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Abstract 

 

A simple design for a sliding mode observer is proposed for EV lithium battery SOC estimation in this paper. The proposed 
observer does not have the limiting conditions of existing observers. Compared to the design of previous sliding mode observers, the 
new observer does not require a solving matrix equation and it does not need many observers for all of the state components. As a 
result, it is simple in terms of calculations and convenient for engineering applications. The new observer is suitable for both 
time-variant and time-invariant models of battery SOC estimation, and the robustness of the new observer is proved by Liapunov 
stability theorem. Battery tests are performed with simulated FUDS cycles. The proposed observer is used for the SOC estimation on 
both unchanging parameter and changing parameter models. The estimation results show that the new observer is robust and that the 
estimation precision can be improved base on a more accurate battery model. 
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I. INTRODUCTION 

Lithium batteries have many advantages such as high 
energy density, high power density, long cycle life and so on. 
They are widely used as the energy storage elements of 
electric vehicles. In order to improve the safety and reliability 
of a battery pack, fully play its efficiency, and prolong its life, 
the battery pack must be managed effectively. Battery state of 
charge (SOC) estimation is important since it is the basis of 
battery management systems (BMS). However, battery is a 
kind of nonlinear uncertain system. As a result, it is very 
difficult to accurately estimate battery SOC. 

The common methods of SOC estimation are: 1. Current 
integration [1]: SOC is estimated by the time integral of the 
current with the initial SOC provided. However, the error 
increases with time. 2. Open circuit voltage (OCV) [2]: SOC 
is estimated based on the functional relationship between 
open circuit voltage and SOC. However, the battery must be 

set aside for a period of time. Unfortunately, this is not 
suitable for real-time SOC estimation. 3. Neural network 
[3]-[6]: a large number of samples with comprehensive data 
are required for model training and the sample data as well as 
the training methods affect the accuracy. 4. Kalman filter [4], 
[7]-[10]: SOC is estimated with algebraic iterative method. 
However, its accuracy is affected by model accuracy. 5. 
Predictive electromotive force (EMF) or OCV [11], [12]: 
these methods can estimate SOC accurately. However, the 
formulas involve many parameters, and the computation is 
complicated. 6. Mathematical fitting [13]: the function 
relationship SOC and the current, voltage, temperature and so 
on can be concluded by experiments. However, the function 
relationship is limited by the applicable conditions. 7. 
Impedance analysis [14]: SOC is estimated by battery 
electrochemical impedance spectroscopy analysis. However, 
this is only suitable for lab research. 

Sliding mode observer is a kind of iterative algorithm 
which can be used in battery SOC estimation [15]-[20]. The 
design of previous sliding mode observers for battery SOC 
estimation includes: 1. Battery dynamic model is established 
in matrix form. Base on this model, an observer is designed 
which needs to solve the matrix equation. When the order of 
the matrix is relatively high, the calculations are more 
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complicated [15], [16]. 2. Battery dynamic model is 
established in differential equations form. One observer is 
designed on the basis of each equation, which is needed to 
design multiple observers for all of the state components [17], 
[18]. Battery model parameters are changing in terms of some 
influence factors such as temperature, SOC, current rate and 
so on. Therefore, sometimes the model parameters are 
represented by variables which are functions of the above 
influence factors. The design method of the changing 
parameters system observer is the same as that for the above 
two methods [19], [20].  

To improve methods for estimating battery SOC, this paper 
employs a novel sliding mode observer for SOC estimation. 
Firstly, based on battery Thevenin circuit model, taking the 
battery polarization voltage and open circuit voltage as state 
components, with the difference between the terminal voltage 
of the battery and the ohm resistance voltage drop as the 
observation, a two-dimensional state space equation is 
established to simplify the battery state equation. Secondly, 
based on the battery state equation, a novel observer, which 
does not possess the limiting condition of existing observers, 
is designed. The design of the new observer for SOC 
estimation does not need a solving matrix equation or 
multiple observers for all of the state components. Therefore, 
it can reduce the calculations in design and is easy to use in 
engineering. 

The new observer can be used for both time-variant 
systems and time-invariant systems, and the observer design 
methods of the two kinds of systems are the same. The 
observer’s robustness is proved by Lyapunov stability 
theorem. The characteristics of the new observer, based on 
the changing parameters model and the unchanging 
parameters model, are verified by tests. The verification 
shows that the new observer is robust and has a simple design. 
It also shows that improving the battery model accuracy can 
decrease the estimation error. 

