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Abstract 

 

Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means 
of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear 
controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent 
Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come 
back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase 
CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control 
system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the 
adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability 
theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for 
the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with 
those of previous studies demonstrates the high control performance of the proposed control scheme. 
 
Key words: Artificial bee colony optimization, Lyapunov stability theorem, Modified recurrent Gegenbauer orthogonal 
polynomial neural network, Six-phase copper rotor induction motor 
 

I. INTRODUCTION 

Six-phase induction motors (IM) can generate a higher 
torque when compared to conventional three-phase IM. This 
characteristic makes them convenient in high power and high 
current applications, such as ship propulsion, aerospace 
applications, and electric/hybrid vehicles (EV) [1]. A 
six-phase copper rotor induction motor (CRIM) [2] is chosen 
as an alternating current (AC) motor driving a continuously 
variable transmission (CVT) system because it provides 
lower torque ripple, higher efficiency, and better reliability 
for its size when compared to single-phase and three-phase 
aluminum rotor IMs [3]-[8]. However, a simplified model of 
a CVT system, which is driven by a six-phase CRIM, has not 
been presented. This research gap, which includes the derived 
procedures, simplified models and control schemes, provided 
the motivation for the current study. 

A CVT system [2], [9]-[16] may be manipulated at a 

specific speed while changing the pulleys’ radii for achieving 
torque multiplication, acceleration, and speed. This working 
profile provides the research motivation for the CVT 
dynamics and nonlinear control algorithms. A standard 
proportional integral derivative (PID)-based controller with 
measurements of the gear ratio has been applied in 
CVT-based vehicle regulation [11]. This control scheme 
demonstrates satisfactory performance by using a 
gain-scheduling with a large set of points. In addition, the 
design of numerous fuzzy controllers for a CVT hydraulic 
module has been reported by Kim [12]. 

Some of the principal advantages of using artificial neural 
networks (ANNs) are their good learning ability and good 
performance for the tasks of system identification and control 
[17]-[20]. However, one of the major drawbacks of the ANNs 
is to need for a large number of iterations and 
computationally intensive time for its training. Functional 
link NNs [21]-[23] have been reported to reduce 
computational complexity. These functional link NNs 
[21]-[23] with a reduced computational complexity and faster 
convergence have been used for executing the identification 
and control of the nonlinear systems. Recently, some 
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Gegenbauer functional expansions [24]-[26] combined with 
NNs have been proposed. They have been applied to highly 
nonlinear approximations, identifications, compensations and 
controls of systems. Gegenbauer polynomial approximation 
in the presence of the parameter uncertainty characteristics of 
a two-dimensional airfoil has been reported by Belmehdi [24]. 
A Gegenbauer NN by means of a weights direct 
determination method in order to avoid a longer 
iterative-training procedure for nonlinear system has been 
proposed by Wu et al. [25]. A feedforward NN with 
Gegenbauer orthogonal functions through the use of a 
weights direct determination method has been proposed by 
Zhang and Li [26]. Because a Gegenbauer NN is a 
single-layer NN, its computational complexity is 
considerably lower than that of a multilayer perceptron. 
However, some Gegenbauer functional expansion 
feedforward NNs [24]-[26] can be used for static function 
approximations. However, they cannot effectively identify 
complex dynamic systems due to the absence of an 
appropriate feedback loop. 

Recurrent NNs, which have been used for modeling 
nonlinear systems and for the dynamic control of systems 
[27]-[31] have received considerable attention because of 
their structural advantages. Because of their high 
computational complexity, these NNs can effectively identify 
and control complex dynamic systems. Therefore, to reduce 
the computational complexity and to enhance the 
identification ability of high-order nonlinear systems, the 
modified recurrent Gegenbauer OPNN [2] , which offers 
more advantages than the Gegenbauer OPNN [24]-[26] 
including better performance, higher accuracy and dynamic 
robustness, was proposed for controlling a six-phase CRIM 
driving CVT system with nonlinear and time-varying 
characteristics in this paper.  

Karaboga [32] makes use of the artificial bee colony 
(ABC) optimization algorithm for solving numerical methods 
in optimization problems. This algorithm was further 
advanced by Karaboga and Basturk [33]-[35]. It is a popular 
swarm intelligence technique based on the intelligent 
foraging behavior of honey bees. It is a very simple and 
robust population based stochastic optimization algorithm. In 
ABC optimization algorithms, a colony of artificial bees 
contains three groups of bees: worker bees, onlookers and 
scouts. A bee waiting in the dance area to make a decision to 
choose a food source is called an onlooker and the one going 
to the food source visited by the onlooker is called a worker 
bee. The other kind of bee is a scout bee that carries out 
random searches for discovering new sources. In a robust 
search process, exploration and exploitation processes must 
be carried out together. In the ABC optimization algorithm, 
while onlookers and worker bees carry out the exploitation 
process in the search space, the scouts control the exploration 
process. However, the ABC optimization algorithm is good at 

exploration but poor at exploitation. In addition, its 
convergence speed is slow in some cases [36], [37]. 
Therefore, to further improve the performance of ABC 
optimization, some modified ABC optimizations inspired by 
using the Grenade explosion method [38], [39] and the 
Bisection explosion method [40], [41] were proposed. 
However, since the ABC optimization method possess a slow 
convergence, the amended ABC optimization [2] with an 
inertia weight is proposed to search for two optimal learning 
rates of the weights in the modified recurrent Gegenbauer 
OPNN. This is done in order to obtain faster convergence and 
a better learning rate in this study.  

