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Abstract 
 

Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type 
of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area 
of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development 
of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and 
classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal 
component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then 
extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault 
classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated 
with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization 
(CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. 
Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with 
fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.  
 
Key words: Cuckoo search optimization (CSO), Discrete wavelet transform (DWT), Evolutionary particle swarm optimization 
(EPSO), Fault detection, Fuzzy logic system, Optimization techniques, Principal component analysis (PCA), Relevance vector 
machine (RVM) 
 

I. INTRODUCTION 

Fault detection and classification are significant in the 
diagnostic system field to improve system reliability and 
safety. A circuit is referred as a faulty circuit when it exhibits 
continuous unexpected behavior. Two types of failure modes 
occur, namely, catastrophic and parametric faults. 
Catastrophic fault is the sudden and total failure of a system 
in which recovery is impossible. Parametric failure only 
shifts the device parameters and may manifest during stress 
testing. Different fault diagnosis approaches exist, such as 
approximation approach, artificial intelligence (AI) technique, 
fault dictionary approach, fault verification approach, and 
parameter identification (ID) approach. These approaches can 
be categorized into two types namely, simulation before 
testing and simulation after testing. 

Different constraints are essential in formulating a fault 
dictionary. Such constraints are extracted from the 
operational circuit during simulation after testing. 

A fault tolerance system consists of three major 
components, namely, component redundancy, fault detection 
and isolation system, and reconfiguration system. Fault 
diagnosis is a combination of fault detection and isolation. 
Primary detection of failure prevents damages and enhances 
fault tolerance. 

Failure detection can guarantee the reliability and safety of 
a circuit. Faults can be categorized into several types, such as 
phase-to-ground fault, phase-to-phase fault, phase-phase-to 
ground fault, and three-phase fault. Other faults in electricity 
are unimportant but are still considered for power system 
operation. These faults are open-circuit, inter-turn, and other 
faults. Among all types of failure in variable-speed AC drives 
in the industry, 38% are due to power device faults. 
Maximum inverters use insulated-gate bipolar transistors 
(IGBTs) as power devices because of their maximum voltage 
and current ratings, although they cause faults because of the 
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excess electrical pressure with many applications.  

In this study, novel fault detection and classification 
techniques are developed, and optimization techniques are 
analyzed. DWT and PCA are incorporated to extract features 
from a three-phase inverter circuit. This scheme incorporates 
most of the processes that have to be conducted during the 
training phase. The database constructed in this step is called 
a fault dictionary. Fuzzy logic (FL) system and relevance 
vector machine (RVM) are utilized for efficient fault 
classification. Optimization techniques, such as evolutionary 
particle swarm optimization (EPSO) and cuckoo search 
optimization (CSO), are applied to validate the proposed fault 
detection system with classification methods. Four 
combinations of EPSO and CSO with RVM and fuzzy are 
analyzed to identify the resultant optimization with 
classification techniques. The novel contribution of this study 
is that it integrates optimization with classification techniques 
to detect faults in a three-phase single-inverter circuit. 

The remainder of this paper is organized as follows. 
Section 2 summarizes the related work in fault detection and 
classification techniques. Section 3 describes the proposed 
system. Section 4 presents the performance analysis, and 
Section 5 provides the conclusion and directions for future 
work. 

 

II. RELATED WORK 

Several methods of fault detection in power systems have 
been proposed in recent years. Examples of these techniques 
are bridge circuit method [1], surface wave [2, 3], Petrinets 
[4], wavelet transform approach [5–10], neural network 
approach [11–13], AI [14], graph methodology [15], real time 
[16], and statistical methodology. Singh et al. presented a 
method for software fault prediction at the design phase. 
Various software metrics related to module-level faults were 
utilized to predict fault-prone modules [17]. Medoued et al. 
classified induction machine faults based on time–frequency 
representation and particle swarm optimization (PSO). 
Feature vector size was optimized with the PSO algorithm. A 
classifier was designed based on artificial neural network 
[18]. Kong et al. formulated fault-tolerant control for a five-
phase induction motor under a single-phase open circuit. 
Control methods were developed based on the third harmonic 
current injection [19]. 

Upendar et al. proposed a statistical-decision-tree-based 
fault classification methodology for the protection of power 
transmission lines. The algorithm was based on the wavelet 
transform of three-phase current, which was measured with 
classification and regression tree methods. Wavelet transform 
generated hidden information about the fault situation. The 
hidden information was provided as the input for the 
classification and regression tree algorithms and was used to 
categorize fault types [20]. Tang et al. formulated a support 

vector machine (SVM) based on chaos PSO. A multi-fault 
classification system was established and proven to be 
functional for the fault diagnosis of rotating machines [21]. 
Weiqiang et al. designed a generalized approach for 
intelligent fault detection and recovery in power electronic 
systems. Fault detection was based on the correlation 
between basic measurements and faults. For each power 
electronic component, open- and short-circuit faults were 
injected, and diverse voltage was observed. Intelligent control 
was utilized to engage redundant components to fault 
recovery [22]. Ding et al. presented fault detection and 
isolation filters for three-phase AC–DC electronic systems 
[23].  

