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Abstract 

 

This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust 
coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal 
with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and 
experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows 
better coordination performance than traditional proportional–integral controllers. 
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I. INTRODUCTION 

The use of coupling multi-motor systems (CMMSs) in 
industry, agriculture, and transportation is steadily increasing. 
Coupling multi-motor systems require good coordination to 
achieve good production quality, reduce contouring errors, and 

improve the operation security of systems. In recent decades, 

many coordination control strategies have been designed for 
multi-motor systems. The work in [1] developed a chaotic 
speed synchronization controller for multiple induction motors 
using stator flux regulation. In [2], a cross-coupled intelligent 
complementary sliding mode control for dual linear motor 
servo systems was proposed on the basis of a Takagi–Sugeno–
Kang-type fuzzy neural network estimator. The work in [3] 
simplified the control structure by presenting an adjacent 
cross-coupling control architecture incorporating sliding mode 
control for multiple induction motors. In [4], precision motion 
control was achieved by combining individual axis iterative 
learning control (ILC) and cross-coupled ILC into a single 
control input. To track different desired trajectories, the work 

in [5] exploited a generalized synchronization controller for 
multi-axis motion systems by integrating cross-coupling 
technology into optimal control architecture. In [6], an optimal 
synchronization for high-precision motion system was 
designed by introducing coupling and synchronization factors 
into the synchronization error. Many other control strategies 
have been adopted in this field, and they include adaptive 
control [7]-[9], fuzzy control [10], [11], electronic line-shafting 
control [12], [13], robust control [14]-[19], neural network 
control [20], gain-scheduled control [21], and model-free 
control [22]. 

Compared with asynchronous induction motors, electrical 
excited synchronous motors (EESMs) achieve higher 
efficiency, power density, and so on. EESMs are applied in 
many fields, such as in mine-hoisting, metallurgy, metal-rolling, 
and marine propulsion, particularly in the field of high-power 
industrial drives. The present work explores the coordination 
control of multiple EESMs. 

The dynamic model of driving devices is seldom or never 
considered in CMMSs when controllers are designed [2], [5], 
[12], [13], [16]–[21]. If the dynamic model of a driving device 
is fully considered, the dynamic performance of a system 
significantly improves. Therefore, a multiple externally excited 
synchronous motor system is studied in the current work. A 
dynamic model of an EESM is considered to improve the 
dynamic performance of the studied system. 
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When a parameter is uncertain or changes with time, an 
interval matrix is normally introduced [23], [24]. Confined by 
supply voltage and protection equipment, the current and speed 
of an EESM are limited to a rated range. Although many 
coordination control strategies have been developed, cross 
coupling remains widely adopted in coordination controller 
design [2]. Interval matrix and the cross-coupling concept are 
introduced to design the controller of a multiple EESM system. 

This paper is organized as follows. The mathematical model 
of a multiple EESM system is presented in Section II. The 
coordination controller design is presented in Section III. The 
application of the proposed design in a high-power 
metal-rolling system is described in Section IV. Conclusions 
are given in Section V. 

 

II. MATHEMATICAL MODEL 

The following notations are used throughout the paper. I is 
the identity matrix with an appropriate dimension, and ie  is 

the ith column of matrix I . 0ij  denotes the zero matrix 

with i j  dimensions. 

If matrices [ ]m m
ij n nA a  and [ ]M M

ij n nA a  satisfy m M
ij ija a

for all 1 i n  and 1 j n  , then 

[ ] {[ ] : ,1 , }m M m M
ij ij ij ijA A a a a a i j n      can be defined. 

Assume n nA R   and [ ]m MA A A ; then, A  is an 

interval matrix. 

Lemma 1 [29]. For a given interval matrix [ ]m MA A A

and n nA R  , A  can be rewritten as 
*

0 , .A A E G     

where 0

1 1
( ), [ ] ( )

2 2
M m M m

ij n nA A A H h A A     . The 

elements in matrices mA  and MA  consist of the lower 

bound and upper bound of the elements in matrix A , 

respectively. Each element in matrix H  is nonnegative. 
2 2*

11 1 1

{ |

{ }

         1, , 1, , },

n n

n n nn

ij

R

diag

i j n

   



   


 

  



， 

11 1 1 1 1n n n nn nE h e h e h e h e       

211 1 1 1 1 .
T

n n n nn n
n n

G h e h e h e h e


       

Lemma 2 [24]. For any given interval matrix [ ]m MA A A , 

matrix 0

1
( )

2
M mA A A  , and 

1
[ ] ( )

2
M m

ij n nH h A A   , A  

can be written as 0
, 1

n
T

i ij j
i j

A A e f e


   , where ij ijf h . 

