JPE 17-4-1 https://doi.org/10.6113/JPE.2017.17.4.849 ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718 # Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications Wenjin Sun^* , Xiang Jin^* , Li Zhang ** , Haibing $\operatorname{Hu}^\dagger$, and Yan Xing^* *,†Jiangsu Key Laboratory of Renewable Energy Generation and Power Conversion, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China **Department of Electrical Engineering, Hohai University, Nanjing, China ## **Abstract** This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency f_{r2n} and the second series resonant frequency f_{r3n} are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio L_n and the normalized load Q. And it requires a smaller L_n and Q to provide a sufficient voltage gain M_{max} at (V_{o_max}, P_{o_max}) . However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter. Key words: Battery charger, DC-DC converter, Multi-resonant converter, Notch filter # I. INTRODUCTION In the past decade, the challenges of reducing greenhouse gas emissions and finding a suitable means to provide clean energy are prompting the introduction of electric vehicles (EVs) and plug-in EVs (PEVs) [1]-[6]. Their large capacity battery stacks are normally charged from a public power line via an onboard charger (OBC). To realize fast charging, high-power chargers are relocated off-board in an external charging infrastructure to reduce cost, volume and weight. These chargers are referred as off-board chargers [3]. Instead of the bulky line frequency transformers, a modular design with a high frequency is widely adopted in off-board chargers to reduce the size and to improve the flexibility [3], [4]. For the OBC and the off-board charger modules, the two-stage structure is preferred. This structure includes: 1) an ac-dc converter for power factor correction (PFC) and harmonic reduction, and 2) a dc-dc converter for output control and galvanic isolation [1]-[6]. In isolated dc-dc converters, the size of the passive elements can be decreased by operating the converter with a high switching frequency. However, the frequency is limited by the switching loss. Then soft switching methods and resonant circuits are widely used to increase the switching frequency. Among the many candidates, one promising topology is the LLC resonant converter [6]-[9]. It can achieve ZVS turn-on of primary switches and soft commutation of secondary rectifiers over a wide load range. Since only a filter capacitor is needed, its output diodes' voltage stress is low. All these advantages make it suitable for charging applications [10], [11]. Manuscript received Oct. 14, 2016; accepted Mar. 28, 2017. Recommended for publication by Associate Editor Chun-An Cheng. †Corresponding Author: huhaibing@nuaa.edu.cn *Jiangsu Key Laboratory of Renewable Energy Generation and Power Conversion, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, China Tel: +86-25-84890393, Nanjing Univ. of Aeronautics and Astronautics However, the LLC converter still has some issues to be solved. Due to the flat voltage gain curves in the above resonant frequency region $(f_s > f_r)$, the converter should be operated with a high frequency to provide a low output voltage, making the driver design difficult. Otherwise, the efficiency under normal operation is deteriorated with a small frequency range [12]-[16]. During start-up and short output conditions, the converter is also operated in the region $(f_s > f_r)$ to avoid entering the ZCS zone [17]. Hence it is difficult to control the current and voltage stresses on the resonant tank, which may cause damage to semiconductor devices [18]-[20]. Some common solutions are introduced to solve these issues: pulse frequency modulation (PFM) control combined with pulse width control, PFM control combined