Chitaliya et al. proposed a feature extraction and 
classification process based on wavelet PCA and neural 
networks. DWT was applied to generate features from 
individual wavelet sub-bands. The wavelet coefficients were 
utilized as a feature vector for regular processing. PCA was 
used to reduce the dimensionality of the feature vector. The 
feature vector was utilized for classification based on 
Euclidean distance and neural network classifier [24]. 
Chitaliya et al. also introduced an efficient method for face 
feature extraction and recognition based on contour let 
transforms and PCA. Each face was decomposed based on 
contour let transform. The contour let coefficients at diverse 
scales and angles were observed for low and high frequencies. 
The frequency coefficients were used as a feature vector [25]. 
Estima et al. formulated an algorithm for real-time multiple-
open-circuit fault diagnosis in voltage-fed pulse-width-
modulated motor drives by reference current errors [26]. 
Ghimire et al. modeled an integrated and data-driven fault 
detection and diagnosis scheme for an automotive electric 
power-steering system [27]. 
   Haddad et al. introduced a fault detection and classification 
scheme for permanent magnet synchronous machines. This 
scheme was based on fast Fourier transform (FFT) and linear 
discriminant analysis. Three types of faults, namely, 
demagnetization faults, inter-turn short circuit, and static 
eccentricity, were discussed. The machine was controlled 
based on three-phase current sources. The harmonics of stator 
voltage were used as features for the classifier of fault 
detection. 2D finite element analysis was applied to model 
the machine under strong and faulty conditions. Linear 
discriminant analysis was applied as a classification method, 
and the frequency spectrum was analyzed based on FFT [28]. 
Hu et al. presented a fault classification method for inverters. 
This scheme was based on hybrid SVMs and discrete 
orthogonal wavelet transform. A multi-class classification 
approach was utilized, which was based on the Huffman tree 
structure. Hybrid SVM was applied to the features to 
determine the fault type [29]. Jin et al. formulated a wavelet-
based feature extraction approach based on probabilistic 
finite-state automata for pattern classification [30]. 
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Liu et al. proposed a multi-fault classification method 

based on wavelet SVM with the PSO algorithm. The 
algorithms were implemented to analyze the vibration signals 
from rolling element bearings. The rolling elements were 
preprocessed through empirical model decomposition. A 
distance evaluation technique was applied to reduce 
redundant information and utilize the necessary features for 
the classification process [31]. Luo et al. proposed a support 
vector data description scheme of fuzzy classification for 
analog circuit fault diagnosis. Fractional wavelet transform 
was applied to extract fault features. Fault samples were 
preprocessed by implementing the fractional kernel matrix. 
Two methods were utilized with the genetic algorithm (GA) 
to obtain the optimal fractional order. A threshold value was 
also used to reduce the fuzzy region. Based on relative 
distance, fuzzy faults were diagnosed in fuzzy sets [32]. 
Malathi et al. formulated a model for fault classification in a 
series-compensated transmission line. This framework was 
based on multi-class SVM and multi-class extreme learning 
machine. These techniques use the information retrieved 
from wavelet decomposition for the current signal fault [33]. 
Masrur et al. designed a machine-learning technique to 
diagnose fault multi-lebets. A neural network system was 
also designed to detect and isolate usual types of failures, 
such as short circuits, post short circuits, single-switch open-
circuit faults, and unknown faults [34].  

Ramkumar et al. proposed a GA-based selective harmonic 
elimination method for the optimization and critical 
evaluation of a three-level inverter. The method provided 
control over the harmonic spectrum, which was created by a 
power electronic converter. This scheme was based on the 
usage of AI algorithms, such as GA, for single-phase unipolar 
waveform [35]. Debnath et al. introduced harmonic 
elimination in a multi-level inverter. This method was based 
on the usage of GA and PSO algorithm. The total harmonic 
distortion for output voltage was reduced by maintaining the 
selected harmonics within allowable limits [36]. Upendar et 
al. presented a PSO-based approach of harmonic elimination 
and voltage control for pulse-width-modulated inverters. PSO 
was utilized to estimate switching pulses based on nonlinear 
equations. The output waveform was analyzed by Fourier 
transform. A single, three-phase inverter was established with 
respect to harmonic distortion by removing unwanted low-
harmonic components. The designated feature performance 
was evaluated by the corresponding waveform [37]. Debnath 
et al. formulated a CSO algorithm for harmonic elimination 
in multi-level inverters [38]. 

