phase power systems have 

less information for generating quadrature signal waveforms, 
which are essential in PLL systems. A simple orthogonal signal 
generator (OSG), which is a transfer delay block, was designed 
in [17] to create a quadrature signal. However, when grid 
frequency deviates from its nominal value, generating an exact 
quadrature signal in the OSG is impossible, which introduces 
steady-state errors in frequency estimation [18]. Another OSG, 
the Hilbert transform-based OSG proposed in [19], shows good 
performance under optimum grid conditions. However, under 
frequency jump conditions, its performance degrades in terms 
of steady-state errors. Another solution for grid 
synchronization, known as second-order generalized integrator 
phase-locked loop (SOGI-PLL), was developed in [20]. Based 
on the second-order generalized integrator (SOGI), SOGI-PLL 
has a simple implementation and minor computing issues. 
However, SOGI-PLL suffers from a slow dynamic response 
because of the presence of filters. Several papers, such as [21] 
and [22], developed new SOGI-PLL structures combined with 
the adaptive observer method to address frequency jump faults. 
Thus, a better estimation performance is achieved when 
frequency varies. However, to linearize the output of the phase 
detector (PD), these methods, similar to most existing PLLs, 
are based on the assumption that the phase angle estimation 
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error is arbitrarily small [18]. However, when this assumption 
is unsatisfied, such as a significant phase angle jump, the 
performance of these PLLs will deteriorate. Moreover, the 
introduction of the SOGI filter causes a dynamic response loss 
in these estimation methods. 

In this study, grid voltage is considered a dynamic system 
related to an unknown parameter, that is, grid frequency. Based 
on adaptive theory [23] and observer theory [24], a full-order 
adaptive observer is proposed to estimate grid voltage 
parameters. To simplify the proposed full-order observer, a 
reduced-order adaptive observer is developed by following a 
similar philosophy. Strict Lyapunov-based arguments ensure 
that the addressed observers are capable of tracking the actual 
grid voltage parameters with zero steady-state error. 

In contrast to most existing estimation methods, the 
proposed adaptive observer method does not rely on PLL, 
which eliminates the possibility of the previously described 
assumption in the linearization of PD output that requires the 
phase angle estimation error to be arbitrarily small. 
Consequently, the proposed method can also estimate voltage 
parameters with zero steady-state error when a significant 
phase angle jump occurs. Moreover, compared with the 
frequency-adaptive virtual flux estimation proposed in [21], the 
proposed method exhibits better dynamic response and smaller 
overshoot. 

This paper is organized as follows: A full-order adaptive 
observer-based parameter estimation of the grid voltage is 
proposed in Section II. As a simplified version of the full-order 
adaptive observer, a reduced-order adaptive observer-based 
grid voltage parameter estimation is proposed in Section III. 
MATLAB-based simulation results and dSPACE-based 
experimental results are provided in Sections IV and V, 
respectively. Finally, the conclusion is presented in Section VI. 

 

II. FULL-ORDER ADAPTIVE OBSERVER-BASED 
GRID VOLTAGE PARAMETER ESTIMATION 

 

In a single-phase grid, grid voltage can be expressed as 
follows: 

sin( ) sing gv V t V     ,          (1) 

where Vg is the amplitude of the grid voltage, ω is the angular 
frequency of the grid voltage, and ψ   [0,2π) is the phase 
angle. Based on the relationship between the grid voltage and 
its derivative, the model of the grid voltage can be represented 
by the following expressions: 
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where: 
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According to system (2), the following relation exists: 
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As a result, system (2) is observable. In this study, the grid 
voltage parameter estimation problem is reformulated as an 
adaptive estimation problem for the dynamic system (2) related 
to an unknown grid fundamental frequency ω. In the following 
section, an adaptive observer is proposed to estimate state x and 
fundamental frequency ω for system (2) with zero steady-state 
error. Based on the estimation of system state x and 
fundamental frequency ω, grid voltage parameters, including 
amplitude Vg, frequency ω, and phase angle ψ, are observed 
without steady-state estimation errors using Equation (21). 

Initially, system (2) is rewritten as follows: 

0
x Ax y

y Cx


 

   
 




,                (4) 

where: 

0 1

0 0
A

 
  
 

. 