 

II. BATTERY MODELING 
 

The Thevenin circuit model is shown in Fig. 1. It is simple 
and well simulated to the external features of batteries. 

In Fig. 1, ocv  is the OCV, which is equal to the 

electromotive force of the battery; 0r  is the ohm internal 

resistance of the battery; 1c  and 1r  are polarization 

capacitance and resistance; tv  is terminal voltage of the 

battery; 1v  is the polarized voltage; and ti  is the input 

current. The results are as follows: 

tir

v
cv 

1

1
11                  (1) 

Therefore, the differential equation of 1v  is: 

 
Fig. 1. Battery Thevenin model. 
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Fig. 2. OCV vs. SOC at different temperatures. 
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There exist a function relationship )( ococ Sgv   between 

OCV and SOC, where ocS  represents SOC, and the function 

does not experience a significant change with temperature 
[17], [18], [21]. The test battery OCV vs. SOC curves at 
-10 , 0 , 10 , 20 , 30  and 40  are ℃ ℃ ℃ ℃ ℃ ℃ shown in Fig. 2. 
From Fig. 2, it can be seen that the test battery OCV curves 
have small differences. In addition, the battery test was 
operated in thermostat. Therefore, this paper take it as an 
invariant function. As a result, the differential equation with t 
as the time is: 

n

t
ococ

oc

oc
oc Q

i
kSkS

dS

Sdg
v


  )(            (3) 

In equation (3), k  is the derived function of the OCV 
with respect to the SOC and it is changed with the SOC 
accordingly;   is the discharge efficiency as well as a 

variable; and nQ  is the battery capacity. Based on equations 

(2) and (3), the battery model is: 
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Equation (5) is the result of k  and   in (3) after being 
substituted with 1, the error is merged into the rear nonlinear 
uncertain function. The two bounded functions 1f  and 2f  
are the error-sum of linearization, noise and other factors. In 
line with the current direction in Fig. 1, the system terminal 
voltage is: 

10 vrivv toct                  (6) 

Since the terminal voltage tv , current ti  and ohm internal 

resistance 0r  can be obtained by measurement, it is possible 
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to choose 0rivv tty   as an observation. Then the 

observation equation is: 
  1vvv ocy                   (7) 

Equations (4), (5) and (7) are battery state space equations 

where the state variable is  T1, ocvvx , the observation is 

yvy , and the input is tiu . Therefore, the coefficient 

matrices are: 

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The system state is estimated with a sliding mode observer 
which needs the system’s linear part to be observable. Based 
on the necessary and sufficient condition, the result is as 
follows: 
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Since 0
1

11


cr , 2rank H . Then the linear part of the battery 

state equation is observable. 
The relationship between the SOC as an independent 

variable and the OCV as a function is shown in Fig. 2. If the 
OCV is an independent variable and the SOC is a function, the 
result at 20℃ is shown in Fig. 3. The OCV can be estimated 

by the sliding mode observer. Based on the relationship 

between the SOC and the OCV )(1-
ococ vgS  , the SOC can be 

estimated with the OCV as an independent variable and the 
SOC as a function. 

In applications, it is possible to obtain the battery state 
components polarization voltage and the OCV by algebraic 
iteration of the novel sliding mode observer. The SOC is 
estimated based on the function relationship between the 
OCV and the SOC. The SOC can be estimated in real-time by 
the novel observer, which meets the demands of electric 
vehicles. 

 

III. THE NOVEL SLIDING MODE OBSERVER METHOD 
FOR SOC ESTIMATION 

A. Underlying Theory 

The following is a kind of nonlinear uncertain system: 

),,()()()( tuxftButAxtx               (9) 

)()( tCxty                     (10) 

Where nnR A , m nRB , nlR C , mln  and 
m)( Rtu  is known system control variables, with full-rank 

B , C , observable ),( CA ,as well as bounded, nonlinear, 

and uncertain function   n
n Rffft  T

11 ...,,),,( ，uxf . The 

existing sliding mode observer for the system must satisfy 
)()( tt u,x,Bξu,x,f  , where mRt )( u,x,ξ  is an arbitrary 

bounded function. Compared with the existing observers, the 
novel observer, which does not have the limiting condition 
above, is proposed for SOC estimation in this paper. 
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Fig. 3. SOC vs. OCV at 20℃. 
 