 

III. FAULT DETECTION AND CLASSIFICATION 
WITH OPTIMIZATION METHODOLOGY 

This section describes the fault detection in a three-phase 
inverter by applying several approaches. In existing systems, 
amplitude is obtained from phases, and absolute values are 

checked with the threshold values. If the absolute value is 
above the threshold, then the system has no faults. Existing 
approaches do not effectively identify faults. Several data-
mining techniques are applied to efficiently detect faults. 
Fault detection is an important part of the diagnostic system 
to guarantee the reliability and safety of the system under 
study. In this study, the fault analysis system deals with the 
prediction of faulty components/regions from the features of 
phase voltage and current. Prediction of faulty components 
allows for the identification of output signal variation to 
prevent damage to the load connected at the end of the 
inverter. This process provides safety to the connected load 
and precaution for the faulty components in the inverter 
system. 

A circuit that exhibits continuous unexpected behavior is 
referred to as a faulty circuit. IGBT failures can be classified 
into intermittent gate-misfiring, open-circuit, and short-circuit 
faults. Each phase of the three-phase inverter circuit is 
analyzed based on wavelet transform. The standard deviation 
(SD) of the transform coefficients is fed as input to the 
classifier to identify the fault type. The main objectives of 
this study are listed below.  

 

 To extract fault features from the phase voltage output of 
the inverter (the PCA– DWT method is accordingly 
proposed) 

 To construct a fault dictionary using the extracted 
features 

 To classify the inverter faults using a RVM classifier 

 To optimize the classification accuracy using the CSO 
technique 

 To validate the accuracy of the proposed CSO–RVM 
with existing techniques  

 

 

The overall flow of the proposed fault detection and 
classification mechanism is depicted in Fig.2.  

A. Inverter Model 

Fig. 1 shows the basic structure of the three-phase voltage-
source inverter. The inverter is utilized to convert DC to AC. 
The pulse-width modulation (PWM) technique is applied to 
control switches. The inverter comprises IGBT switches and 
has three phases, in which each phase has two switches. The 
intersective method is utilized to generate the PWM 
waveform. In this method, a triangle waveform is used as the 
reference signal. A comparator is required to compare the 
modulation waveform and reference signal. Inverter power 
faults are subdivided into short and open circuits. In the open-
circuit fault condition, the IGBT remains off state. In most 
cases, short circuit causes overcurrent detected by the 
standard protection system, and shutdown is carried out. An 
open-circuit fault occurs because of the lifting of bonding 
wires caused by thermal cycling. Open-circuit faults do not 
cause system shutdown but degrade the system performance.  
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Fig. 1. Schematic of the three-phase inverter circuit.
 

 
 

Fig. 2. Structure of the proposed fault detection and classification 
method. 

 
The fault diagnosis method can be classified into the 

following steps. 
1. Formulation of circuit under test (CUT) system, that is, a 

three-phase single-level inverter in this instance  
2. Application of DWT and PCA for various fault 

conditions and non-faulty conditions 
3. Construction of a fault dictionary by extracting the SD of 

the transform coefficients 
4. Identification of fault type based on CUT parameters in 

FL and RVM classifiers 

B. Feature Extraction Based on DWT and PCA 

The feature extraction process is proposed to improve the 
difference in the current change between transistor-base-drive 
short- and open-circuit faults and other faults, such as 
intermittent misfiring across inverter switching devices, load 
disturbance, and single line-to-ground at the machine 
terminal. DWT and PCA are combined to perform the feature 
extraction process. 
1) DWT: The DWT method is utilized to decompose an 
input signal of interest into a set of elementary waveforms 
called wavelets. Signals can be investigated by examining the 
wavelet coefficients. One of the key advantages of the 
wavelets is their capability to perform local analysis. A 
wavelet generally analyzes a localized area of a large signal. 
Compared with traditional signal-processing techniques, 
wavelets can produce optimal results in the areas of pattern 
analysis, breakdown point judgment, and discontinuity 
examination. Analysis and synthesis of the original signal 
also can be performed with reduced consumption time. The 
signals are analyzed by using filters at different frequencies 
and scales. Low- and high-pass filters are used in the analysis 
of low and high-frequency signals, respectively.  