For the observable dynamic system (4), the full-order 
observer can be designed as follows: 

0

0
늿 늿( ), (0)

ˆ
x Ax y L Cx y x x



 
     
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where x̂  is the estimation of the system state x and ̂  is the 

estimation of the unknown parameter θ. Given that the linear 
system (4) is observable, matrix L exists to ensure that 

cA A LC   is Hurwitz, which implies that P = PT > 0 and 

Q = QT > 0 such that: 

0T
c cA P PA Q    .              (6) 

To facilitate development, the estimation errors can be 
defined as follows: 
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According to (4), (5), and (7), the estimation error dynamics 
can be expressed as follows: 
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Using the positive definite matrix P, we design the 
Lyapunov function as follows: 

21
( , ) TV x x Px 


     ,              (9) 
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where parameter γ > 0. The derivative of V( x , ) can be 

expressed as follows: 
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Given that θ is a constant, ˆ    can be deduced. The 

adaptive update law can be designed as follows: 
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According to system (2), the following relation exists: 

1x y  and 2 1x x y   , 

which leads to the following expression: 
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State variable l and its dynamics are introduced as follows: 

 1 2 0

0
ˆ ˆ , (0)

1
l x y x P y l l

 
    

 
 .    (13) 

Substituting (13) into (12) and taking the integral of both 
sides of (12) will yield the following expression: 
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Specifically, by choosing: 
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the adaptive update law can be simplified as follows: 
2 0ˆ 0
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To prove observer stability and analyze the steady-state 
accuracy of the estimation, substituting (13) and (15) into the 
derivative of the Lyapunov function (10) can produce the 
following expression: 

( , ) 0TV x x Qx       .            (16) 

Therefore, the closed-loop system formed by (8), (13), and 
(15) is globally stable. In the remainder of this section, the 
steady-state estimation error will be analyzed through 

LaSalle’s invariance principle [23]. Initially, we examine 
LaSalle’s invariance principle by setting: 

( , ) 0TV x x Qx       .  

Then, the following equation can be derived: 
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Substituting (17) into the closed-loop system formed by (8), 
(13), and (15) will yield: 
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Thus, 

0   .                    (19) 

Finally, the closed-loop system formed by (8), (13), and 

(15) is asymptotically stable through LaSalle’s invariance 
principle, which implies that the full-order adaptive observer 
will yield: 
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In other words, the estimation of system state x and 
unknown parameter θ has zero steady-state error. With the aid 

of state estimation x̂  and unknown parameter estimation ̂ , 

voltage frequency ω, voltage amplitude Vg, and voltage phase 
angle ψ can be estimated as follows: 

2
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Clearly, with property (20) and the relationships expressed 
(21), the proposed full-order adaptive observer in this section 
can track the actual grid voltage parameters, including 
frequency, amplitude, and phase angle, with zero steady-state 
error. 

In summary, the proposed full-order adaptive observer 
formed by (5), (13), (15), and (21) can be clearly described in 
Fig. 1. In the figure, the thick lines represent the vector 
variables, whereas the thin lines represent the scalar variables. 

 

III. REDUCED-ORDER ADAPTIVE 
OBSERVER-BASED GRID VOLTAGE 

PARAMETER ESTIMATION 

The full-order adaptive observer proposed in the previous 
section is three-dimensional. A two-dimensional reduced-order 
adaptive observer is developed in this section to simplify 
parameter estimation. With the aid of linear reduced-order 
observer theory, the linear reduced-order observer for system 
(4) is designed as follows: 
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Fig. 1. Structure of the full-order adaptive observer. 

 

where zR is the state variable, 2x̂  is the estimation of the 

system state 2x , and the parameter α > 0. The estimation 

error 2x  is introduced as follows: 

2 2 2ˆx x x  .                  (23) 

According to the linear system (4) and the reduced-order 
observer (22), the estimation error dynamics can be deduced as 
follows: 
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Then, we construct the following Lyapunov function: 
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where parameter β > 0. Based on (24) and (25), the following 
relation can be deduced: 
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With a philosophy similar to that in the previous section, the 
adaptive update law can be developed as follows: 
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According to system (2), the following relation exists: 
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Thus, the following expression can be rendered: 
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By substituting (29) into (28) and taking the integral of both 
sides of (28), the following equation can be derived: 
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Fig. 2. Structure of the reduced-order adaptive observer. 