For equations (9) and (10), the design of the new observer 
is as follows [22], [23]: 

BvtytxCGtButxAtx  ))()(ˆ(-)()(ˆ)(̂       (11) 

nˆ R(t)x is the system state vector estimation, lnR G  is 

the designed matrix, and nn RRR  v(t)  is the control 

variable designed for the observer. If the error of the system 

state vector estimation is xtxte  )()( ˆ , the design for the 

sliding mode surface is as follows: 

0)()(  MetxtxFCtytyFS )()(ˆ)()(ˆ       (12) 

Where lR(t)ŷ  is the system observation estimation, F  is 

the designed matrix, which makes the state variables in the 
surface slid to the zero equilibrium point, and FCM  . The 
control variable v is designed as [22], [23]: 
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Where MBS1 , 
 2

2 )
2

1
( S , 0 , and 

10  . 

Based on equations (9) and (11), the following equation for 
the estimation error is: 

BvtuxfteAte 0  ),,()()(             (14) 

Where GCAA0  . If the error is partitioned as 

 21 eee ;  with m-nR1e and mR2e , the error state 

equations in partitioned matrix form are as follows: 

vBfteAteAte 11201210111 )()()(          (15) 

vBfteAteAte 22202210212 )()()(         (16) 

Accordingly, the sliding mode surface in partitioned matrix 
form is as follows: 

02211  eMeMMeS            (17) 

In the above expressions, nnR M ,  21, MMM  , 
)(

1
mnnR M , mnR 2M , 011A , 012A , 021A , and 022A  

are partitions of 0A , )()(
011

mnmnR A , mmnR  )(
012A , 

)(
021

mnmR A , mmR 022A ,  21; BBB  , mmnR  )(
1B , 

mmR 2B ,  21; fff  , mnR 1f , and mR2f . 

For the error components are not linear correlation, the 
linear transformation in the error system will not change the 
convergence of the error system. Therefore, the error system 
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(15), (16) and the sliding mode surface in the partitions form 
(17) can be transformed as: 

vBteAteAte 1201210111 )()()(           (18) 

vBfteAteAte 22202210212 )()()(          (19) 

02211  eMeMeMS          (20) 

The designed observer shows robustness against modeling 
errors, when the following three assumptions for the sliding 
mode observer (11)-(13) are satisfied. 

A1: Let 

0
T MAMAS                   (21)

 

For the sliding mode observer (11)-(13), the matrixes M  

and G  are designed to make 0A  satisfy 0)( 0max A  and 

to make SA  satisfy 0)(max SA , where )( 0max A  and 

)(max SA  are the matrix maximum eigenvalues of 0A  and 

SA , respectively.  

A2: In equation (13), parameter   is satisfied by 

MfMB  .  

Satisfy assumptions A1 and A2, and the control variable 

(13) can make the system state vector )(tx  move to the 

sliding mode surface (12). 
A3: Let: 

MMAAAM
 -1

2012011 -            (22) 

The matrix M  is designed to make MA the same as a Hurwitz 

matrix, and the sliding mode observer can make the error 

vector converge to an equilibrium point 0te )( . 

B. Verifying the Robustness of the Novel Sliding Mode 
Observer 

The following is to verify the robustness of the novel 
sliding mode observer (11)-(13) against the nonlinear 
functions )( tu,x,f  in system (9) and (10). 

Take the Lyapunov function as: 

0
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The derivative is as follows with t as the time: 
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If the parameter is MfMB   and 0S  , then: 
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Now the state vectors will converge to the sliding mode 
surface. When the vector reaches the surface, it will slide 
along the surface accompanied by up and down quivering. 
The expression of the sliding mode surface (20) shows: 

2211 eMeM  . Therefore, 1122 eMMe  1-

, if it is substituted 

into equation (18), and equations (12) and (13) can tell that 
0v  on the sliding mode surface. Finally, it can be known 

that the dynamic feature of the error state vector on the 
sliding mode surface is: 

)()()-)( 111
1-

20120111 teAteMMAAte M
 （      (25) 

If MA is a Hurwitz matrix, the error state will be converged to 

an equilibrium point 0)(te . Therefore, the sliding mode 

observer is stable. The speed of the convergence will be 
affected by the eigenvalue of MA . 