Wavelet transform is a method to analyze signals. DWT 
is a distinct case of wavelet transform that provides a dense 
representation of a signal that can be efficiently calculated. 
DWT is described as follows:  

/ 2( , ) ( )2 (2 )j j

j k
X j k x k n k              (1)             

Where ( )x k denotes the input signal from three phases and 

( )t  is a time function with energy and decay termed 

mother wavelet. 
   The extracted wavelet coefficients provide a compact 
depiction that represents the energy distribution of the signal 
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TABLE I 

FAULT DICTIONARY 
 

S.NO Fault ID Faulty Component 
1 Fault in Phase 1 T1 open 
2 Fault in Phase 1 T2 open 
3 Fault in Phase 2 T3 open 
4 Fault in Phase 2 T4 open 
5 Fault in Phase 3 T5 open 
6 Fault in Phase 3 T6 open 
7 Fault in Phase 1 Line 1 open 
8 Fault in Phase 2 Line 2 open 
9 Fault in Phase 3 Line 3 open 
10 Fault in Phase 1 T1 and T2 open 
11 Fault in Phase 2 T3 and T4 open 
12 Fault in Phase 3 T5 and T6 open 
13 Fault in Phases 1 and 2 Lines 1 and 2 open 
14 Fault in Phases 1 and 3 Lines 1 and 3 open 
15 Fault in Phases 2 and 3 Lines 2 and 3 open 
16 Fault in Phases 1, 2, and 3 Lines 1, 2, and 3 open 
17 Fault in Phases 1 and 2 T1 and T3 open 
18 Fault in Phases 2 and 3 T5 and T3 open 
19 Fault in Phases 1 and 3 T1 and T5 open 
20 Fault in Phases 1 and 2 T2 and T4 open 
21 Fault in Phases 2 and 3 T4 and T6 open 
22 Fault in Phases 1 and 3 T6 and T2 open 
23 Fault in Phases 1, 2, and 3 Transistors open 
24 Nil Fault No fault 
25 Fault in Phases 1, 2, and 3 Transistors and line open

  
based on time and frequency. 
2) PCA: The optimal projection vectors of PCA, x1,…xd, 
are used to extract features. The mean value of the “X” input 
obtained from DWT is computed using the following 
equation.  

1

1 N

i

i

M X
N 

           (2) 

After the computation of the mean value, the difference 
between the input vector and the mean value is estimated 
using the following equation.  

  D X M           (3) 
Covariance matrix “C” is generated for the mean difference 
data using the following equation.  

1

1
( )

1

N
T

i i

i

C D D
N 

 

           (4) 

From the covariance matrix, the Eigen vector is calculated as  
 

( )
vec

V Eig C             (5) 

The Eigen matrix is constructed based on the following 
equation,  

 ( )
Mat

S Eig C              (6) 

By using the Eigen matrix, the projected features from PCA 
are obtained as follows:  

                          Yk = SXk,        k=1, 2…, d.                         (7) 
The family of projected feature vectors Y1…Yd is then 
obtained. These vectors are called principal component  
vectors of the sample.  

C. Fault Dictionary Generation 

The fault dictionary is defined as a database of faults 
utilized by simulators to determine the fault coverage. When 
a diagnostic system attempts to diagnose problems, it exploits 
the fault dictionary to analyze the types of faults. The SDs 
retrieved for all the three phases for different test faults are 
presented in Table I.  
This table can be utilized as a fault dictionary during the 
classifier stage of diagnosis. The fault dictionary is then used 
for fault diagnosis by FL and RVM. In the table, T1 refers to 
IGBT1, T2 refers to IGBT2, and so on. Phase 1 denotes Line 1, 
Phase 2 denotes Line 2, and so on.  

D. Fault Classification based on FL System and RVM 

1) FL System: After generating the standardized peak 
values of the wavelet coefficients of fault signals, the FL 
system is used to categorize the fault types. The FL system is 
well suited to uncertain and fault classification problems. The 
fuzzy if–then rules for the class G pattern classification 
problem with k attributes can be stated as rule Mi. If x1 is Ai1 

and xk is Aik, then class Gi, i = 1, 2…K, where x = (x1… xk) 
k-dimensional pattern vector Aij is the antecedent linguistic 
value and K is the number of fuzzy if–then rules. The 

compatibility grade ( )
i

x  of the fuzzy if–then rules Pi is 

provided by 

1 1 2 2
( ) min{ ( ), ( ), ..., ( )}

i i i in n
x x x x             (8) 

where, 

( )
ij j

x  is the membership function of the antecedent 

linguistic value Aij. 
The feature vector database is expressed as follows:  

( ) ( )
high high low

high

t
t

T
          (9) 

where, 

low  and high  are the desired higher and lower bounds of 

the inertia weight. highT is the maximum allowed number of 

iterations after the algorithms complete the process. A time-
dependent linearly decreasing value of inertia weight is 
usually considered to solve the global optimization problem.  
2) RVM: Assuming that p (m|x) is Gaussian N (m | y(x), 