 
Specifically, by choosing: 

2ˆ(0) (0) (0)
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y
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the adaptive update law can be deduced as follows: 
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Based on (26), (29), and (31), the derivative of 2( , )U x   

can be expressed as follows: 
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2 2( , ) 0U x x      .            (32) 

As a result, the closed-loop system formed by (24), (29), and 
(31) is globally stable. LaSalle’s invariance principle is applied 
to prove the asymptotic stability of the closed-loop system and 
to analyze the steady-state estimation error. By examining: 

2
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and (31) will lead to: 
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which implies that 0  . Through LaSalle’s invariance 

principle, the closed-loop system formed by (24), (29), and (31) 
is asymptotically stable. In other words, the reduced-order 
adaptive observer achieves the following expression: 
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Correspondingly, the grid voltage parameters can be 
estimated as follows: 
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Evidently, based on (35) and (36), the reduced-order 
adaptive observer proposed in this section can estimate grid 
voltage parameters with zero steady-state error. 

In summary, the reduced-order adaptive observer proposed 
in this section has four parts, namely, (22), (29), (31), and (36). 
Fig. 2 illustrates its structure. The reduced-order adaptive 
observer is clearly a simpler version of the full-order adaptive 
observer. 
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IV. SIMULATION RESULTS 

The performance of the adaptive observer method for 
estimating single-phase grid voltage parameters is verified in 
this section. Through MATLAB/SIMULINK, the simulation 
results are provided in continuous time mode. 

A. Full-order Adaptive Observer 

Based on Fig. 1, the proposed full-order adaptive observer is 
implemented in MATLAB. The parameters of the observer are 
as follows: 

26 9
T

r rL        and 20  , 

where the nominal grid frequency ωr = 2π × 60 rad/s. 
Performance is analyzed under three different grid voltage fault 
cases, namely, frequency jump, amplitude jump, and phase 
angle jump. 
1) Frequency Jump: Grid voltage is initially formed by 

110 2 sin(120 )t  V. With a frequency jump of 6 Hz at 5 s, 

the grid voltage is changed to 110 2 sin(132 )t  V. Fig. 3 

shows the parameter estimation results of the full-order 
adaptive observer, including (from top to bottom) the grid 

voltage v, estimated angular frequency ̂ , estimated 

amplitude 
ĝV , and estimated phase angle ̂ . After a relatively 

short transient, the estimated signals (solid lines) return to the 
actual parameters of the grid voltage (dotted lines) with zero 
steady-state error. For instance, the estimated frequency tracks 
the actual voltage frequency to 132π rad/s after one and a half 
cycles. With voltage disturbance on the frequency jump, a 
small transient disturbance also occurs at the estimated 
amplitude, which is finally fixed to the actual amplitude of the 
voltage. Moreover, the estimated phase angle perfectly follows 
the actual voltage phase angle after an almost imperceptible 
transient. 
2) Amplitude Jump: Grid voltage is initially formed by 

110 2 sin(120 )t  V. With an amplitude jump of 11 2  V 

at 5 s, the grid voltage is changed to 99 2 sin(120 )t  V. Fig. 

4 shows the parameter estimation results of the full-order 
adaptive observer. Under this amplitude jump condition, the 
voltage estimated parameters (solid lines) track the actual 
voltage parameters (dotted lines) without steady-state error 
after a small transient. For instance, the estimated frequency 
has a small transient disturbance and returns to the desired 
actual frequency (120π rad/s) because of amplitude disturbance. 
Correspondingly, after a quarter cycle transient process, the 

estimated amplitude is fixed to the actual amplitude ( 99 2  V). 

Moreover, the amplitude jump has an imperceptible effect on 
phase angle estimation. 
3) Phase Angle Jump: Grid voltage is initially formed by 

110 2 sin(120 )t  V. With a phase angle jump of π/6 rad at 5 

s, the grid voltage is changed to 110 2 sin(120 /6)t   V.  

 
Fig. 3. Performance of the full-order adaptive observer with 
frequency jump. From top to bottom: estimated frequency ̂ , 

amplitude ĝV , and phase angle ̂ . 
 

 
Fig. 4. Performance of the full-order adaptive observer with 
amplitude jump. From top to bottom: estimated frequency ̂ , 

amplitude ĝV , and phase angle ̂ . 
 

 
Fig. 5. Performance of the full-order adaptive observer with 
phase angle jump. From top to bottom: estimated frequency ̂ , 

amplitude ĝV , and phase angle ̂ . 