The proving processes are suitable for both time-varying 
systems and time-invariant systems. Therefore, the new 
observer method can be used in the two systems. The design 
methods for the time-invariant system observer and the 
time-varying system observer are the same. Battery model 
parameters are functions of temperature, current rate, SOC and 
so on, and the functions can be obtained by testing. 

C. Sliding Mode Observer Design 

The design procedures of the new sliding mode observer 
method for SOC estimation are as follows: 

D1. According to the error state function (14), the matrix 
function GCAA0   is known. The matrix is designed so 

that 0G . Then 







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00

01 11cr
AA0 . As a result, 

0)( 0max A . The matrix was designed so that 1F . Then 

 11 FCM . According to equation (21) 0S AA 2 . 

Therefore, 0)(max SA . 

D2. The following parameter was designed so that 10 , 

which makes MfMB   in this test. 

D3. Meanwhile, 02221012  00 AAA ，and the coefficient 

matrices of the error equation (18) is 111 cr011A ，

0012A . According to expression (22) 011M AA  , which is 

a Hurwitz matrix. 

The observer estimators are OCV ocv  and the 

polarization voltage 1v . In addition, the whole algorithm 

estimator is the SOC. For the test in this paper, the designed 
parameters values of the new observer are shown in Table I. 

The three assumptions mentioned in previous are satisfied 
according to the above designs. Therefore, the new observer 
is robust to the uncertain part )( tu,x,f  in the model. The 

discrete form of the new observer is: 
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TABLE I 
THE DESIGNED PARAMETERS VALUES 

parameters G  F        

values 0 1 10 1 0.95 

 

 
Fig. 4. The whole SOC estimation algorithm. 
 

Where MBS(k)1  and 
 2

2 )
2

1
( S(k) . 

t )(ˆd)(ˆ)1(ˆ kxkxkx           (27) 

Where the sampling period st 1 . Taking the coefficients 

of equations (4), (5) and (7) and the designed parameters 
values into the discrete form of the observer equations (26) 
and (27), the OCV as the system state vector component can 
be estimated by iterative computation, and the SOC can be 
estimated by the function of SOC vs. OCV. The overall SOC 
estimation algorithm is shown in Fig. 4. 

For the design of the exiting slide mode observer it is 
necessary to solve the matrix equation or to design multiple 
observers for all of the state components, and the design 
calculation is complex. Through its design processes, the new 
observer does not need to solve the matrix equation or design 
many observers. Therefore, it is simple and convenient for 
engineering applications. 

 

IV. SOC ESTIMATION BY THE NEW 

OBSERVER METHOD 

To verify the performance of the novel sliding mode 
observer method for battery SOC estimation, a test under 
preset conditions for a lithium battery is operated, in which 
the SOC estimation and the ideal value are compared. The 
test battery shown in Fig. 5 is a 25Ah Lithium power battery. 

The testing platform consists of the Arbin BT2000 battery 
tester for discharging and charging batteries shown in Fig. 
6, the incubator shown in Fig. 7, a host computer and 

 
Fig. 5. The test battery. 
 

      
Fig. 6. Arbin BT2000 battery test equipment. 
 

   
Fig. 7. Incubator. 
 
monitoring software for the working processes. The 
monitoring software of the host computer can set the battery 
state while monitoring and collecting information on the 
current, voltage and temperature. The incubator can 
guarantee a set temperature for the battery. 

A. Battery Circuit Model Parameter Extraction 

Extracting the parameters of Thevenin circuit model is 
necessary when using the new sliding mode observer method 
for SOC estimation. In this case the pulse current is used for  
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Fig. 8. Battery terminal voltage after pulse current. 

 
the extraction. At room temperature, the pulse current 
become 0A suddenly from the C/3 discharge rate, and the 
battery terminal voltage change curve at SOC=0.537 is 
shown in Fig. 8. 

From Fig. 1, it can be seen that the ohm internal resistance 

of the battery Thevenin model is iur 00  , and that the 

polarization internal resistance is iur 11  .  