2 ), the likelihood can be defined as 

2 2 / 2 2

2

1
( | , ) (2 ) exp[ || || ]

2

N
p m g m g 



 
     (10) 
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where,  

g denotes the growth of the weight value utilized to learn 

the relationship between the training and testing datasets,  
m represents the training feature points,  

2 denotes the variance of the Gaussian kernel, 

   is the feature matrix with 
1

( , )
ba b a

F x x


   

    
1

( , )
b a

F x x


represents the features of the input  
1

( , )
b a

x x


 

b
x represents the row of the input matrix,  

a
x  represents the columns of the input matrix including 

the label column, and 

1a
x


represents the columns of the input matrix excluding 

the label column. 
An explicit zero mean Gaussian prior probability 

distribution across the weight is constrained as  
1

0
( | ) ( | 0, )

N

i ii
p m N w  


      (11) 

where,   
 represents a parameter in the Gaussian distribution 

function.  

When applying the features 
1

( , )
b a

F x x


to the Gaussian 

kernel, the classification operation is performed.  
3) CSO: Cuckoo search is an optimization algorithm that 
yields better solutions than existing techniques. A recent 
study [40] has shown that CSO is highly suitable for large-
scale problems. Cuckoo search is also a reliable approach for 
embedded system design and design optimization [41]. A 
cuckoo egg denotes a new solution, and each host bird egg in 
a nest denotes a solution. The objective of this optimization is 
to replace the worst solution with a possibly better solution. 
Fig. 3 illustrates the overall process of the CSO algorithm, 
and the step-by-step procedure is explained below. 

Three idealized rules are defined for CSO [42]. 
1. At one time, a cuckoo can lay only one egg and leaves it 

in a randomly selected nest. 
2. The algorithm carries over the better nest with the best-

quality solutions (eggs) to the next generations. 
3. A host bird can determine a foreign egg (solution) with 

Pa= [0, 1] probability. 
The steps involved in the CSO algorithm is described 

below. 
 

CSO Algorithm 

4. Step 1:  Initialization of the population 
5. Step 2: Cuckoo generation 
6. Step 3:  Replacement 
7. Step 4:  New nest generation 
8. Step 5:  Termination 

 

The first step in the CSO algorithm is the initialization of 
the population number. The user generally provides the  

 
 

Fig. 3. CSO algorithm. 
 

starting range for the population number. However, if the 
user does not provide the starting range, the CSO algorithm 
assumes a default value and initializes the population number. 
The second step in the CSO algorithm is cuckoo generation. 
The fixation of the initial population is based on the objective 
function. The proposed CSO algorithm exploits the Levy 
flight and generates the cuckoo randomly. 

The quality of the generated solution is estimated using the 
objective function and the load flow. The third and fourth 
steps of the CSO algorithm are replacement and new nest
 generation, respectively. A new nest is randomly selected 
from the “n” number of population to replace the already 
existing solution with a new one. If the quality of the new 
solution is better than that of the existing solution, then the 
existing solution is replaced with the new solution. Based on 
the probability value (Pa), the low-quality nest is abandoned, 
and a new nest is built. The last step in the CSO algorithm is 
termination. After satisfying the stopping criteria, the 
iteration can be stopped, and the results of the CSO can be 
obtained.  

The steps involved in the proposed RVM–CSO are 
elaborated below. 

 

Algorithm for the Proposed RVM–CSO 
Input:  Feature matrix 
Output:  Updated cuckoo center that has the best fitness 
value 
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Step 1: Cuckoo initialization with the training features and 
the best selection point (BSP) 
Step 2: Fitness value initialization using Equ. (12)  
Step 3: Extraction of random center position of cuckoo using 
Equ. (13) 
Step 4: Estimation of maximum weight using Equ. (14)  
Step 5: Cuckoo egg generation using Equ. (15) 
Step 6: Computation of the number of eggs laid in the 
allocated area 
Step 7: Computation of cuckoo radius using Equ. (16) 
Step 8: Updating of the cuckoo radius using Equ. (17) 
Step 9: Updating of the maximum profit using Equ. (18) 
Step 10: Construction of the cuckoo population and egg 
position set  
Step 11: Checking of the updated maximum profit value with 
the already computed maximum profit 
Step 12: Updating of the center and maximum profit values 
based on Equ. (19) 
 

First, the proposed RVM–CSO initializes the training 

features ( )f x and BSP. BSP is a thresholding process. 