Lemma 3 [30] For any scalar 0   and real matrices X  

and Y with appropriate dimensions, the following inequality 
is established. 

Y .
T

T T TX X
X Y Y YX 


    

According to [31], the mathematical model of EESMs can 
be described as follows. 

2

,

1
,

1
,

(

f md sq fmd s md md
sd sq f sd f

sd f sd f f sd f sd f

sq md fsd s md
sd sq f sd f

sd sd sd f sd sd f

sq sdi s md
sd sq f sq

sqi sq sq sq

p
md f

di L L RL R L L
i i I u u

dt L L L L L L L L L

L L Rdi R L
i i I u u

dt L L L L L L L

di L R L
i i I u

dt L L L L

nd
L I i

dt J


    


    

 



    

     

    

 ( ) ) ,p p
sq md mq sd sq l

n n B
L L i i T

J J













    


(1) 
 

where sdL  and sqL  are the d- and q-axis self-inductions, 

respectively; mdL  and mqL  are the d- and q-axis 

inductances, respectively; fL is the excitation winding 

self-induction; 
2

1 md

sd f

L

L L
    is the leakage coefficient; fR  

is the excitation winding resistance; sR  is the stator 

resistance; pn  is the number of pole pairs; B  is the 

frictional coefficient; J  is the moment inertia; fi  is the 

excitation current; sdi  and sqi  are the d- and q-axis currents, 

respectively;   is the rotor angular speed; fu  is the 

excitation voltage; sdu  and squ  are the d- and q-axis input 

voltages, respectively; and lT  is the load torque. 

Remark 1. Damper winding is not considered in the 
aforementioned model. That is, damping winding is assumed 
to be constant in this work. 

If model error and disturbance are considered, the ith  

subsystem (i.e., motor i ) is described as 
 

         ,

1
          

fi mdi sqi fimdi si
sdi i sqi fi

i sdi fi i sdi fi i fi

mdi mdi
sdi fi fi

i sdi fi i sdi fi

sqi mdi fisdi si
sdi i sqi fi

i sdi i sdi i sdi fi

mdi
sdi

i sdi i

di L L RL R
i i i

dt L L L L L

L L
u u d

L L L L

L L Rdi R
i i i

dt L L L L

L
u

L


  

 


  

 

  

  

   

 

2

,

1
,

( ( ) )

           ,
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i
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i i

u d
L L

di L R L
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dt L L L L
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T d
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
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
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
   


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    (2) 

where sdiL  and sqiL  are the d- and q-axis self-inductions of 
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motor i , respectively; mdiL  and mqiL  are the d- and q-axis 

inductances of motor i , respectively; fiL  is the excitation 

winding self-induction of motor i ; 
2

1 mdi
i

sdi fi

L

L L
    is the 

leakage coefficient of motor i ; fiR  is the excitation 

winding resistance of motor i ; siR  is the stator resistance 

of motor i ; pin  is the number of pole pairs of motor i ; 

iB  is the frictional coefficient of motor i ; iJ  is the 

moment inertia of motor i ; fii  is the excitation current of 

motor i ; sdii  and sqii  are the d- and q-axis currents of 

motor i , respectively; i  is the rotor angular speed of 

motor i ; fiu  is the excitation voltage of motor i ; sdiu  and 

sqiu  are the d- and q-axis input voltages of motor i , 

respectively; liT  is the load torque of motor i ; fid , did , 

qid , and id  present the model error and/or disturbance; and 

subscript 1, ,i n  . 

As the changes in disturbance and load are usually slow, 
the following condition is often satisfied, similar to that in 
[25], [26]. 

0, 0, 0, 0, 0fi qidi i li
dd dddd dd dT

dt dt dt dt dt
          (3) 

The current and speed of each EESM are constrained by 
supply power, rated parameter, protection equipment, and so 
on. Thus, they are restricted to a certain range or “rated” 
range. Hence, the following assumptions are reasonable. 