According to the dynamic feature of the RC circuit, the 

time constant is 11cr . After the current pulse discharging 

for  , the battery terminal voltage increases to 63.2% 1u . 

The model parameters can be computed based on the 
above expression, and the terminal voltage curve of the 
battery after a pulse is shown in Fig. 8. The results of the 

model parameters at SOC=0.537 are: m24.10 r , 

m46.11 r  and F1024.1 5
1 c . 

B. Simulation FUDS Condition Estimation Result 

The performance of the new sliding mode observer will be 
verified under the simulated FUDS condition with the battery 
shown in Fig. 5. The test is designed as follows: At room 
temperature, a battery with an initial SOC of 100% is selected. 
The simulated FUDS condition includes discharge and charge 
processes. To prevent the battery from being over charged, 
1AH is discharged at the C/3 rate. Then the battery is run 
under the simulated FUDS condition set by the host computer, 
and stopped the test when the battery terminal voltage 
reaches 3v. At this point, the SOC may not be 0. The current 
and the terminal voltage under the simulated FUDS condition 
are shown in Fig. 9. 

The battery SOC is estimated with a new observer under 
the simulation FUDS condition, during which the initial value 
of the open circuit voltage can be set randomly within the 
stable range of the observer. If the initial polarized voltage 

01 v and the initial open circuit voltage is 3v, then 

]3;0[0x . After iterative computation, the estimated values 

and the measured values of the observation are shown in Fig. 
10. 

From Fig. 10, it can be seen that the estimated observation 
converges to the measured observation rapidly in the initial 
stage, after stabilization, the estimated values shake up and 
down along with the measured values. If the initial states are  
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Fig. 9. Discharge current and terminal voltage. 
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(a) The two observations. 
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(b) The two observations in 1st-50th s. 
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Fig. 10. The estimated values and the measured values of the 
observation. 



A Novel Sliding Mode …                                        1137 

 

0 4000 8000 12000

3.2

3.6

4.0

4.4

O
pe

n 
ci

rc
ui

t v
ol

ta
ge

(v
)

Time(s)

 OCV estimation at 3v initial voltage
 OCV estimation at 4v initial voltage
 OCV estimation at 5v initial voltage

 
Fig. 11. Battery OCV estimation by the new sliding mode 
observer. 
 

0 4000 8000 12000

0.0

0.4

0.8

1.2

S
O

C

Time(s)

 SOC estimation at 3v initial voltage
 SOC estimation at 4v initial voltage
 SOC estimation at 5v initial voltage
 The real SOC

 
Fig. 12. Battery SOC estimation. 
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Fig. 13. Battery SOC estimation error. 
 
set like the other values, similar results can be obtained. 

The initial value of the polarized voltage is 01 v , and 

the initial values of the open circuit voltage ocv  are 3v, 4v 

and 5v. After the iterative computation, the open circuit 
voltage estimation results are shown in Fig. 11. They have 
almost equal convergent results. 

The SOC can be estimated based on the relationship 
between the OCV and the SOC in Fig. 3. Under the simulated 

FUDS condition, the battery discharge efficiency is 1 . 

After the test and a rest for 2 hours, the OCV changed to 
3.2216v. As a result, the SOC is 0.0079 instead of 0, with 
0.2122AH left. The sum of the discharge coulomb, counted  
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Fig. 14. The relationship between ohm internal resistance and 
SOC. 

 

by the discharging efficiency 1 , and the remaining 

capacity is almost the full capacity of the battery. Therefore, 
the average discharging efficiency is set as 1. The real SOC 
can be computed with the current integration method since 
the initial SOC is 100%. The estimated SOC and the real 
value are shown in Fig. 12 and the estimation error is shown 
in Fig. 13. 

Fig. 12 shows that the SOC estimation by the new sliding 
mode observer method converges to the ideal value under 
simulation FUDS condition in spite of different initial open 
circuit voltages. 

Fig. 13 shows the corresponding SOC estimation error. 
After stabilization, when the initial voltage is set to 3v, 4v 
and 5v, the estimation errors are all within 4.5%. Likewise, 
similar results can be obtained when the initial state, which is 
in the stable range of the observer, is set to different values. 
Test analysis shows that the estimation results are not 
affected by the initial values, which are within the stable 
range. The test with the simulated FUDS condition shows 
that the new sliding mode observer method is robust to 
nonlinear uncertain systems. 