Second, RVM–CSO initializes the best fitness value using the 
equation  

1,2,...,
(( ) * )

fit high low npar low
Best Var Var Rand Var    (12) 

where,  

high
Var denotes the high variance of  ( )f x , 

low
Var represents the low variance of ( )f x , and  

npar is the number of feature particles. 
Third, the random center position of the cuckoo is initialized 
as follows: 

( ( ) * (( ) * ) )
center high low low

CK f x Var Var Rand Var    (13) 

The maximum profit for the first iteration is estimated as 
follows:  

2

1

10 * ( ( )) ( ) (10 *

cos(2 * * ( ) ))

N

weight

i
i

Max size f x f x i

pi f x 

     (14) 

With Equ. (14) as the objective function, a cuckoo egg is 
generated as follows:  
For i = 1 to Number of iterations 

If (i<=
iter

Max ) && (
weight

Max >BSP) 

(( ) * )
Egg Max Min Min

Cuckoo Egg Egg Rand Egg     

               (15) 
The number of iterations ranges from 1 to 300. During each 
iteration, the maximum profit value is checked with the 
threshold BSP. If the computed profit value is higher than 0.9, 
cuckoo eggs are generated. The x and y coordinates of the 
cuckoo egg matrix are estimated using the following 
equations.  

1

( ) ( 1) (( ) * cos( * 2 * )alpha
Co ordinateX n x n Rand Rand pi   

   

1
( ) ( 1) (( ) * cos( * 2 * ))

Co ordinate
Y n y n Rand Rand pi

alpha


  

                      (16) 
where, 
  n=1, 2... denotes the number of iterations. 
With the Levy flight X and Y coordinate points, the cuckoo 
radius is redefined as follows:  

( ) * ( * ( ))
Radius center high low

Cuckoo p m CK Var Var           (17) 

where,  
P (m) is the probability of the number of eggs at 

each center location. 
The radius of egg laying and the maximum profit are updated 
using the following equations.  

0 ,1

Pr

Pr

( ) ( 1) * *
2

Cos( * ( )
1

2
*Sin( * ( )

1

Rand

Update e

Num e

Num

Num

Num

Radius l Radius

Radius Radius
Radius

Radius
Radius

 






    (18) 

2

1

Pr _ 10 * ( ( ))

( )

(10 * cos(2 * * ( ) ))

N

i

i

Max o update size C x

C x i

pi C x


 

       (19) 

After updating the radius and the maximum profit value, the 
pre-computed maximum profit value is compared with the 
updated maximum profit value. If the updated maximum 
profit value is greater than the pre-computed maximum profit 
value, the maximum profit and cuckoo center are updated to 
the new position. 

If ( Pr _ Pro update oMax Max ) 

Update 
Pr _o update

Max  ; 

Update 
center

CK  to New Position 

End 
The updated profit and cuckoo center are clustered until 

the iteration size is reached. After the last iteration, the 
updated cuckoo center is provided as the best fitness value 
output.  
In our proposed work, the feature matrix is provided as input. 
Cuckoo is initialized, which provides training features and 
the accuracy value. The center position of the cuckoo is 
extracted by using equations. The initial fitness value is 
extracted, and the maximum profit of the initial iteration is 
estimated to extract cluster formation. Iteration is performed 
to estimate the number of eggs laid in an allocated area. In 

the abovementioned algorithm, 
high

Var  denotes the high- 
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TABLE II  

HARDWARE SPECIFICATIONS 

Specification  Units  
Rated Voltage 240 V 
Rated Current 5 A 
Frequency 50 Hz 
Resistive Load, (R in Ω) 10 Ω 
Inductive Load (L in H) 0 .71469 H 
Number of IGBT Gates 6 

  
TABLE III  

PARAMETER SPECIFICATION OF THE IGBTS 

Internal 
Resistor 

Snubber 
Resistance 

VCE Forward 
Voltage 

1E-3 Ω 1E5 Ω 0.8 V 1 V 

 

variable limit and 
low

Var  represents the low-variable limit. 

Rand indicates the random value, which ranges from 0 to 2. 
  

IV.  PERFORMANCE ANALYSIS 

The hardware specifications required for the experimental 
analysis are represented in Table II.  

The parameter specification of the IGBTs is depicted in 
Table III. The voltages across phases A, B, and C of the 
inverter circuit are considered input for the evaluation 
procedure. The input voltage for the three-phase inverter 
circuit ranges from 230 V to 300 V AC supply. The proposed 
fault detection and classification mechanisms are validated 
with existing techniques, such as EPSO–fuzzy, EPSO–RVM, 
and CSO–fuzzy, to prove their superiority. Optimization 
techniques, such as EPSO and CSO, optimize the input 
features of the three-phase inverter circuit. Based on fuzzy 
rules, the optimized results are classified to identify the fault 
type in the inverter circuit. The fault conditions for the three-
phase inverter circuit are analyzed, and a fault dictionary is 
formulated. The output signal for the non-faulty conditions of 
phases A, B, and C is shown in Fig. 4.  