with phase-shift control, and PFM control combined with burst mode control [13]-[16]. These solutions provide only qualitative analysis and may lose the primary switches' ZVS turn-on at low voltage and large current outputs. Based on the graphical state-trajectory analysis, optimal trajectory control strategies are proposed to solve the soft start-up and overload protection issues [18]-[20]. Owing to their complex calculations, they are difficult to implement for a wide output range. Fortunately, these issues can be solved perfectly by introducing a notch filter into the existing LLC resonant tank [21]-[25]. In addition to achieving zero output within a small frequency range, the notch filter of the multi-resonant converter can also help the power delivery with third order harmonics injection [21], [22]. Since the location of the notch filter can be either at the primary side in Fig. 1 [21]-[24] or at the secondary side [25], there are two kinds of multi-resonant converters. In comparison with that one at the secondary side, the converter with a notch filter at the primary side is more suitable for vehicle charging applications with a high input voltage [25]. Its output gain characteristics are shown in Fig. 2. A topology with the same characteristics is provided in [26]. Although a third-order harmonics injection branch is more intuitive, the leakage inductance of the transformer cannot be directly merged into the resonant inductors during the parameter analysis and design. Then the analysis of the leakage inductance's impact on operation, and the converter's magnetic integration are more difficult than those in Fig. 1 [27], [28]. Based on the synthesis method of the resonant topologies in [28], another multi-resonant converter with the notch characteristic can be derived from an LCL resonant converter [28], [29]. However, without third-order harmonics injection, its high conduction loss results in a low efficiency. With 2 more resonant elements, the analysis and design of the multi-resonant converter in Fig.1 are more complex than the conventional LLC converter. Based on the synthesis method in [28], the above merits of the chosen converter have been found intuitively, while the parameter effects are not obvious [21], [22]. To aid in understanding, the converter has also been analyzed with the impedance of the series resonant Fig. 1. Topology of a multi-resonant converter. tank and the parallel tank in [23], [24]. However, the analysis is too complicated, and the effects of the inductor ratio k and the capacitor ratio q on the converter are still unclear. Due to its complexity, the resonant parameters of the multi-resonant converter in [21]-[24] are simply designed during the operation region $f_s \le f_{r1}$ by using the design method of the conventional LLC resonant converter. However, these designs do not cover the operation region $f_{r1} \le f_s \le f_{r2}$, which is also utilized for a wide output range, as in EV chargers. The following sections will focus on the parameter analysis and design of a multi-resonant converter with a wide output range. #### II. OPERATIONAL PRINCIPLES The topology of a multi-resonant converter with a primary notch filter is shown in Fig. 1. The PFM control is adopted to control the output. And Fig. 3 shows typical waveforms of the converter below the resonant frequency f_{rl} . Due to limitations on space and its simplicity, the mode analysis is not provided here. Based on the FHA analysis [17], the converter in Fig. 1 can be simplified to the linear circuit in Fig. 4 with an equivalent load resistor. $$R_e = \frac{8n^2R_o}{\pi^2} \tag{1}$$ Where, n is the turn ratio of the transformer. Then four important resonant frequencies can be obtained from Fig. 4: the parallel resonant frequency f_{r0} to step up the