In this study, because CVT systems [2], [9]-[16], [42]-[45] 
possess nonlinear dynamics and uncertainties, the blend 
modified recurrent Gegenbauer OPNN control system using 
an amended ABC optimization [2] is proposed for controlling 
a six-phase CRIM driving CVT system. The blend modified 
recurrent Gegenbauer OPNN control system using an 
amended ABC optimization [2] has a good generalization 
ability and a fast learning capability. The proposed control 
scheme can adapt to any change in the system. The blend 
modified recurrent Gegenbauer OPNN control system using 
an amended ABC optimization [2], which is composed of the 
examiner control, the modified recurrent Gegenbauer OPNN 
control with an adaptation law, and the reimbursed control 
with an estimation law, is applied in the six-phase CRIM 
driving CVT system. According to the Lyapunov stability 
and gradient descent method, the adaptation law of the 
modified recurrent Gegenbauer OPNN is derived for online 
training of the parameters. Therefore, the modified recurrent 
Gegenbauer OPNN can react to the system’s nonlinear and 
time-varying behaviors by the online learning procedure 
under lumped nonlinear external disturbances and parameter 
variations. Furthermore, two optimal learning rates for the 
modified recurrent Gegenbauer OPNN using an amended 
ABC optimization method [2] are proposed to achieve a 
better convergence. The experimental results shown obtained 
using the proposed blend modified recurrent Gegenbauer 
OPNN control scheme and the amended ABC optimization [2] 
are shown to achieve better control performances. 

This paper is organized as follows. The system structure of 
the six-phase CRIM driving CVT system is reviewed in 
Section II. The design methods of a blend modified recurrent 
Gegenbauer OPNN control system and an amended ABC 
optimization [2] are presented in Section III. Experimental 
results are illustrated in Section IV. Some conclusions are 
given in Section V. 

 

II. CONFIGURATION OF SIX-PHASE CRIM DRIVING 
CVT SYSTEM 

In order to reduce the complexity of the system, the 
rotation dynamic equations in the primary drive shaft and the  
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Fig. 1. Schematic of the CVT system driven by six-phase CRIM. 
(a) Geometrical description of the CVT system. (b) Geometrical 
description of the six-phase CRIM-wheel connection via the 
CVT system. 

 
secondary drive shaft of the CVT, shown in Fig. 1, can be 
simplified as [2], [9]-[16], [42]-[45]: 

),,,,,( 2
saalpa

s
lsssss FTTTBJT     (1) 

eprprp TTBJ               (2) 

in which ),,,,,( 2
saalpa

s
l FTTT   [9]-[16] is the lumped 

nonlinear disturbance in the secondary pulley side with the 
wheel; rsssp TT  /  is the output torque in the 

primary pulley shaft; sT  is the output torque in the 

secondary pulley shaft; eT  is the drive torque in the 

secondary pulley shaft; s  is the conversion ratio; 
pT  is 

the parameter variation; a  is the rolling resistance; 
a  is 

the wind resistance; lF  is a braking force; 
pB and 

sB  

represent the equivalent viscous frictional coefficients of the 
primary pulley shaft and the secondary pulley shaft, 
respectively; 

pJ and 
sJ  are the equivalent inertia of the 

primary pulley shaft and the secondary pulley shaft including 

a wheel, respectively; and r and s  are the speeds of the 

primary pulley shaft and the secondary pulley shaft, 
respectively.  

Using the speed conversion ratio and the sliding 

conversion ratio [9]-[16], the resultant dynamic equation of a 
CVT system driven by a six-phase CRIM from (1) and (2) 
can be simplified as [9]-[16]: 

1
2 ),,,,,( TFTTTBJ rararlprarlrrrr    (3) 

where erTT 1  is the air-gap torque of a CVT system via 

the conversion ratio; r  is the conversion ratio; 

)(),,,,,( 2
unprarlrararlrprarl TTTTFTTT    [9]-[16] is the 

resultant lumped nonlinear external disturbance with 

parameter variations; arT  is the resultant fixed load torque; 

rrrrpr BJT     is the resultant parameter variation; 
ar  

is the resultant rolling resistance; ar  is the resultant wind 

resistance; lrF is the resultant braking force;  

2
rararlrun FT    is the resultant unknown nonlinear 

load torque; epr BBB   is the resultant viscous frictional 

coefficient; epr JJJ   is the resultant moment of inertia; 

and eJ  and 
eB  represent the moment of inertia and the 

viscous frictional coefficients of the six-phase CRIM, 
respectively. 

The d-q axes voltage equations of a six-phase CRIM in the 
synchronously reference frame can be described as follows 
[2]-[8]:  
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where 
mslsss LLL 3 , 

mslrrr LLL 3 , and 

msM LL 3 . 

The air-gap torque 1T  of a CVT system driven by a 

six-phase CRIM can be represented as: 

)4/(][3 1111 rr
e
d

e
qr

e
q

e
drM LiiLPT       (10) 

in which e
qv 1 , e

dv 1  and e
qv 2 , e

dv 2  are the d-axis and q-axis 

voltages; e
qi 1, e

di 1 and e
qi 2, e

di 2  are the d-axis and q-axis 

currents; ssL , rrL , and ML  are the self-inductance of the 

stator, the self-inductance of the rotor, and the mutual 

inductance between the stator and the rotor, respectively; sr  

and rr'  are the stator resistance and the rotor resistance; 

e
dr  and e

qr  are the d-axis and q-axis flux linkages; and  
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Fig. 2 Block diagram of a six-phase CRIM driving CVT system. 

 

1P is the number of poles.  

A block diagram of the six-phase CRIM driving CVT 
system is shown in Fig. 2. The whole system of the six-phase 
CRIM driving CVT system can be indicated as follows: an 
indirect-field-oriented control with a current 
proportional-integral (PI) control, a sinusoidal pulse width 
modulation (PWM) control modulator, an interlock circuit, an 
isolated circuit, a voltage source inverter with six sets of 
insulated-gate bipolar transistor (IGBT) power modules and a 
speed control. The PI current loop controller is the current 
loop tracking controller. In order to attain a good dynamic 
response, all of the gains for a well-known PI current 
controller are listed as follows: 5.14pck  and 

2.5/  icpcic Tkk  through some heuristic knowledge 

[46-48]. The indirect field-oriented control consists of a 

coordinate transformation, a
ee  cos/sin generation with 

lookup table generation and a PI current control. A 
TMS320F28335 digital-signal-processor (DSP) control 
system with a mix signal field-programmable-gate-array 
(FPGA) system manufactured by the Microcontroller 
Corporation of Taiwan was used to implement the indirect 
field-oriented control and the speed control. The six-phase 

CRIM driving CVT system was operated under lumped 
external disturbances and with nonlinear uncertainties. 