 

Fig. 5 shows the parameter estimation results of the full-order 
adaptive observer. Under this phase angle jump condition, the 
voltage estimated parameters (solid lines) track the actual 
voltage parameters (dotted lines) with zero steady-state error 
after a small transient. For instance, the estimated frequency 
and amplitude have small transient disturbances and return to 
the desired actual frequency of 120π rad/s and amplitude of 

110 2  V, respectively. After a small transient period, the 
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estimated phase angle has zero steady-state error to track the 
actual phase angle. 

B. Reduced-order Adaptive Observer 

Based on Fig. 2, the reduced-order adaptive observer is 
established in MATLAB/SIMULINK with the following 
parameters: 

1.6 r   and 10  , 

where the nominal grid frequency ωr = 2π × 60 rad/s. 
Performance is also verified under three different grid voltage 
fault conditions, namely, frequency jump, amplitude jump, and 
phase angle jump. 
1) Frequency Jump: With frequency jump of 6 Hz at 5 s, the 

grid voltage is changed from 110 2 sin(120 )t  V to 

110 2 sin(132 )t  V. Fig. 6 shows the parameter estimation 

results of the reduced-order adaptive observer. Under this grid 
fault condition, the voltage estimated parameters (solid lines), 
including frequency, amplitude, and phase angle, have zero 
steady-state error to track the actual voltage parameters (dotted 
lines). For instance, after one and a half cycles, the estimated 
frequency is fixed to the actual voltage frequency (132π rad/s). 
The estimated amplitude has a small transient disturbance and 
ultimately returns to the desired actual amplitude because of 
the disturbance in the frequency jump. Moreover, the 
frequency jump almost has no effect on phase angle tracking. 

2) Amplitude Jump: With an amplitude jump of 11 2  V at 

5 s, the grid voltage is changed from 110 2 sin(120 )t  V to 

99 2 sin(120 )t  V. Fig. 7 shows the parameter estimation 

results of the reduced-order adaptive observer. Under this grid 
fault condition, after a short transient process, the voltage 
estimated parameters (solid lines) return to the actual voltage 
parameters (dotted lines) with zero steady-state error. For 
instance, under the amplitude jump disturbance, the estimated 
frequency returns to 120π rad/s after one and a half cycles. 
Correspondingly, the estimated amplitude tracks the actual 
voltage amplitude after a small transient. Moreover, the 
estimated phase angle follows the actual phase angle well after 
an almost imperceptible transient. 
3) Phase Angle Jump: With a phase angle jump of π/6 rad at 5 

s, the grid voltage is changed from 110 2 sin(120πt) V to 

110 2 sin(120πt + π/6) V. Fig. 8 shows the parameter 
estimation results of the reduced-order adaptive observer. After 
a short transient process, the estimated parameters (solid lines) 
track the actual voltage parameters (dotted lines) perfectly. For 
instance, after a short transient process, the estimated 
frequency and amplitude return to the desired actual frequency 

(120π rad/s) and amplitude (110 2  V), respectively. 

Moreover, phase angle estimation exhibits a rapid dynamic 
response and good steady-state accuracy. 
In summary, based on the simulation results of the proposed 

 

 
Fig. 6. Performance of the reduced-order adaptive observer with 
frequency jump. From top to bottom: estimated frequency ̂ , 

amplitude ĝV , and phase angle ̂ . 
 

 
Fig. 7. Performance of the reduced-order adaptive observer with 
amplitude jump. From top to bottom: estimated frequency ̂ , 

amplitude ĝV , and phase angle ̂ . 
 

 

Fig. 8. Performance of the reduced-order adaptive observer with 
phase angle jump. From top to bottom: estimated frequency ̂ , 

amplitude ĝV , and phase angle ̂ . 

 

full-order adaptive observer and reduced-order adaptive 
observer, the proposed adaptive estimation scheme has zero 
steady-state error to estimate grid voltage parameters when the 
frequency, amplitude, or phase angle of the grid voltage 
significantly changes. Moreover, this estimation method 
exhibits good dynamic performance in terms of setting time 
and overshoot. 
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Fig. 9. Structure of the experimental system. 