output voltage, the notch resonant frequency f_{r2} to step down the output voltage to as low as zero, and the two series resonant frequency f_{r1} and f_{r3} to transfer energy at a high efficiency. $$f_{r0} = \frac{1}{\sqrt{(1+k+\frac{1}{L_n})q}} f_r \tag{2}$$ $$f_{r1} = \sqrt{\frac{1 + kq + k - \sqrt{(1 + kq + k)^2 - 4kq}}{2kq}} f_r$$ (3) $$f_{r2} = \frac{1}{2\pi} \frac{1}{\sqrt{L_p C_p}} = \frac{1}{\sqrt{kq}} f_r$$ (4) $$f_{r3} = \sqrt{\frac{1 + kq + k + \sqrt{(1 + kq + k)^2 - 4kq}}{2kq}} f_r$$ (5) (a) Output voltage gain characteristics. (b) Output current gain characteristics. Fig. 2. Output gain characteristics of a multi-resonant converter. (a) Output voltage gain. (b) Output current gain. Where: $$\begin{cases} L_{n} = \frac{L_{m}}{L_{r}}, k = \frac{L_{p}}{L_{r}}, q = \frac{C_{p}}{C_{r}}, \\ f_{r} = \frac{1}{2\pi\sqrt{L_{r}C_{r}}}, Z_{r} = \sqrt{\frac{L_{r}}{C_{r}}}, Q = \frac{Z_{r}}{R_{e}}. \end{cases}$$ (6) From Fig. 4, the normalized output voltage gain M of the multi-resonant converter can be derived and given as Eq. (7) at the bottom of this page, where the switching frequency f_s is normalized as: $$\begin{cases} f_n = \frac{f_s}{f_{r1}}, \\ g = \frac{f_{r1}}{f_r} = \sqrt{\frac{1 + kq + k - \sqrt{(1 + kq + k)^2 - 4kq}}{2kq}}. \end{cases}$$ (8) In addition, the normalized current gain G can be obtained as: $$G = \frac{I_o / n}{U_{in} / Z_r} = \frac{8Q}{\pi^2} M. \tag{9}$$ Fig. 2 shows the output voltage and current gain characteristics of the converter. The four resonant frequencies are also marked in Fig. 2(a). Functioning in the role of a conventional LLC converter, the resonant frequency f_{rl} helps to deliver the fundamental component to the load, while the frequency f_{r0} helps boost the output [17], [28]. Moreover, the additional resonant frequency f_{r3} of the multi-resonant converter can provide very low impedance for higher order harmonics. Consequently, the injection of higher order harmonics can enhance the power delivery to reduce the reactive power and conduction losses [21]-[25]. Due to the notch frequency f_{r2} , the voltage gain M and current gain G of the multi-resonant converter can achieve zero in a much smaller frequency range than the conventional LLC converter, making it beneficial during the start-up and short output circuit conditions. In Fig. 4, the normalized input impedance Z_{inN} of the multiresonant converter can be calculated as Eq. (10). Like the conventional LLC converter, it should be inductive to achieve ZVS turn-on of the primary switches. With the imaginary part of Z_{inN} zero, the boundary Q_B between the capacitive and inductive region can be derived as Eq. (11). And the voltage gain M_B at the boundary, the dashed line in Fig. 2(a), can be obtained as Eq. (12). With the boundaries and the notch frequency f_{r2} , the curves in Fig. 2(a) can be divided into 6 operation regions: Region 1 ($f_n \le f_{rln}$) and on the left of the boundary), Region 2 ($f_{r0n} < f_n < f_{r1n}$ and on the right of the boundary), Region 3 ($f_{r1n} \le f_n \le f_{r2n}$), Region 4 ($f_{r2n} \le f_n \le f_{r3n}$ and on the left of the boundary), Region 5 $(f_{r2n} < f_n < f_{r3n})$ and on the right of the boundary), and Region 6 $(f_n > f_{r3n})$. The input impedance is inductive in Region 2, 3, 5 and 6, while it is capacitive in Region 1 and 4. In order to provide soft start-up and short output protection within a small frequency range, it is preferred to operate the converter in Region 2 and 3, which are below the notch frequency f_{r2} . $$Q_B(k,q,L_n,f_n) = \frac{L_n}{gf_n} \sqrt{\frac{1}{L_n(\frac{1}{g^2 f_n^2} + \frac{k}{kqg^2 f_n^2 - 1} - 1)} - 1}$$ (11) $$M_B(k,q,L_n,f_n) = \frac{1}{\sqrt{1 + L_n(1 - \frac{1}{g^2 f_n^2} - \frac{k}{kqg^2 f_n^2 - 1})}}$$ (12) #### III. ANALYSIS OF THE CIRCUIT PARAMETERS Despite