 

III. BLEND MODIFIED RECURRENT GEGENBAUER 

OPNN CONTROL SYSTEM 

The dynamic equation of a CVT system driven by the 
six-phase CRIM from (3) can be rewritten as:  

1111 )( uBTTTTCA unprarlrr       (11) 

Then, the tracking error e  of the speed can be represented 

as: 

rce                   (12) 

in which 11 Tu 
 

is the control torque of the CVT system 

driven by a six-phase CRIM. rr JBA /1  , rJB /11  and
 

rJC /11 
 

are three known constants. c
 

represents the 

desired command rotor speed. All of the parameters are 
assumed to be bounded and well known under the occurrence 
of uncertainties. Then, the ideal control law can be designed 
as: 

1111
*
1 /)]([ BTTTTCAeku unprarlrc     (13) 

Substituting (13) with 1
*
1 uu 

 
into (11) and using (12), the 

dynamic equation of the error can be obtained as: 

01  eke                (14) 

in which 1k
 

is a positive constant. The system state can 

track a desired trajectory when 0)( te  as t  in (14). 

 Because unknown uncertainties are difficult to measure, the 

control law 1u of the blend modified recurrent Gegenbauer 

OPNN control system shown in Fig. 3 can be designed as: 

11 rrmco uuuu             (15) 

where cou  is the examiner control system; rmu
 

is the 

modified recurrent Gegenbauer OPNN controller; and 1ru  

is the reimbursed controller. The examiner control system 

cou  is designed so that the state of the controlled system is 

stabilized around a predetermined bound region. Due to the 
excessive and chattering control effort induced by the 
examiner controller cou , the modified recurrent Gegenbauer 

OPNN controller rmu  and the reimbursed controller 1ru  

are introduced to reduce and smooth the control effort when 
the system state is inside a predefined bound region. The 
modified recurrent Gegenbauer OPNN controller rmu  is the 

main tracking controller, which used to mimic an ideal 

control law *
1u . The reimbursed controller 1ru  is designed 

to compensate the difference between the ideal control law 
*
1u  and the modified recurrent Gegenbauer OPNN controller 

rmu . Since the examiner control system cou caused the 

excessive and chattering effort, the modified recurrent 
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Gegenbauer OPNN controller rmu  and the reimbursed 

controller 1ru  are proposed to reduce and smooth the control 

effort when the system states are inside a predetermined 
bound area. When the modified recurrent Gegenbauer OPNN 
approximation properties cannot be ensured, the examiner 
control system cou  is able to take action. The design of the 

blend modified recurrent Gegenbauer OPNN control system 
is necessary for the divergence of the states to pull the states 
back to a predetermined bound region and guarantee the 

stability of the system. The control law 1u of the blend 

modified recurrent Gegenbauer OPNN control system 

uniformly approximates the ideal control law *
1u  inside the 

bound region. 

A. Design of the Examiner Control System 

First, the error equation from (11) to (15) can be obtained as:  

11
*
11 ][ Buuuueke rrmco        (16) 

Then the Lyapunov function candidate is defined as: 

2/2
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                 (17) 

Differentiating (17) with respect to time and using (16) 
results in: 
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To satisfy 01 S , the examiner control system cou is 

designed as: 
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where )sgn(   is a sign function. In addition,

),(11 rr DA    and 21 )( DTTTTC unprarl  . Then 

the operator index can be denoted as: 
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in which H is the boundary constant specified by the 

designer. The parameter value of H in this study is unity 

according to the system character. Substituting (19) into (18) 

and using (20) with 1coI  results in: 
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Using the examiner control system cou , as shown in (19), 

the inequality 01 S  can be obtained for a nonzero value of 

the tracking error vector e when HS 1 . With the results  

 

 

Fig. 3. Block diagram of the blend modified recurrent 
Gegenbauer Gegenbauer OPNN control system and amended 
ABC optimization [2]. 
 

from (21), the examiner control system cou is able to drive 

the tracking error to zero without using the modified 

recurrent Gegenbauer OPNN controller rmu  or the 
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examiner control system cou  can result in excessive and 
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controller 1ru  are designed to overcome this drawback. The 
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used to imitate the ideal control law *
1u . Then the 
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difference between the ideal control law *
1u  and the 

modified recurrent Gegenbauer OPNN controller rmu . 
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Fig. 4. Structure of the three-layer modified recurrent 
Gegenbauer OPNN. 

 
layer, a hidden layer and an output layer), as shown in Fig. 4, 
can be expressed as: 
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where ex rc  1
1  

and ezex Δ)1( 11
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are the 

speed error and the speed error change, respectively. 1
ikv  

and 2
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are the recurrent weight and the connective weight. 

N denotes the number of iterations. The Gegenbauer 

orthogonal polynomial [24-26] )(xGn
  is the argument of 

the polynomials with 11  x ; where 
 

and n are the 

number of the order and the order of the expansion, 

respectively. m is the number of nodes.  is the 

self-connecting feedback gain of the hidden layer between 0 
and 1. The zero, first and second order Gegenbauer 
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2 xxG ,  respectively. 

The higher order Gegenbauer orthogonal polynomials may be 
generated by the recursive formula given by  

nxGnxxGnxG nnn /)]()22()()1(2[)( 21
    . 

1
if , 3

kf  is the activation function which is selected as a 

linear function. The output )(3 Nyu krm   of the modified 

recurrent Gegenbauer OPNN controller can be denoted as: 

   TT
mmkrm xxvvNyu  
3

1
3
0

2
1,1

2
10

3 )(     (25) 

where  Tmvv 2
1,1

2
10    are the adjustable weight 

parameter vectors of the modified recurrent Gegenbauer 

OPNN, and  Tmxx 3
1

3
0    are the input parameter 

vectors in the output layer, in which 3
jx  is determined by the 

selected Gegenbauer orthogonal polynomials and 10 3  jx . 