The output voltage waveform of phases A, B, and C 
corresponding to an open-circuit fault is shown in Fig. 5. In 
this experiment, an open-circuit fault occurs in phase A. 

The output voltage waveform of phases A, B, and C 
corresponding to a short-circuit fault is shown in Fig. 6. In
 this experiment, a short-circuit fault occurs in phase A. The 
DWT with PCA projection for a short-circuit fault is shown 
in Fig. 7. Each projection varies with a phasor angle value of 
120°. A fault occurs in phase A because of the inconsistent 
phasor angle value. Fig. 8 shows the coordinate value 
observed for the three-phase inverter circuit. Fig. 9 presents 
the statistical analysis of the wavelet and PCA techniques. 

Fig. 10 shows the confusion matrix for the proposed fault 
detection and classification method. Table IV presents the 
comparative results of the inverter circuit fault without the  

 
Fig. 4. Output signal for the non-faulty conditions of phases A, B, 
and C. 
 

 
Fig. 5. Output voltage waveform for phase A for an open-circuit 
fault. 

 

 
Fig. 6. Output voltage waveform for phase A for a short-circuit 
fault. 
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Fig. 7. DWT with PCA projection for a short–circuit fault. 
 

 
Fig. 8. Wavelet and PCA graph for phases A, B, and C. 
 

 
 
Fig. 9. Statistical analysis of the wavelet and PCA graph for 
phases A, B, and C. 

 
optimization techniques. Table V defines the values observed 
for the optimization techniques with the classification 
techniques.  

Table V shows that the combination of CSO–RVM 
achieves better accuracy, SD, and time than the three other 
combinations, namely, EPSO–RVM, EPSO–fuzzy, and 
CSO–fuzzy. The values are graphically shown in Figs. 10 to 
12. Fig. 11 and 12 show the comparison of classification 
without optimization techniques (RVM and fuzzy) and 
classification with optimization techniques, namely, EPSO  

 
Fig. 10. Illustration of the confusion matrix. 

 

TABLE IV  
COMPARATIVE RESULTS OF THE INVERTER CIRCUIT FAULT 

ANALYSIS WITHOUT OPTIMIZATION FOR TRAINING (30%) AND 

TESTING (70%) 

Techniques Trainin
g 

Testing 

Time 
(s) 

Accuracy 
% 

SD Time (s) 

RVM 1.46 92.5000 176.83 0.43 
Fuzzy 1.6337 87.0228 169.97 0.46 

 

TABLE V  
COMPARATIVE RESULTS OF THE INVERTER CIRCUIT FAULT 

ANALYSIS WITH OPTIMIZATION FOR TRAINING (30%) AND TESTING 

(70%) 

 
Techniques 

Trainin
g 

Testing 

Time 
(s) 

Accurac
y % 

SD Time (s)

EPSO–RVM 14.28 84.18 172.62 2.20 
EPSO–Fuzzy 16.22 85.66 181.27 2.20 

CSO–RVM 12.51 88.78 296.32 0.57 
CSO–Fuzzy 8.4 82.53 177.19 1.16 

 
 

 
Fig. 11. Comparison of the classification with and without 
optimization techniques for accuracy. 
 

with RVM, EPSO with fuzzy, CSO with fuzzy, and CSO 
with RVM, for accuracy and SD, respectively. 

Time 

A
m
pli
tu
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Fig. 12. Comparison of the classification with and without 
optimization techniques for SD. 
 

 
Fig. 13. Comparison of time with and without optimization 
techniques for SD.  
 

TABLE VI 
COMPARISON OF THE PROPOSED CSO METHOD WITH EXISTING 

SYSTEMS FOR THE FEATURE SELECTION PROCESS 

 
The result shows that the combination of CSO with RVM 

can provide better accuracy and SD than the above-
mentioned techniques. Fig. 13 shows the time comparison 
between classification with and without optimization 
techniques. The combination of CSO with RVM requires less 
time to detect the faulty condition than existing techniques. 
Table VI shows the number of features selected in the 
proposed and existing systems. Table VII presents the 
comparative results between the proposed CSO–RVM and 
existing techniques, namely, FL, MLP, RBF, and SVM 
classification [43]. FL approaches require human expertise to 
form a decision-making system. 

They need considerable knowledge that should be 
constructed manually. Hence, a stable solution is difficult 

 
Fig. 14. Faulty waveform for the T1 transistor. 

 
TABLE VII  

COMPARISON OF THE PROPOSED CSO–RVM METHOD WITH 

EXISTING AI SYSTEMS  

Techniques Accuracy (%) 

FL 86.7 
Multi-layer Perceptron (MLP) 80 
Radial Basis Function (RBF) 86.7 

SVM 90 
CSO–RVM 95.67 

 

 
Fig. 15. Fault prediction and rectification by traditional methods. 