the magnetizing inductor ratio L_n and the normalized load Q, the output voltage gain M in Eq. (7) also $$M(k,q,L_n,Q,f_n) = \frac{nV_o}{V_{in}} = \frac{1}{\sqrt{\left[1 + \frac{1}{L_n}\left(1 - \frac{1}{g^2f_n^2} - \frac{k}{kqg^2f_n^2 - 1}\right)\right]^2 + \left[gf_nQ\left(1 - \frac{1}{g^2f_n^2} - \frac{k}{kqg^2f_n^2 - 1}\right)\right]^2}}$$ (7) $$Z_{inN}(k,q,L_n,Q,f_n) = \frac{Z_{in}}{Z_r} = \frac{Q}{Q^2 + L_n^2(gf_n)^{-2}} + j[gf_n(1 - \frac{1}{g^2f_n^2} - \frac{k}{kqg^2f_n^2 - 1}) + \frac{L_n(gf_n)^{-1}}{Q^2 + L_n^2(gf_n)^{-2}}]$$ (10) Fig. 3. Typical waveforms of a multi-resonant converter below the resonant frequency f_{rl} . depends on the ratio k and q. With so many parameters, the design of the converter becomes more complex. Before the design, the effects of these parameters should be addressed. Since the charger requires a wide output voltage and a high efficiency, the following analysis will focus on the voltage gain M and the primary current. # A. The Effects of k and q on the Voltage Gain M With Eq. (7), output voltage gain curves with different values for k and q are plotted in Fig. 5(a) and (b). It can be seen that the ratio k and q only decide the notch point $f_{r2n} = f_{r2}/f_{r1}$ and the second series resonant point $f_{r3n} = f_{r3}/f_{r1}$, while they have little effect on the peak gain of the curves. Fig. 5(c) shows variations of the frequencies f_{r2n} and f_{r3n} with respect to k or q at k=15/16 and q=0.6. In Fig. 5(b) and (c), the values of f_{r2n} and f_{r3n} decrease with an increase of q. Unlike q, the value of f_{r3n} in Fig. 5(c) is at its minimum with an increase of k, while the value of f_{r2n} approaches its lower limit. In terms of the two black marks shown in Fig. 5(c), f_{r3n} is more sensitive to the variable q than the variable k at k=15/16 and q=0.6. In addition, q has a wider regulation of f_{r2n} than k when $f_{r2n} < 2$. Then the resonant capacitors C_p and C_r should be well-designed before the other resonant elements. ## B. The Effects of k and q on the Primary Current In order to make full use of the third order harmonic of the primary voltage v_{AB} to help the energy transfer, f_{r3n} is located at 3 [21]-[26]. Then the notch point f_{r2n} is the only one decided by k and q. From the simulations at $f_s = f_{r1}$, Fig. 6 Fig. 4. Simplified circuit of a multi-resonant converter. gives the normalized primary RMS current $I_{Lr}/(I_o/n)$ with different values of f_{r2n} . As f_{r2n} is designed close to $f_{r1n}=1$ or $f_{r3n}=3$, the primary current $I_{Lr}/(I_o/n)$ become larger, since more energy is trapped by the notch filter section [21]. As the primary current is lowest at $f_{r2n}=2$, it is appropriate to locate the notch point f_{r2n} around 1.5~2.5 to decrease the conduction loss. ## C. The Effects of L_n and Q on the Voltage Gain M With constant k and q, the output voltage gain curves with different Q and L_n are shown in Fig. 2(a) and Fig. 7. Unlike k and q, Q and L_n have a strong impact on the peak gain of the curves, while they have no impact on the resonant points f_{r2n} and f_{r3n} . The peak gain at $f_n \le 1$ decreases with increases of L_n and Q. Then they should not be too large to provide the voltage gain required by the charger specifications. ## D. The Effects of L_n and Q on the Primary Current To simplify the analysis, the normal operation point at $f_s=f_{rl}$, namely $t_3-t_2=0$ in Fig. 3, is used to analyze the primary current and magnetizing current. Since L_m is too large and the impedance composed of L_r , C_r , L_p and C_p is zero at $f_n=1$ and $f_n=3$, the input impedance Z_{in} at the fundamental and third order harmonics can be assumed to be the same. Then the primary current i_r can be expressed as: $$i_r(t) = I_p \sin(\omega_{r1}(t - t_0) + \varphi) + \frac{I_p}{3} \sin(3\omega_{r1}(t - t_0) + \varphi).