C. Design of the Reimbursed Controller and the 
Adaptation Law 

Third, to develop the reimbursed controller 1ru , the 

approximation error 
 

can be defined as: 

 T
rm uuu )( **

1
**

1 
 
          (26) 

in which *
 

is the ideal weight vector to reach the 
minimum approximation error. It is assumed that the absolute 
value of   is less than a small positive number  , i.e., 

  . By substituting (25) and (26) into (16), the error 

dynamic equation from (16) can be rewritten as: 

11
***

11

11
*
11

])[(

][

Buuuuuuek

Buuuueke

rcormrmrm

rrmco




 

11
*

1 ])([ Buuek cor
T          (27)

 
Then, the Lyapunov function is selected as: 

)2/()()(2/)( 1
**2

2   TetS        (28) 

Taking derivative of (28) and using (27), then (28) can be 
rewritten as: 

1
*

1
*

11
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


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
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eB

eBuuektS


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     (29) 

Then the adaptation law   and the reimbursed controller 

1ru  can be designed as follows:  

eB11  
  

              (30) 

)sgn( 11 eBur 
 
            (31) 

in which 1  and   are the learning rate and the gain, 

respectively. Substituting (19) with 0coI , (30) and (31) into 

(29), then (29) can be represented as: 

eBektS 1
2

12 }{)(   2
1ek 0     (32) 

From (32), )(2 tS  is a negative semi-definite, i.e. 

)0()( 22 StS  . This implies that e  and )( *    are 

bounded. In addition, the function )(t
 

is defined as 

2
12 )()( ektSt   , and it is a uniformly continuous 

function. It is denoted that 0)(lim 


t
t

  by using Barbalat’s 

lemma [49], [50]. Then 0)( te  as t .  

D. Online Parameter Training Methodology  
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Finally, the online parameter training methodology of the 
modified recurrent Gegenbauer OPNN can be derived and 
trained effectively according to the Lyapunov stability 
theorem. The parameter of the adaptation law   shown in 

(30) can be rewritten as: 

eByv jkj 1
2

1
2               (33) 

Then the cost function is defined as: 

2/2
1 eR                   (34) 

The adaptation law of the weight using the gradient descent 
method can be represented as: 
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      (35) 

Comparing (33) with (35), yields 1
3

1 / eByR k  . The 

adaptation law of the recurrent weight 1
ikv  using the 

gradient descent method can be updated as: 

)1()()( 312
121

1
2

1  NyNxGveB
v

R
v kijkj

ik
ik



   (36) 

where 2  is the learning rate. In order to obtain a better 

convergence, the amended ABC optimization is proposed to 

adjust two better learning rates 1 and 2  of the weights in 

the modified recurrent Gegenbauer OPNN. 

E. Amended ABC Optimization 

The general algorithmic structure of ABC optimization 
[32-35] consists of an initialization phase, a worker bee phase, 
an onlooker bee phase and a scout bee phase. Firstly, two 
food sources (solutions), i.e. two learning rates, in the 
initialization phase are randomly initialized as follows: 

Dimiiiiim ,,2,1,2,1),( min,max,min,,   (37) 

where im , is the value of the i dimension of the m solution. 

max,i and min,i represent the lower and upper bounds of 

the parameter 
im , . i  is a random number within the 

range [0,1]. Then, the obtained solutions are evaluated and 
the objective function values of the clustering problem are 

calculated as 
1

1
, /)(

1

nef
n

j
jimj 


 , where 1n  is the 

maximum cycle number (MCN). )( ,imjf   is the objective 

function value. je is the tracking error between the desired 

rotor speed c
 
and the actual rotor speed r

 
at j 

dimension of the m solution. 
Secondly, the worker bee behavior in the worker bee phase 

is to find a better solution within the neighborhood of the 

solution ( im , ). In the ABC optimization algorithm, this 

neighbor solution is determined as follows: 

MkDim

ikimimimim

,,2,1,,,2,1,2,1

],[ ,,,,,

 

        (38) 

where ik ,  is a solution selected randomly. i is a randomly 

chosen dimension, and im,  is a random number within the 

range [-1, 1]. After producing the new candidate solution 

im, , its profitability is calculated. Then, a greed based 

selection is applied between im,  and
im , . The fitness 

)( ,imfit  of a solution can be calculated from its objective 

function value )( ,imjf   as follows: 
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Thirdly, an onlooker in the onlooker bee phase chooses a 
food source to exploit depending on this information. In the 
ABC optimization algorithm, by using the fitness )( ,imfit   

of the solutions, the probability value mz  can be calculated 

as follows: 






1

1
,

,
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N

m
im

im
m

fit

fit
z




              (40) 

After a solution is selected, as in the worker bee phase, a 
neighbor solution is determined by using (38), and its fitness 
value is computed. Then, a greed based selection is applied 

between im,  and im , . Therefore, by attracting more 

onlookers to richer sources, positive feedback behavior 
appears. Finally, at the end of every cycle, trial counters of all 
of the solutions are controlled. If an abandonment is detected, 
the related worker bee is converted to a scout and takes a new 
randomly produced solution using (37). To balance the 
positive feedback in the scout bee phase, a negative feedback 
behavior arises. However, in the standard ABC optimization 
algorithm, this difference is not considered and artificial 
worker bees and onlookers determine a new candidate 
solution by using the same formula as (38). Meanwhile, the 
ABC optimization method possesses a slower convergence. 
Therefore, the amended ABC optimization algorithm [2] 
from (38) with an inertia weight is introduced for the 
behavior of onlookers. The amended ABC optimization 
algorithm [2] is given as follows:  

MkDim

ik
a

imim
a

imim
a

im

,,2,1,,,2,1,2,1

],[ ,,,,,,

 

 
       

(41) 

)1( 1,,1,,   imimimim 
         

  (42) 

In this formula, a
im,  represents the best solution among 

the neighbors of a
im ,  and itself with respect to two 

learning rates 2,1, mm . A similarity measure in terms of 
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the structure of the solutions can be used to determine a 

neighborhood for a
im , . At this point, in order to define an 

appropriate neighborhood, different approaches can be used. 
In addition, for different representations of the solutions, 
different similarity measures can be defined. Hence, using the 
amended formula equations (41) and (42), a combinatorial 
problem can also be optimized using the amended ABC 
optimization algorithm [2]. For example, the neighborhood of 

a solution a
im ,  can be defined considering the mean 

Euclidean distance imE ,  between a
im ,  and the rest of the 

solutions for the numerical optimization problems. The 

Euclidean distance imE ,  between a
im ,  and ik ,  can be 

calculated as: 