, , ,m M m M m M m M
fi fi fi sdi sdi sdi sqi sqi sqi i i ii i i i i i i i i              (4) 

The state variables and control inputs of subsystem i  are 

chosen as 

5 1 0 0

3 1

[    ( ) ] ,

[     ]

t ti T
i j fi sdi sdi sqi i i i i

i T
i j fi di qi

X x i i i ds i ds

U u u u u

    





     

   

     (5) 

where i
  is the desired speed of the ith  subsystem and is 

a constant. 
Tracking error is defined as 

i i i                      (6) 

In coordination control, the desired speed of each motor 

may be different. i
  may not equal j  when i j . 

Scalars i
  and j  should be introduced to describe the 

coordination error of the ith motor and jth motor. The 
coordination error between the ith motor and the jth motor 
can be defined as 

ij j i i j                      (7) 

The mathematical model of subsystem i  is described as 

follows , according to (2) and (5). 

( )i
i i i i i i jX A X BU f x              (8) 

where 

0 0 0 0

0 0 0 0

0 1 0 0 0 0
,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1 0

fi mdi sqi si

i fi i sdi fi

mdi fi si

i sdi fi i sdi

i

si

sqi

pi i

i

R L L R

L L L

L R R

L L L

A
R

L

n B

J

 

 

 
 

 
 
 
 
 
   

 
 
 
  
 
  

1
0 0 0 0

1
0 0 0 0 ,

1
0 0 0 0 0

T

mdi

i fi i sdi fi

mdi
i

i sdi fi i sdi

sdi

L

L L L

L
B

L L L

L

 

 

 
 

 
 
  
 
 
 
  

4 5

4 5

1 2 5

15

( )

( )

( ) 0

( )( )

0

mdi sqi i i
fi

i sdi si
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i i imdi sdi
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L L
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, 

2
15

1 4 2 4( ( ) )pi pii i i i i
i mdi mdi mqi li i i

i i i

n n B
f L x x L L x x T d

J J J        

According to (8), the model of a multiple three-level 
EESM system is expressed as 

( )i
jX AX BU F x               (9) 

where  

 1 ,
T

i nX X X X    

 1 ,
T

i nU U U U    

1{ },i nA diag A A A    

1{ },i nB diag B B B    
1

1( ) { ( ) ( ) ( )}i i n
j j i j n jF x diag f x f x f x   . 

 

III. COORDINATION CONTROLLER DESIGN 

A coordination controller should be designed to ensure that 
the system achieves a good coordination performance and 
that each motor can track its own desired speed. The control 
structure of the system is described in Fig. 1. 

The auxiliary matrices are defined as 
0 0 0

0 1

5 5 1

{ },

[ ] { },
i n

ij n n i n

Q diag Q Q Q

Q q diag Q Q Q


      

 
 
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Fig. 1. Control structure of the system. 
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Theorem 1. For system (9), each EESM can track its own 
desired speed and maintain a good coordination with other 
motors under controller U KX  if there exist a symmetric 

and positive-definite matrix 6 61 n nP R  , matrix 3 6n nK R  , 
and positive scalar   such that the following BMI holds: 
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Proof: 
As robust control law is designed as U KX , (9) is 
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 
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 
 
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A Lyapunov function is chosen as 

1 1
T

cV Z PZ                  (14) 

According to Lemma 1, ( )i
jQ x  can be rewritten as 

0 1 1( ) ,i
jQ x Q E G                (15) 

where 
2 2* (5 ) (5 )

11 15 5 1 5 5{ | { }

1, , 1, ,5 }.

n n
n n n n

ij

R diag

i j n

   



    

 

  



，

The following equality is obtained via (13), (14), and (15). 

1 1 1 1 1 1 1

1 1 1 1 1 1

0 0( )

.

T T T T T
c

T T T T T

V Z A P P A K B P PBK Q P PQ Z

Z G E PZ Z PE G Z

     

 


 

According to Lemma 3 and T I   , inequation (16) is 
obtained. 

1 1 1 1 1 1 1

1 1 1 1
1 1

0 0(

)

T T T T T
c

T
T

V Z A P P A K B P PBK Q P PQ

PE E P
G G Z



     




(16) 

If 

1 1 1 1
1 1 1 1 10 01 1 1 0

T
T T T T T PE E P

A P P A K B P PBK Q P PQ G G


      

(17) 
the time derivative of the Lyapunov function 1cV  is negative. 