$$ (13) Where, I_p is the peak current of the fundamental harmonic, w_{rl} is the angular frequency $2\pi f_{rl}$, and φ is the phase difference between the voltage v_{AB} and the fundamental harmonic of the resonant current i_r . Since the voltage across the magnetizing inductor L_m is clamped by the reflected output voltage nU_o , its current can be expressed as: $$i_m(t) = \begin{cases} I_m[4(t-t_0)f_{r_1} - 1] & t_0 \le t < t_0 + \frac{1}{2f_{r_1}} \\ I_m[3 - 4(t-t_1)f_{r_1}] & t_0 + \frac{1}{2f_{r_1}} \le t < t_0 + \frac{1}{f_{r_1}} \end{cases}$$ (14) Where, t_0 is the initial time in Fig. 3, and I_m is the peak current of L_m that can be calculated as: $$I_m = \frac{nV_o}{4L_m f_{r1}}. (15)$$ Since i_{Lr} is equal to i_{Lm} at t_0 : (a) DC gain curves with different values of k. (b) DC gain curves with different values of q. (c) Normalized frequencies f_{r2n} and f_{r3n} with k or q. Fig. 5. (a) DC gain curves with different values of k at q=0.6, $L_{\rm n}$ =5, and Q=0.4; (b) DC gain curves with different values of q at k=15/16, $L_{\rm n}$ =5, and Q=0.4; (c) Variations of the normalized frequencies f_{r2n} and f_{r3n} with k or q at k=15/16, q=0.6. $$i_r(t_0) = \frac{4}{3} I_p \sin \varphi = -I_m.$$ (16) The load current of the converter can be obtained by averaging the input current of the bridge rectifiers D_1 - D_4 during a half cycle. $$I_o = 2nf_{r1} \int_{t0}^{t0 + \frac{1}{2f_{r1}}} [i_r(t) - i_m(t)] dt$$ (17) Combing Eq. (1), (6), (8), and (13) - (17), the normalized peak current I_{mn} and I_{pn} can be obtained as: $$I_{mn} = \frac{I_m}{I_0 / n} = \frac{\pi^3}{16gL_nQ}$$ (18) Fig. 6. Normalized primary current at $f_s = f_{rl}$ with different notch resonant frequencies f_{r2}/f_{rl} . Fig. 7. DC gain curves with different values of L_n . $$I_{pn} = \frac{I_p}{I_o/n} = \frac{3\pi}{4} \sqrt{\frac{\pi^4}{256g^2 (L_n Q)^2} + \frac{9}{25}}.$$ (19) The normalized RMS currents I_{rn} and I_{Secn} of the transformer's primary and secondary side can be obtained as Eq. (20) and (21). As shown in Fig. 8, the value of I_{rn} decreases with L_n^{-1} , Q^{-1} , and $(L_nQ)^{-1}$. In addition, I_{Secn} and I_{mn} have the same trends. In order to increase efficiency, L_nQ should be large enough to reduce the conduction loss and switching loss. $$I_{rn} = \sqrt{\left(\frac{I_{pn}}{\sqrt{2}}\right)^2 + \left(\frac{I_{pn}}{3\sqrt{2}}\right)^2} = \frac{\pi}{4}\sqrt{\frac{\pi^4}{51.2g^2(L_nQ)^2} + \frac{9}{5}}$$ (20) $$I_{Secn} = \frac{1}{I_o / n} \sqrt{2n^2 f_{r1} \int_{t0}^{t0 + \frac{1}{2f_{r1}}} [i_r(t) - i_m(t)]^2 dt}$$ $$= n\pi \sqrt{\frac{93\pi^4 - 896\pi^2}{36864g^2 (L_n Q)^2} + \frac{9}{80}}$$ (21) ## IV. DESIGN PROCEDURE From the above analysis, it is preferred to operate the converter in Region 2 and Region 3. Compared with the fundamental harmonic, the energy transferred through the third order harmonic is less [21]-[26]. With f_{r2n} and f_{r3n} fixed, the design of the converter focuses solely on Region 2 and Region 3 below f_{r2n} , as shown in Fig. 9. The following is the step-by-step design procedure. For illustration, a charger with the design criteria in Table I is designed. Fig. 8. Normalized primary RMS current I_{rn} with different values of L_n and Q. Fig. 9. DC gain curves for design considerations. ## A. Calculating the Ratios k and q Substituting f_{r2n} and f_{r3n} into Eq. (3)-(5) and Eq. (8), the values k and q can be calculated as Eq. (22). Since $f_{r3n} > f_{r2n}$ and $f_{r2n} > 1$, both k and q have positive values. From the above analysis, it is better to locate f_{r2n} and f_{r3n} at 2 and 3 to reduce the conduction loss. Then k=15/16, q=0.6, and g=2/3 can be obtained. $$\begin{cases} k = \frac{(f_{r3n}^2 - f_{r2n}^2)(f_{r2n}^2 - 1)}{f_{r2n}^4}, \\ q = \frac{f_{r3n}^2}{(f_{r3n}^2 - f_{r2n}^2)(f_{r2n}^2 - 1)}, \\ g = \frac{f_{r2n}}{f_{r3n}}. \end{cases}$$ (22) #### B. Selecting the Transformer Turns Ratio n Like the conventional LLC converter, the turn ratio of the transformer should be selected at the unity gain, namely at f_s = f_{rl} . Then it can be calculated as: TABLE I DESIGN SPECIFICATIONS AND PARAMETERS | | Parameters | Value | |-------------------|--------------------------------------------------------|-----------------| | Design Spec. | Input: $V_{in_nom} (V_{in_min} \sim V_{in_max})$ | 400V ±10 V | | | Output : V_{o_nom} ($V_{o_min} \sim V_{o_max}$) | 400V(50~500V) | | | Output Power at $400V: P_{o_nom}$ | 3300 W | | | Output Current at $400V:I_{o_nom}$ | 8.25 A | | | Resonant Frequency : f_{rl} | 100 kHz | | Design Parameters | Max. frequency f_s at 300V: f_{max} | 140 kHz | | | Transformer Ratio : n | 24:24 | | | Ratio of L_m to L_r : L_n | 5 | | | Resonant Inductor : L_r , L_p | 40 μΗ, 37.5μΗ | | | Resonant Capacitor : C_r , C_p | 28.5 nF, 16.8nF | | | Magnetizing Inductance : L_m | 200 μΗ | | | Dead Time : t _{dead} | 200 ns | $$n = \frac{V_{in_norm}}{V_{o_norm} + 2V_F} \tag{23}$$ Where, V_F is the diode voltage drop of the output rectifier. ## C. Selecting the Ratio L_n For a vehicle charger, the output power is low at an output voltage below V_{o_m} . Then it is beneficial to keep a high efficiency at an output above V_{o_m} . It is chosen as 300V here. Substituting Q=0 into Eq. (7), the zero-load gain of the converter can be obtained as: $$M_o = \frac{1}{1 + L_n (1 - \frac{1}{g^2 f_n^2} - \frac{k}{k g g^2 f_n^2 - 1})}.$$ (24) Since k and q are fixed, the ratio L_n in Eq. (24) cannot be too large. Otherwise, the switching frequency exceeds the maximum switching frequency f_{nmax} at the minimum voltage gain M_{min} in Fig. 9. As shown in Fig. 10, L_n should be in the shadow below the boundary to achieve M_{min} at V_{o_m} , and its maximum value can be calculated as follows: $$L_n = (\frac{1}{M_o} - 1) \frac{f_{n \max}^2 (f_{r2n}^2 - f_{n \max}^2)}{(f_{n \max}^2 - 1)(f_{r3n}^2 - f_{n \max}^2)}.$$ (25) With an increase of f_{nmax} , a larger L_n can be obtained to reduce the conduction loss and to increase the efficiency. However, as shown in Fig. 9, the gain slope is steeper as f_n approaches f_{r2n} , making it too sensitive to control. After the trade-off, f_{nmax} and L_n are chosen as 1.4 and 5 here. $$f_{nmin} = \frac{1}{g} \sqrt{\frac{kq + k + \left[1 - \frac{1}{L_n} \left(\frac{1}{M_{max}^2} - 1\right)\right] - \sqrt{\left[kq + k + \left(1 - \frac{1}{L_n} \left(\frac{1}{M_{max}^2} - 1\right)\right)\right]^2 - 4kq\left[1 - \frac{1}{L_n} \left(\frac{1}{M_{max}^2} - 1\right)\right]}}{2kq\left[1 - \frac{1}{L_n} \left(\frac{1}{M_{max}^2} - 1\right)\right]}}$$ (26) Fig. 10. Choice of L_n to provide the minimum voltage gain M_{min} with different values of f_{nmax} . Fig. 11. Experimental prototype. # D. Normalized Load Q_{max} Providing a sufficient voltage gain M_{max} at (V_{o_max}, P_{o_max}) , the maximum normalized load Q_{max} should be as large as possible to reduce the conduction loss. Then the operation point can be placed at the boundary in Fig. 9. Substituting $M=M_{max}$ into Eq. (12), f_{nmin} can be derived as Eq. (26), and $0 < f_{nmin} < 1$. With $f_n = f_{nmin}$, Q_{max} can be obtained as follows from Eq. (11). $$Q_{\text{max}} = \frac{L_n}{g f_{n \min} \sqrt{M_{\text{max}}^2 - 1}} \tag{27}$$ # E. Calculating the Resonant Parameters With the equivalent load resistor R_e at (V_{o_max}, P_{o_max}) , the value of the resonant capacitors C_r are given by Eq. (28). Then C_p can be obtained with Eq. (6) and (22). $$C_r = \frac{g}{2\pi f_{r1} Q_{max} R_e} \tag{28}$$ If C_r and C_p are not appropriate values for commercial product selection, they can have fine tuning during the above