DiE ik
a

im

Di

i
im ,,2,1,])([ 5.02

,,
1

, 



     (43) 

If there is a solution where the Euclidean distance from
a

im ,  is less than the mean Euclidean distance 
iNmE ,
, it 

can be accepted as a neighbor of a
im , . Based on the 

probability selection mechanism, if solutions are feasible, 
they are selected proportionally to their fitness values. 
Meanwhile, if solutions are infeasible, they are selected based 
on their constraint violation values. Onlooker bees produce 
modifications of the position of the selected solution using 
equations (41) and (42). The first and second terms in these 
equations are for improved exploration, and third term directs 
the search toward the best solution, which enhances the 
exploitation ability. Then the best solution, which is 
memorized, can be achieved. 

 

IV. EXPERIMENTAL RESULTS 

The whole structure of the six-phase CRIM driving CVT 
system by means of a TMS320F28335 DSP control system 
and a mixed signal FPGA system is shown in Fig. 2. A photo 
of the experimental setup is shown in Fig. 5. The proposed 
control algorithm was executed using the TMS320F28335 
DSP control system including 16 channel 12-bit 
analog-to-digital (A/D) converters, 18 programmable PWM 
ports, 6 channel high-resolution PWM ports and 2 quadrature 
encoder interfaces.  

A flowchart of the executed control methodologies with 
real-time implementation by means of a DSP control system 
and a mixed signal FPGA system is comprised of the main 
program and the interrupt service routine (ISR) as shown in 
Fig. 6. In the main program, the parameters and input/output 
(I/O) initialization are processed first. Then, the interrupt 
interval for the ISR is set. After enabling the interrupt, the 
main program is used to monitor the control data. An ISR 
with a 2 ms sampling interval is used for reading the rotor 
position of the six-phase CRIM driving CVT system from 

 

Fig. 5. A photo of the experimental setup. 
 

the encoder and for reading the six-phase current from the 
A/D converters. It is also used for calculating the rotor 
position and speed, executing the lookup table and coordinate 
translation, executing the PI current control, executing the 
proposed control system, and outputting the six-phase 
sinusoidal PWM signal to switch the six sets of IGBT power 
modules voltage source inverter with a switching frequency 
of 15 kHz via the interlock and isolated circuits.  

The two identifiers si_d and si_dmax, shown in Fig. 6, are 
provided to execute the indirect field-oriented control by the 
mixed signal FPGA system. The identifier si_a is provided to 
execute the proposed control scheme by the TMS320F28335 
DSP control system. The two initial values si_d and si_a are 
set to zero. The initial value si_dmax is set to five. When the 
indirect field-oriented control executed by the mixed signal 
FPGA system is implemented less than five times, i.e., 
si_d<si_dmax, the indirect field-oriented control must be 
continuously executed by the mixed signal FPGA system. 
When the proposed control scheme executed by the 
TMS320F28335 DSP control system is implemented one 
time, the identifier si_a is set to 1, i.e., si_a=1. Then the 
procedure returns to the original starting point. Therefore, the 
indirect field-oriented control executed by the mixed signal 
FPGA system is implements five times, then the proposed 
control scheme executed by the TMS320F28335 DSP control 
system is implemented one time. This procedure is 
implemented online by the TMS320F28335 DSP control 
system and the mixed signal FPGA system. 
The specification of the six-phase CRIM are: six-phase 48 V, 

1.5 kW, and 3458 rpm. The parameters of the six-phase 

C R I M  a r e  g i v e n  a s  f o l l o w s : ANmk a /86.0 , 

NmsJ a
3

1 1015.45  ,  radNmsB a /1012.2 3
1

 , 

,52.4 mHL ss   ,32.4 mHL rr   ,64.2 mHL M    
 2.2sr , and  8.1'rr . Owing to the inherent 

uncertainty in the CVT system (e.g. the lumped nonlinear 
external disturbances and parameter variations) and the 
output current limitation of the battery capacity, the six-phase 
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Fig. 6. Flowchart of the executing program by using DSP control 
system and mixed signal FPGA system. 

 
CRIM can only operate at 314 rad/s (3000 rpm) to avoid 
burning the IGBT module of the CVT system at high speed 
perturbations. 

Two experimentation tests are provided to compare the 
control performances of the PI controller, the three-layer 
feedforward NN control system and the blend modified 
recurrent Gegenbauer OPNN control system using an 
amended ABC optimization [2]. One is the 157 rad/s (1500 
rpm) case under lumped nonlinear external disturbances with 

parameter variations 111 u
l TTT  , and the other is the 

314 rad/s (3000 rpm) case under lumped nonlinear external 
disturbances with two times the parameter variations 

111 2 u
l TTT  .  

Firstly, all of the gains of the well-known PI controller 
through some heuristic knowledge [46-48] on the tuning of PI 
controllers are 1.15psk  and 2.3/  ispsis Tkk  in the 

157 rad/s (1500 rpm) case under lumped nonlinear external 

disturbances with parameter variations 111 u
l TTT   for 

the speed tracking to achieve good transient and steady-state 
control performance. Secondly, the three-layer feedforward 

NN control system has two, three, and one neurons in the 
input, the hidden, and the output layers, respectively. It 
adopts the sigmoid activation function in the input layer and 
the hidden layer. Moreover, the connective weight between 
the input layer and the hidden layer, and the connective 
weight between the hidden layer and the output layer in the 
three-layer feedforward NN are initialized with random 
numbers. All of the learning rates of the two kinds of 
connective weights are chosen as fixed constants. The 
parameter adjustment process remains continually active for 
the duration of the experimentation. The gains of the 
three-layer feedforward NN control system are chosen to 
achieve the best transient control performance while 
considering the requirement of stability. Thirdly, the control 
gains of the blend modified recurrent Gegenbauer OPNN 
control system using an amended ABC optimization [2] are 

1.0,5.0   . All of the control gains of the blend 

modified recurrent Gegenbauer OPNN control system using 
an amended ABC optimization [2] are chosen to achieve the 
best transient control performance while considering the 
requirement of stability. The parameter adjustment process 
remains continually active for the duration of the experiment. 
The structure of the modified recurrent Gegenbauer OPNN 
controller has two nodes, three nodes, and one node in the 
input layer, the hidden layer, and the output layer, 
respectively. 