This result indicates that the system can be stabilized by the 
controller, i.e., each EESM can follow its desired speed, and 
the system remains coordinated. According to Schur 
complement theory, (17) can be rewritten as (10). This 
completes the proof of Theorem 1. 

Remark 1. The proposed controller is U KX , where 
3 6n nk R  ; thus, matrix K can be expressed as 

3 6[ ], , , 1,2,..., .ij ijK k k R i j n    

In this expression, ijk  is the feedback gain of motor j  to 

motor i  and iik  is the self-feedback gain of motor i . As 

each motor must track its own desired speed, 0iik   for 

1,2,... .i n  
If 0ijk  , then the signals of the state variables of motor j  

are not sent to motor i , in which case motor i  is not  

 
Fig. 2. Controller structure. 
 
influenced by motor j . If 0ijk  when i j , each motor 

only tracks its own desired speed without coordinating with 
the other motors. If every motor tracks its own desired speed 
and considers its coordination with other motors, then 0ijk   

for all , 1,2,...,i j n . If motor i  only considers the 

coordination with motor j , then let 0ijk   and 0ilk   

with ,l i j . 

Take three motors as an example. Motors 1 and 2 ,motors 2 
and 3 should achieve good coordination performance. Thus, 
we should let 13 0k  , 31 0k  , 12 0k  , 21 0k  , 23 0k  ,

32 0k  , and 0iik   with 1,2,3i  . 

If the cross feedback signals are enhanced in the proposed 
controller, the coordination performance consequently 
improves. As the controller design is based on the dynamic 
model of a drive motor and the current signal is used for cross 
feedback, the dynamic performance of the system is 
improved. A detailed description of the controller is 
presented in Fig. 2. 

Remark 2. The model error and disturbance are considered 
in the system model, thus giving the proposed control 
strategy strong robustness to the environment disturbance and 
perturbation parameters. The load information of two motors 
is not required in the proposed controller, which can thus deal 
with load uncertainty. 

Ten changeable elements make up iQ . According to 

Lemma 2, iQ  can be expressed as 
0

i i iQ Q M                    (18) 

where 

6 5 14 6 2 6 5 15 6 1 6 4 24 6 2 6 4 25 6 1 6 2

41 6 5 6 2 42 6 4 6 2 45 6 1

6 1 51 6 5 6 1 52 6 4 6 1 54 6 2 ,

i T i T i T i T
i i i i i i i i i i

i T i T i T
i i i i i

i T i T i T
i i i i i i

M e f e e f e e f e e f e e

f e e f e e f e

e f e e f e e f e

        

    

     

    

  

  

with 14 14| |i if q  , 15 15| |i if q  , 24 24| |i if q  , 25 25| |i if q  ,

41 41| |i if q  , 42 42| |i if q  , 45 45| |i if q  , 51 51| |i if q  , 

52 52| |i if q   and 54 54| |i if q  . 

Equation (19) is obtained by combining ( )i
jQ x  and (11). 

0 1( )i
j i nQ x Q M M M               (19) 
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Theorem 2. For system (9), each EESM can track its 
desired speed and maintain coordination performance with 
other motors if there exist a symmetric and positive-definite 

matrix 5 5
2

n nP R  , matrix 3 6n nK R  , and real scalar 

14 0i  , 15 0i  , 24 0i  , 25 0i  , 41 0i  , 42 0i  , 

45 0i  , 51 0i  , 52 0i  , and 54 0( 1, )i i n     such that 

the following BMI holds: 

2 2 2 2 2 0 1

2 3

20 2 0
T T T T

T

A P P A K B P P BK Q P P Q 
 

      
 

(20) 
where 

1 1 2 1 1 2
41 41 51 51 1 1

1 1 2 1 1 2
12 12 52 52 2 2

1 1 2 1 1 1 1 2
14 14 24 24 54 54 4 4

1 1 2 1 1 1 1 2
15 15 25 25 45 45 5 5

2
41 41

1 ( ) ( ) }

      { ( ) ( ) }

      ( )

{

{ ( ) ( ) }

      ( ) ( ) ( ) }
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T
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q q e e

q q e e

q q q e e

q q q e e
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  

  

 

  
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  

 
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2 2
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
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 
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  

2
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2 2
15 15 25 2

2 1 2
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   
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  



  
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2 5 2 6 5 2 6 5 2 6 4 2 6 4 2 6 2