 

V. EXPERIMENTAL RESULTS 

The full-order adaptive observer and reduced-order adaptive 
observer proposed in this study are discretized with the step of 
100 µs to implement the adaptive observer method on dSPACE 
using the discrete tool of MATLAB. Then, we rebuild the 
discrete observers into real-time codes and download the codes 
into dSPACE SCALEXIO. The control frequency of dSPACE 
is set as 10 kHz. Input signal acquisition and estimation result 
display use 14 bit ADCs/DACs, DS2655M1. The structure of 
the experimental system is shown in Fig. 9. 

The selected parameters of the proposed adaptive observers 
are the same as that in the simulation cases (provided in the 
previous section). The experimental results based on the 
frequency-adaptive virtual flux estimation [21] are compared 
simultaneously. Fig. 10 shows the grid voltage, estimated 
frequency, amplitude, and phase angle. In the figure, the purple 
line represents the actual grid voltage; the blue, green, and red 
lines represent the parameter estimations based on the 
frequency-adaptive virtual flux estimation, full-order adaptive 
observer, and reduced-order adaptive observer, respectively. 

The grid voltage is initially expressed as 110 2(sin120 )t  

V. With frequency jump, amplitude jump, and phase angle 
jump applied simultaneously, the grid voltage changes to 

99 2 sin(132 + / 6)t   V. The proposed voltage parameter 

observers are observed to have zero steady-state estimation 
error. Compared with the frequency-adaptive virtual flux 
estimation, the adaptive observers proposed in this study 
exhibit better dynamic response and smaller overshoot. More 
quantitative comparisons are shown in Table I. 

 

VI. CONCLUSION 

In this study, adaptive observers, including full-order and 
reduced-order adaptive observers, are proposed for the 
estimation of single-phase grid voltage parameters. Compared 
with most existing estimation methods of grid voltage 
parameters, in this study, grid voltage is regarded as a dynamic 
system related to an unknown parameter, that is, grid frequency. 
Moreover, strict Lyapunov function-based arguments ensure 
that parameter estimation of the grid voltage has zero 
steady-state error, even when frequency, amplitude, and/or 
phase angle jumps occur. An important feature of this method 
is that these proposed adaptive observers do not rely on 
linearization of the PD output, which eliminates the assumption 

 
(a) Grid voltage (vertical scale. 50 V/div; horizontal scale, 20 

ms/div). 

 
(b) Frequency estimation—purple line: actual grid voltage 

parameter; blue line: frequency-adaptive virtual flux 
estimation; green line: full-order adaptive observer; red line: 

reduced-order adaptive observer (vertical scale, 2π × 2 
rad·s−1/div; horizontal scale, 20 ms/div). 

 
(c) Amplitude estimation—purple line: actual grid voltage 

parameter; blue line: frequency-adaptive virtual flux 
estimation; green line: full-order adaptive observer; red line: 

reduced-order adaptive observer (vertical scale, 20 V/div; 
horizontal scale, 20 ms/div). 

 
(d) Phase angle estimation—purple line: actual grid voltage 

parameter; blue line: frequency-adaptive virtual flux 
estimation; green line: full-order adaptive observer; red line: 
reduced-order adaptive observer (vertical scale, 1 rad/div; 
horizontal scale, 10 ms/div). 
 

Fig. 10. Experimental performance comparison of the 
frequency-adaptive virtual flux estimation, the full-order 
adaptive observer, and the reduced-order adaptive observer. 
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TABLE I 
PERFORMANCE COMPARISON OF THE FREQUENCY-ADAPTIVE VIRTUAL FLUX ESTIMATION, THE PROPOSED FULL-ORDER ADAPTIVE OBSERVER, 

AND THE REDUCED-ORDER ADAPTIVE OBSERVER 

  
Frequency-adaptive virtual 

flux estimation 
Full-order adaptive observer 

Reduced-order adaptive 
observer 

Frequency estimation 
2% setting time 47 ms 13 ms 5 ms 

Overshoot 6.67% 3.38% 1.59% 

Amplitude estimation 
2% setting time 53 ms 9 ms 8 ms 

Overshoot 25.7% 4.38% 4.99% 

Phase angle estimation 
2% setting time 92 ms 12 ms 9 ms 

Overshoot 20% 6.49% 3.82% 

 

on the limitation of the initial phase angle estimation error. 
This feature ensures zero steady-state estimation error in the 
adaptive observers when the phase angle of the grid voltage 
jumps significantly. Moreover, from comparative experiments, 
the proposed adaptive observers exhibit better estimation 
performance in terms of dynamic response and overshoot. 
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