The tracking responses of the command rotor speed *
c , 

the desired command rotor speed c , and the measured rotor 

speed 1  using the well-known PI controller, the  

three-layer feedforward NN control system and the blend 
modified recurrent Gegenbauer OPNN control system with 
an amended ABC optimization [2] for the six-phase CRIM 
driving CVT system at 157 rad/s (1500 rpm) under lumped 
nonlinear external disturbances and with parameter variations 

111 u
l TTT   are shown in Figs. 7(a), 7(b) and 7(c), 

respectively. The tracking responses of the speed error e  

while using the well-known PI controller, the three-layer 
feedforward NN control system and the blend modified 
recurrent Gegenbauer OPNN control system with an 
amended ABC optimization [2] for the six-phase CRIM 
driving CVT system at 157 rad/s (1500 rpm) under lumped 
nonlinear external disturbances and with parameter variations 

111 u
l TTT   are shown in Figs. 8(a), 8(b) and 8(c), 

respectively.  
The maximum errors of e  while using the well-known PI 

controller, the three-layer feedforward NN control system and 
the blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2] at 157 rad/s 
(1500 rpm) under lumped nonlinear external disturbances and 

with parameter variations 111 u
l TTT   are 9.5 rad/s (91 

rpm), 7.5 rad/s (72 rpm) and 4.5 rad/s (43 rpm), respectively;   
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Fig. 7. Experimental results of tracking response of the command 

rotor speed *
c , desired command rotor speed c , and 

measured rotor speed r  for the six-phase CRIM driving CVT 

system at 157 rad/s (1500 rpm) case under lumped nonlinear 
external disturbances and with parameter variations 

111 u
l TTT  . (a) Using the well-known PI controller. (b) 

Using the three-layer feedforward NN control system. (c) Using 
the blend modified recurrent Gegenbauer OPNN control system 
with an amended ABC optimization [2]. 

 
and RMS errors of e  are 5.0 rad/s (48 rpm), 3.5 rad/s (33 

rpm) and 2.0 rad/s (19 rpm), respectively. 

The responses of the command electromagnetic torque 1T  

while using the well-known PI controller, the three-layer 
feedforward NN control system and the blend modified 
recurrent Gegenbauer OPNN control system using an 
amended ABC optimization [2] for the six-phase CRIM 
driving CVT system at 157 rad/s (1500 rpm) under lumped 
nonlinear external disturbances and with parameter variations 

111 u
l TTT   are shown in Figures 9(a), 9(b) and 9(c), 

respectively. Because low speed operation is the same as the 

nominal case which is lTT 11   operation because of 

smaller disturbances, the tracking responses of the speed and 
current while using the well-known PI controller, the 
three-layer feedforward NN control system and the blend 
modified recurrent Gegenbauer OPNN control system with  

 
Fig. 8. Experimental results of tracking responses of the speed 
error e  for the six-phase CRIM driving CVT system at 157 
rad/s (1500 rpm) case under lumped nonlinear external 

disturbances and with parameter variations 111 u
l TTT  . (a) 

Using the well-known PI controller. (b) Using the three-layer 
feedforward NN control system. (c) Using the blend modified 
recurrent Gegenbauer OPNN control system with an amended 
ABC optimization [2]. 

 

an amended ABC optimization [2] for the six-phase CRIM 
driving CVT system has better tracking performance. 

In addition, the tracking responses of the command rotor 

speed *
c , the desired command rotor speed c , and the 

measured rotor speed r  while using the well-known PI 

controller, the three-layer feedforward NN control system and 
the blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2] for the 
six-phase copper rotor IM servo-drive CVT system at 314 
rad/s (3000 rpm) under lumped nonlinear external 
disturbances and with two times the parameter variations 

111 2 u
l TTT   are shown in Figs. 10(a), 10(b) and 10(c), 

respectively.  
The tracking responses of the speed error e  while using 

the well-known PI controller, the three-layer feedforward NN 
control system and the blend modified recurrent Gegenbauer 
OPNN control system with an amended ABC optimization [2] 
for the six-phase copper rotor IM driving CVT system at 
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Fig. 9. Experimental results of responses of the command 
electromagnetic torque 1T  for the six-phase CRIM driving 

CVT system at 157 rad/s (1500 rpm) case under lumped 
nonlinear external disturbances and with parameter variations 

111 u
l TTT  . (a) Using the well-known PI controller. (b) 

Using the three-layer feedforward NN control system. (c) Using 
the blend modified recurrent Gegenbauer OPNN control system 
with an amended ABC optimization [2]. 

 
314 rad/s (3000 rpm) under lumped nonlinear external 
disturbances and with two times the parameter variations 

111 2 u
l TTT   are shown in Figs. 11(a), 11(b) and 11(c), 

respectively. The tracking response of the speed shown in 
Figs. 10(a) leads to degenerate tracking in the presence of 
larger nonlinear disturbances (e.g. rolling resistance, wind 
resistance, and parameter variation) under high speed 
operation. A sluggish tracking response of the speed is 
obtained for the six-phase CRIM driving CVT system using 
the well-known PI controller. The linear controller has weak 
robustness under larger nonlinear disturbances due to the lack 
of appropriately gains tuning or the lack of a degenerate 
nonlinear effect. 

The maximum errors of e  while using the well-known PI 

controller, the three-layer feedforward NN control system and 
the blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2] at 314 rad/s 
(3000 rpm) under lumped nonlinear external disturbances and 

 
Fig. 10. Experimental results of tracking response of the 
command rotor speed *

c , desired command rotor speed c , 

and measured rotor speed r  for the six-phase CRIM driving 

CVT system at 314 rad/s (3000 rpm) case under lumped 
nonlinear external disturbances and with two times  the 

parameter variations 111 2 u
l TTT  . (a) Using the well-known 

PI controller. (b) Using the three-layer feedforward NN control 
system. (c) Using the blend modified recurrent Gegenbauer 
OPNN control system with an amended ABC optimization [2]. 