2 6 2 2 6 2 2 6 1 2 6 61 2 6 1 2 2

2 6 4 2 6

5 6 5

                          

                              

          

i i i i i

i i i i i

n

n n

n

Pe Pe Pe Pe Pe Pe Pe

Pe Pe Pe Pe Pe Pe

Pe Pe Pe Pe Pe Pe Pe

Pe Pe

    

    





 
  


4 2 6 2 2 6 2 2 6 2 2 6 1 2 6 1 2 6 1

1 1 1 1 1 1 1 1 1
3 14 15 24 25 41 42 45 51 54

14 15 24 25 41 42 45 51 54

14 15 24 25 41 4

                    ]

                

                

n n n n n n

i i i i i i i i i

n n n n n

Pe Pe Pe Pe Pe Pe

diag         

        

     

      

  



2 45 51 52 54}.n n n n n   
Proof: The Lyapunov function is chosen as 

2 2
T

c cV Z P Z                     (21) 

On the basis of (13), (19), and (21), the following equation is 
obtained. 

0 0

1 1 1 1
1 14 4 1 15 5 2 24 4 2 25 5

1 1 1 1 1
4 41 1 4 42 2 4 45 5 5 51 1 5 54 4

6 5 14 6 2

2

6 5 15 6 1 6 4 24
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
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6 5

6 2 42 6 4 6 2 45 6 1

6 1 51 6 5 6 1 54 6 22
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T
n

n T n T
n n n n

n T n T T
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e f e Pe f e Z


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 
(22) 

The following inequality is obtained via Lemma 3 and 

| |i i
ij ijf q  . 

1
T

cV Z MZ                 (23) 
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 

 

If 0M  , then the time derivative of the Lyapunov 

function 2cV  is negative. This outcome indicates that each 

EESM can follow its desired speed and that the system can 
remain coordinated. 0M   can be rewritten as (20) via 

Schur complement theory. Doing so completes the proof of 
Theorem 2. 

 

IV. APPLICATION IN HIGH-POWER 

METAL-ROLLING SYSTEM 

The proposed coordination controller is utilized for an 
aluminum-rolling line in a Chinese factory. Fig. 3 shows the 
structure of the metal-rolling system. This system comprises 
an inverter and an rectifier, both of which make up a typical 
three-level NPC topology. The transformer converts the 10 
kV AC into 3 kV AC, and DC voltage is obtained via the 
PWM rectifier. The converter for field winding is used to 
control the field winding current of the EMSM. Two inverters 
arranged in parallel are used to control two 5 MW EESMs 
(Fig. 4). The parameters of the EESMs are shown in Table I. 
Each EESM can achieve up to 10 MW in a short time. 

EESMs 1 and 2 respectively drive the up roller and the 
down roller to realize metal rolling. In the working process, 
the loads of the two EESMs often change rapidly when the 
metal touches the roller. The loads of the two EESMs are also 
different for numerous reasons, one of which is the shape of 
the metal, which further results in different output torques 
between the two motors. To achieve high-precision metal- 
rolling, the speeds of the two EESMs must be the same, and  
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Fig. 3. Structure of metal-rolling system. 
 

 
Fig. 4. Metal-rolling system with two EESMs. 
 

TABLE I  
PARAMETERS OF EESM 

Rated Power 
Rated current 

pn  

fL  

mdL  

sdL  

5000 kW 
982 A 

20p 
0.0628H 

0.0457H 

0.0540H 

Rated voltage 
Rated Speed 

sR  

sL  

mqL  

sqL  

3050 V 
30 r/min 
0.0583 

0.0083H 

0.0285H 

0.0368H 

 
the speed drop should be minimal. These goals are feasible if 
the proposed coordination controller is adopted. 

The circuit of a three-level diode clamp inverter based on 
IGCT is shown in Fig. 5. The output voltage state is defined 
in Table II. Considering the motor parameters, we can obtain 
the following control parameters by solving the inequality (10) 
via MATLAB. 
LAB soft 

6 0.4 0 0.7 0.1 0

0 15 6 0 0 0

0.5 0 0 5 25 55

0.3 0.1 0 0.25 0 0

0 0 0 0 0 0

0 0 0 4 13 30

k

   
  
   

 
  




 

0.5 0.1 0 0.2 0 0

0 0 0 0 0 0

0 0 0 3 10 25

5 0.5 0 0.8 0.2 0

0 20 8 0 0 0

0 0 0 6 30 60

   





    
 


   

           (24) 

Next, a simulation and an experiment are conducted to 
verify the effectiveness of the proposed control algorithm. 