 

 
Fig. 16. Fault prediction and rectification by the CSO–RVM 
method. 

Methods No. of Selected Features 

Without Optimization 19441 

EPSO 528 

CSO 162 
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TABLE VIII  

COMPARISON OF THE CLASSIFICATION WITH AND WITHOUT OPTIMIZATION TECHNIQUES 

Techniques 
Training 

(%) 
Testing 

(%) 

Switching states Training Testing 

T1 T2 T3 T4 T5 T6 Time (s)
Accuracy 

% 
SD 

Time 
(s) 

RVM 
80 20 N N N N N N 32.15 91.6% 293.93 6.55 

90 10 O N N N N N 33.42 92.50% 299.25 7.25 

Fuzzy 
80 20 S N N N N N 34.957 86.27 288.12 4.5 
90 10 N O N N N N 43.806 87.02 289.42 6.2 

EPSO–
RVM 

80 20 N S N N N N 32.22 90.07 291.10 4.44 
90 10 N N O N N N 40.58 94.37 297.44 6.14 

EPSO–
Fuzzy 

80 20 N N S N N N 27.51 91.24 295.56 3.34 
90 10 N N N O N N 37.54 94.86 297.15 4.47 

CSO–Fuzzy 
80 20 N N N S N N 25.41 90.39 293.03 3.43 
90 10 N N N N O N 37.15 94.74 289.65 5.47 

CSO–RVM 
80 20 N N N N S N 29.10 92.07 299.87 1.43 
90 10 N N N N N O 38.47 95.67 305.71 2.06 

 

to obtain. MLP and RBF also require a large amount of 
training data and need to adjust the parameters of the hidden 
activation function. An optimization solution with 
classification techniques should be introduced to overcome 
the drawbacks of existing methods. The optimization 
technique results in discriminant features for classification. 

Hence, we evaluate the best four combinations of 
classification and optimization techniques. Among the 
combinations, CSO-RVM is the most efficient in determining 
faults in three-phase single-inverter circuits. The proposed 
CSO–RVM method results in better accuracy compared with 
existing methods. Table VIII shows the comparison of the 
classification with and without optimization techniques for 
the training and testing phases with the corresponding 
switching states. The switching states are similar for all 
results. The faulty waveform for the T1 transistor is depicted 
in Fig.14. The change in the amplitude with respect to 
varying time is depicted in Fig.14. The change in the 
amplitude with respect to the varying time is analyzed. The 
fault prediction and rectification by the existing traditional 
methods are depicted in Fig.15.The fault prediction and 
rectification by the proposed CSO-RVM method is depicted 
in Fig.16. From Fig.15 and 16 it is clear that the proposed 
CSO-RVM provides optimal fault prediction and rectification 
results than the traditional methods. 

 

V. CONCLUSION AND FUTURE WORK 

In this study, an effective methodology was developed for 
fault detection and classification with optimization 
techniques in a three-phase inverter circuit. Twenty-five 
faulty components exist, which are included in the proposed 
fault dictionary to describe faults and their corresponding 
conditions. The performance of the classification with 
optimization techniques such as EPSO with RVM, EPSO 
with fuzzy, CSO with RVM, and CSO with fuzzy are 

analyzed. The analysis results prove that the combination of 
CSO with RVM provides better results than the others during 
the training and testing phases to detect faulty conditions. 
Compared with existing methods, the proposed CSO-RVM 
method provides optimal feature selection, higher fault 
classification accuracy, minimal time consumption for 
training and testing processes, and optimal prediction and 
fault rectification capability. CSO and RVM successfully 
solve the optimization problem in power systems and 
minimize the losses and the voltage control problem in the 
said systems. These optimization techniques easily achieve a 
solution for complex problems in which existing techniques 
present difficulties in converging. CSO–RVM also exhibits 
better performance than existing AI systems in terms of 
accuracy. In future, faults could be detected in transmission 
lines based on classification and optimization techniques. The 
size of the fault dictionary could also be increased. 

 
 

List of Acronyms 
DWT Discrete Wavelet Transform 

PCA Principal Component Analysis 

RVM Relevance Vector Machine 

EPSO Evolutionary Particle Swarm 
Optimization 

CSO Cuckoo Search Optimization 

IGBT Insulated-gate Bipolar Transistor 

CPSO Chaos Particle Swarm Optimization 

FFT Fast Fourier Transform 

SVDD Support Vector Data Description 

PWM Pulse-width Modulation 

CUT Circuit Under Test 

BSP Best Selection Point 

FL Fuzzy Logic 

MLP Multi-layer Perceptron 

RBF Radial Basis Function 
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