 

with two times the parameter variations 111 2 u
l TTT  are 

22.8 rad/s (218 rpm), 9.5 rad/s (91 rpm) and 5.2 rad/s (50 
rpm), respectively; and RMS errors of e  are 6.5 rad/s (62 

rpm), 3.5 rad/s (33 rpm) and 2.5 rad/s (24 rpm), respectively.       
The responses of the command electromagnetic torque 1T  

while using the well-known PI controller, the three-layer 
feedforward NN control system and the blend modified 
recurrent Gegenbauer OPNN control system with an 
amended ABC optimization [2] for the six-phase CRIM 
driving CVT system at 314 rad/s (3000 rpm) under lumped 
nonlinear external disturbances and with two times the 

parameter variations 111 2 u
l TTT   are shown in Figs. 

12(a), 12(b) and 12(c), respectively. Additionally, the 
dynamic response of the command electromagnetic torque 
shown in Fig. 12(b) while using three-layer feedforward NN 
control system generates a high torque ripple in the CVT 
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Fig. 11. Experimental results of tracking responses of the speed 
error e  for the six-phase CRIM driving CVT system at 314 
rad/s (3000 rpm) case under lumped nonlinear external 
disturbances and with two times the parameter variations

111 2 u
l TTT  . (a) Using the well-known PI controller. (b) 

Using the three-layer feedforward NN control system. (c) Using 
the blend modified recurrent Gegenbauer OPNN control system 
with an amended ABC optimization [2]. 

 

system under nonlinear disturbances such as V-belt shaking 
friction and action friction between the primary pulley and 
the secondary pulley. Meanwhile, the electromagnetic torque 

1T while using the blend modified recurrent Gegenbauer 

OPNN control system with an amended ABC optimization [2] 
generates a lower torque ripple, as shown in Fig. 12(c). 

The tracking response of the speed while using the blend 
modified recurrent Gegenbauer OPNN control system and an 
amended ABC optimization [2] are shown in Figs. 7(c) and 
10(c) under larger lumped nonlinear external disturbances 
and parameter variations. Accurate tracking performance was 
achieved for the six-phase CRIM driving CVT system when 
the blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2] was used, 
because of the online adaptive mechanism of the modified 
recurrent Gegenbauer OPNN and the operation of the 
recompensed controller. The dynamic response of the 
command electromagnetic torque 1T  shown in Fig. 12(c) 

brings about a lower torque ripple due to the online 

 
Fig. 12. Experimental results of responses of the command 
electromagnetic torque 1T  for the six-phase CRIM driving 

CVT system at 314 rad/s (3000 rpm) case under lumped 
nonlinear external disturbances and with two times the parameter 

variations 111 2 u
l TTT  . (a) Using the well-known PI 

controller. (b) Using the three-layer feedforward NN control 
system. (c) Using the blend modified recurrent Gegenbauer 
OPNN control system with an amended ABC optimization [2]. 

 
adjustment of the modified recurrent Gegenbauer OPNN to 
cope with the high-frequency unmodelled dynamic of the 
CVT system’s nonlinear disturbances, such as V-belt shaking 
friction and action friction between the primary pulley and 
the secondary pulley. Therefore, these experimental results 
show that the blend modified recurrent Gegenbauer OPNN 
control system with an amended ABC optimization [2] has 
better control performance than the well-known PI controller 
and the three-layer feedforward NN control system at high 
speed perturbations and lumped nonlinear external 
disturbances for the six-phase CRIM driving CVT system. 

In addition, the convergence responses of the two varied 
learning rates 1  and 2  of the modified recurrent 

Gegenbauer orthogonal polynomial NN using an amended 
ABC optimization [2] at 157 rad/s (1500 rpm) under lumped 
nonlinear external disturbances and with parameter variations 

111 u
l TTT  ; and at 314 rad/s (3000 rpm) under lumped 

nonlinear external disturbances and with two times the 
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Fig. 13. Experimental results of convergence responses for the 
modified recurrent Gegenbauer OPNN control system using an 
amended ABC optimization [2]: (a) learning rates 1  at 157 

rad/s (1500 rpm) under lumped nonlinear external disturbances 

and with parameter variations 111 u
l TTT   . (b) Learning 

rates 2  at 157 rad/s (1500 rpm) under lumped nonlinear 

external disturbances and with parameter variations 

111 u
l TTT  . (c) Learning rates 1  at 314 rad/s (3000 rpm) 

under lumped nonlinear external disturbances and with two times  

the parameter variations 111 2 u
l TTT  . (d) Learning rates 

2  at 314 rad/s (3000 rpm) under lumped nonlinear external 

disturbances and with two times the parameter variations

111 2 u
l TTT  . 

 

parameter variations 111 2 u
l TTT   are shown in Figs. 

13(a), 13(b) and Figs. 13(c), 13(d), respectively. The 
convergence responses of the two varied learning rates 1  

 
 

Fig. 14. Experimental results of speed-adjusted response of the 

command rotor speed *
c  and the measured rotor speed r  

under 111 )(2 ua
l TTNmT   load disturbances with adding load 

at 314 rad/s (3000 rpm). (a) Using the well-known PI controller. 
(b) Using the three-layer feedforward NN control system. (c) 
Using the blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2]. 

 
and 2  of the modified recurrent Gegenbauer OPNN using 

an amended ABC optimization [2] have faster convergence 
speed than the two fixed learning rates of the modified 
recurrent Gegenbauer OPNN. From the above results, it can 
be easily observed that the proposed amended ABC 
optimization can provide a more accurate optimal solution 
and converges to the criteria with a higher probability than 
the conventional ABC optimization. 