 
Fig. 5. Main circuit topology for three-level diode clamp 
inverter. 

 
TABLE II 

SWITCH STATES FOR THREE-LEVEL IGCT 

Case Phase 
voltage 

Switch States 

1 
2 
3 

Ud/2(P) 
0 

Ud/2(N) 

Qa1=on,Qa2=on,Qa3=off,Qa2=off
Qa1=off,Qa2=on,Qa3=on,Qa2=off
Qa1=off,Qa2=on,Qa3=on,Qa2=off

 

A. Simulation 

The simulation is conducted in MATLAB with varying 
loads ( lT ) and parameters ( mdL ) for the two motors. 

,1l ratedT T , ,2 1.2l ratedT T  , ,1md mdL L , ,2 1.2md mdL L    (25) 

The desired speed of the two motors is 27 r/m. The load is 
added to the system at 2 s and removed at 3.5 s. 

A comparison between the proposed method and the 
traditional proportional–integral (PI) controller is conducted 
to further demonstrate the control performance of the 
proposed controller. The PI speed controller is used in the 
outer loop, whereas the PI current controller is used in the 
inner loop of each motor. The PI law can be presented as 

1 1 1 11 1 1 1 1 1

0 0

,
d d d d

t t

d Pi d Ii d q d dPi Iiu k i k i d u kk i k i d      
   

2 2 2 22 2 2 2 2 2

0 0

,
d d d d

t t

d Pi d Ii d q d dPi Iiu k i k i d u kk i k i d      
   

where 1 1 1q q qi i i  , 2 2 2q q qi i i  , 1 1    , 2 2    . 

The control gains of all controllers shown below are 
elaborately selected to obtain optimal synchronization and 
tracking performance. 

1 1 1120, 50, 1.4,
d dPi Ii Pk k k        

1 1 130, 13, 2,
qIi Pi Iiqk k k


        

2 2 2
140, 60, 0.7,

d dPi Ii Pk k k        

2 2 2
25, 8, 1.5

q qI Pi Iik k k       
 

The control performance of a traditional PI controller is 
depicted in Fig. 6, which shows the speed error at maximal 
(0.36 r/m) when the load is changed. Fig. 7 shows the results 
achieved with the proposed controller. The maximal speed 
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Fig. 6. Performance of traditional PI controller. 
 

 
Fig. 7. Performance of proposed controller. 
 
error is 0.11 r/m, which proves the effectiveness of the 
proposed method when the parameters and loads of the two 
motors are different (25). This result also indicates that the 
proposed controller exhibits a superior performance relative 
to the traditional PI controller. Note that the load information 
of two motors is not required in the proposed controller and 
that the proposed controller can deal with load uncertainty. 

B. Experiment 

The proposed coordination controller is then used in the 
metal-rolling system of Guangxi Liuzhou Yinhai Aluminium 
Co., Ltd., and the experimental data are recorded with a 
specific software program. Fig. 8 shows the results achieved 
with the proposed algorithm without load. The results 
indicate that regardless of whether the system is in steady 
state or dynamic state, the speed error between the motors is 
nearly zero. 

Fig. 9 shows the results obtained with the proposed 
algorithm under the rolling condition. When the roller 
touches the metal, the maximum speed error between the 
motors is less than 0.7 rpm, and the error converges to nearly 
zero in a short time. This result demonstrates the good control 
performance of the proposed controller. Similarly, the load 
information of two motors is not required in the proposed 
controller, which can thus deal with load uncertainty. Fig. 10 
shows the production of an aluminum strip and reveals the 
successful use of the proposed controller in the metal-rolling 
system. 

 
Fig. 8. Start process in no-load condition. 
 

 
Fig. 9. Process under the rolling condition. 

 

 
Fig. 10. Aluminum strip produced with the designed system. 

 

V. CONCLUSIONS 

This paper presents a coordination control strategy for 
multiple EESM systems via cross coupling and an interval 
matrix. The proposed controller is successfully applied in a 
high-power aluminum rolling system. It can deal with load 
uncertainty, i.e., the load information is not required in the 
controller. The simulation and experimental results verify the 
good dynamical and static performance of the proposed 
control strategy and its superior coordination performance 
relative to traditional PI controllers. 
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