C. Changing Parameters Model Estimation Result 

Battery is a kind of complex time-varying system, and 
many influence factors, such as SOC, current rate, 
temperature and so on, can cause changes in the model 
parameters, which affects the SOC estimation. The function 
relationships between the parameters and influence factors 
can be obtained by testing. 

Battery is a kind of complicated nonlinear uncertain 
system. Therefore, the design guidelines of the new observer 
consider the parameters changes which effect the SOC 
estimation, and some of the major factors that influence 

parameters changes. In the new observer, 0r  has a 

significant influence on the SOC estimation. 0r  changes 

with the above influence factors, and the function 
),,(00 TiSrr oc  can be concluded by testing, where T  is the 

battery temperature. In the test, the battery was operated in 
thermostat, and the current rate was not more than 2C. 
Therefore, the effects of the current rate and temperature 
were not considered. The battery SOC was changed from  
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Fig. 15. Circulation iterative algorithm of the new observer. 

 
TABLE II  

BATTERY TIME-VARYING SYSTEM MODEL PARAMETERS 

parameters )(0 mr  )(1 mr )(1 Fc  )(CQn  

values )(0 ocSr  1.46 1.22×105 9.66×104 
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Fig. 16. SOC estimation based on time-invariant model and 
time-variant model. 
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Fig. 17. SOC estimation error base on time-invariant and 
time-variant systems. 

 

100% to 0%, and the function )(00 ocSrr   is shown in Fig. 

14. It can be seen from Fig. 14 that 0r  is increased greatly 

when the SOC decreases form 100% to 0%. Therefore, the 

model parameter )(00 ocSrr   is chosen in this paper. 

The verifying processes show that the new observer is 
suitable for both time-varying systems and time-invariant 

systems. The function )(00 ocSrr   is substituted in the 

system equation, and the changing parameter )(0 ocSr is used 

in the new observer for the SOC estimation, which is a 
circulation iterative approach algorithm [19], [20]. The 

algorithm schematic diagram is shown in Fig. 15. The 
observer design methods of the two systems are the same [19], 
[20]. 

The analysis shows, that when the design parameters of the 
time-varying battery system applied to the hardware 
experiment are same as those in Table I, the new observer is 
robust. According to the identified model parameters above, 
the time-varying battery system model parameters are shown 
in Table II. 
Similarly, the OCV is the observer estimator, and the SOC is 
the whole algorithm estimator. By taking the designed 
parameters and the model parameters into functions (26) and 
(27), the OCV can be obtained. 

Let the initial state ]4;0[0x . The SOC estimation of the 

hardware realization is based on both the changing and 
unchanging parameter models, which are shown in Fig. 16, 
and the estimation error is shown in Fig. 17. 

From Figs. 16 and 17, it can be seen that updating 
parameters in real time can improve the accuracy of the 
estimation. Similar results can be obtained if the initial open 
circuit voltage is 3v and 5v. When the initial voltage is set as 
3v, 4v and 5v, the maximum estimation errors are about 
3.4%. 

A battery is a strongly nonlinear uncertain system. 
Therefore, it is very difficult to accurately establish battery 
model. The SOC estimation used the new observer is on the 
basis of the battery model, and it is worth further study in 
terms of establishing a more precise battery model to improve 
estimation accuracy. The battery model, measuring accuracy, 
battery nonlinear characteristics and other characteristics 
contributed to estimation errors. In order to further decrease 
estimation errors, it is necessary to improve the precision of 
measurement, battery performance and so on. 

 

V.  CONCLUSION 

(1) A novel sliding mode observer was proposed in this 
paper. It was developed from existing observers, for battery 
SOC estimation. Through the design of the new sliding mode 
observer, it can be seen that it is simpler than the existing 
observer design method and convenient for engineering 
applications.  

(2) The robustness of the new observer is verified by  
Liapunov stability theory and simulation FUDS condition 
testing.  

(3) The new observer can be used for both changing and 
unchanging parameters model SOC estimations, and the 
observer design methods are the same. Through tests, it can 
be seen that the estimation accuracy is improved when the 
model parameters are updated in real-time. 

(4) In order to improve estimation precision, there needs to 
be further study on battery performance. In addition, more 
accurate models need to be established in future research. 
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