Finally, the conditions under load torque disturbances and 
parameter variations 

111 )(2 ua
l TTNmT   while adding a 

load at measured rotor speed responses are tested. The 
measured rotor speed response of the load regulation when 
the well-known PI controller, the three-layer feedforward NN 
control system, and the blend modified recurrent Gegenbauer 
OPNN control system with an amended ABC optimization [2] 
were used under load torque disturbances and parameter 

variations 111 )(2 ua
l TTNmT   while adding a load at 314 

rad/s (3000 rpm) are shown in Figs. 14(a), 14(b) and 14(c), 
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Fig. 15. Experimental results of response of the measured current 

1ai  in phase a1 under 111 )(2 ua
l TTNmT   load disturbances 

with adding load at 314 rad/s (3000 rpm). (a) Using the 
well-known PI controller. (b) Using the three-layer feedforward 
NN control system. (c) Using the blend modified recurrent 
Gegenbauer OPNN control system with an amended ABC 
optimization [2]. 

 
respectively. 

Experimental results of the measured current in phase a1 
when the well-known PI controller, the three-layer 
feedforward NN control system, and the blend modified 
recurrent Gegenbauer OPNN control system with an 
amended ABC optimization [2] were used under load torque 

disturbances and parameter variations 111 )(2 ua
l TTNmT   

when adding a load at 314 rad/s (3000 rpm) are shown in 
Figs. 15(a), 15(b) and 15(c), respectively. These experimental 
results show that the degenerated responses under load torque 

disturbances and parameter variations 111 )(2 ua
l TTNmT   

while adding a load are considerably improved when the 
blend modified recurrent Gegenbauer OPNN control system 
with an amended ABC optimization [2] is used. Moreover, 
the transient response of the blend modified recurrent 
Gegenbauer OPNN control system with an amended ABC 
optimization [2] shows a faster convergence and a more 
favorable load regulation than that of the well-known PI 
controller and the three-layer feedforward NN control system. 

TABLE I 
PERFORMANCE COMPARISONS OF CONTROL SYSTEMS 

Control 
System

 
 
 
Characteristic 
Performance 

Well-Known 
PI 
Controller 

Three-layer 
Feedforward 
NN Control 
System  

Blend Modified 
Recurrent 
Gegenbauer 
OPNN Control 
System with an 
Amended ABC 
Optimization [2]

Dynamic 
Response 

Slow Fast Faster  

Load Regulation 
Capability 

Poor Good Best 

Convergence 
Speed  

Low Middle  High  
 

Torque Ripple 
(V-belt Shaking 
Friction, Action 
Friction between 
the Primary 
Pulley and the 
Secondary 
Pulley) 

High 
(5% of 
(maximum 
torque-mini
mum 
torque)/aver
age torque)

Middle 
(2.5% of 
(maximum 
torque-minimu
m 
torque)/averag
e torque) 

Low 
(1% of 
(maximum 
torque-minimum 
torque)/average 
torque) 

 

In addition, a characteristic performance comparison 
between the well-known PI controller, the three-layer 
feedforward NN control system and the blend modified 
recurrent Gegenbauer OPNN control system with an 
amended ABC optimization [2] is presented in Table 1 on the 
basis of experimental results. The values of the dynamic 
response while using the well-known PI controller, the 
three-layer feedforward NN control system and the blend 
modified recurrent Gegenbauer OPNN control system with 
an amended ABC optimization [2] at 314 rad/s (3000 rpm) 
under lumped nonlinear external disturbances and with two 

times the parameter variations 111 2 u
l TTT   are 0.5 s, 

0.25 s and 0.1 s, respectively. The values of the torque ripple 
while using the well-known PI controller, the three-layer 
feedforward NN control system and the proposed blend 
modified recurrent Gegenbauer OPNN control system with 
an amended ABC optimization [2] at 314 rad/s (3000 rpm) 
under lumped nonlinear external disturbances and with two 

times the parameter variations 111 2 u
l TTT   are 5%, 2.5% 

and 1% of the (maximum torque-minimum torque)/average 
torque, respectively. In Table I, the various performances of 
the blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2] is superior to 
those of the well-known PI controller and the three-layer 
feedforward NN control system. 

 

V. CONCLUSIONS 

A blend modified recurrent Gegenbauer OPNN control 
system using an amended ABC optimization [2] with robust 
control characteristics has been successfully developed for 
the purpose of controling six-phase CRIM driving CVT 
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systems. The blend modified recurrent Gegenbauer OPNN 
control system with an amended ABC optimization [2] can 
perform overseer control based on the uncertainty bounds of 
the controlled system on the basis of the uncertainty bounds 
of the controlled system. In addition, it was designed to 
stabilize the system states within a predetermined bound area. 
The blend modified recurrent Gegenbauer OPNN control 
system with an amended ABC optimization [2], which can 
perform overseer control, modified recurrent Laguerre OPNN 
control and recompensed control, was proposed to reduce and 
smooth the control effort when the system states are within a 
predetermined bound area. 

The main contributions of this study are as follows: 1. 
simplified dynamic models of a CVT system driven by a 
six-phase CRIM with unknown nonlinear and time-varying 
characteristics were successfully derived, 2. the blend 
modified recurrent Gegenbauer OPNN control system with 
an amended ABC optimization [2] for a six-phase CRIM 
driving CVT system under the occurrence of lumped 
nonlinear load disturbances was successfully applied to 
enhance robustness, 3. the adaptation law of online 
parameters tuning in the modified recurrent Gegenbauer 
OPNN and the estimation law of the reimbursed controller 
were successfully derived using the Lyapunov stability 
theorem, 4. an amended ABC optimization was used to 
successfully apply two varied learning rates for the 
connective weights and recurrent weights in the modified 
recurrent Gegenbauer OPNN for achieving faster 
convergence, 5. the blend modified recurrent Gegenbauer 
OPNN control system with an amended ABC optimization 
[2], has an improved online learning capability for quickly 
capturing the nonlinear and time-varying behavior of a 
system, and 6. the blend modified recurrent Gegenbauer 
OPNN control system with an amended ABC optimization [2] 
has a lower torque ripple than the well-known PI controller 
and the three-layer feedforward NN control. 

Finally, the control performance of the blend modified 
recurrent Gegenbauer OPNN control system using an 
amended ABC optimization [2] is better suited to six-phase 
CRIM driving CVT systems when compared with the 
well-known PI controller and the three-layer feedforward  
NN control.  
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