steps. Once the resonant capacitors are determined, the resonant inductors L_r , L_p and transformer's magnetizing inductor L_m can be calculated using Eq. (29), (6) and (25). $$L_r = \frac{g^2}{4\pi^2 f_r^2 C_r} \tag{29}$$ TABLE II KEY COMPONENT USED IN THE PROTOTYPE | C | | | | | |------------------------------------|-----------------|--|--|--| | Component | Part # | | | | | Switches: $S_I \sim S_4$ | SPW35N60C3 | | | | | Rectifiers: $D_1 \sim D_4$ | BYR29 | | | | | Resonant Capacitor: C _r | MKP10-28.5 nF | | | | | Resonant Capacitor: C _p | MKP10-16.8 nF | | | | | Resonant Inductor: L_r | PQ35/35- PC40 | | | | | Resonant Inductor: L_p | PQ40/40- PC40 | | | | | Transformer: T | EE65/32/27-PC40 | | | | TABLE III PARAMETERS OF THE CONVERTERS FOR COMPARISON | | Parameters | MRC I | MRC II | LLC | |----------|----------------------------|------------|-----------|-----------| | n Parame | f_{rl} | 100 kHz | 100kHz | 100kHz | | | f_{max} at 300V | 140 kHz | 120kHz | 140kHz | | | f _s at 300~500V | 80~140 kHz | 90~120kHz | 80~140kHz | | | Ratio n | 24:24 | 24:24 | 24:24 | | | Ratio L_n | 5 | 2.5 | 2 | | | Inductor L_r | 40 μΗ | 57uH | 80uH | | | Inductor L_p | 37.5μΗ | 53uH | - | | | Capacitor C _r | 28.5 nF | 20 nF | 33nF | | | Capacitor C_p | 16.8nF | 12nF | - | | | Inductance L_m | 200 μΗ | 140uH | 160uH | #### V. EXPERIMENTAL RESULTS A prototype of the full-bridge multi-resonant converter shown in Fig. 11 was built to provide experimental evaluations. Table II gives the key components used in the prototype converter. The control block of the charger is provided in Fig. 12, and it contains two separate controllers for the constant current control and constant voltage control. The switching frequency f_s is in the range of f_{min} to f_{r2} . Fig. 13 shows calculated loss comparisons between the multi-resonant converter (MRC) and the conventional LLC converter at a 400V/3300W output. Two multi resonant converters with different L_n have been designed. And the resonant tank parameters of the three converters are provided in the Table III. Since they have the same output current, the diode conduction losses of the three converters are equal to each other in Fig. 13. It can also be found that a multi-resonant converter with a higher f_{max} can have a larger magnetizing inductor ratio L_n, and it reduces a lot of the conduction losses, which has been verified by the above theoretical analysis. With the same switching frequency range at a 300V-500V output, the multi resonant converter with $L_n=5$ can also cut down the conduction losses from the widely used LLC converter, owing to the reduction of the primary RMS current with the injection of third-order harmonics. Fig. 12. Control block of the charger. Fig. 13. Calculated losses comparison between the multiresonant converter (MRC) and the conventional LLC converter at a 400V/3300W output. Fig. 14. Measured Efficiency at V_{in} = 400V. Efficiency curves of the converter with L_n =5 are given in Fig. 14 for output voltages of 300V, 350V, 400V, 450V and 500V. And a peak efficiency of 97.3% has been achieved. Fig. 15 shows experimental waveforms of the S_I driver voltage (v_{GS1}) , resonant tank current (i_r) , and output voltage (v_o) at the start-up and short output protection. Thanks to the notch characteristic of the resonant tank, the resonant current i_r does not have a large surge current during either the start-up procedure or short output protection as is the case with the conventional LLC converter, which increases (a) Waveforms during the start-up condition. (b) Waveforms during the short output protection. (c) Stable waveform during the short output condition. Fig. 15. Waveforms of the S_I driver voltage (v_{GSI}) , resonant tank current (i_r) , and output voltage (v_o) : (a) during the startup condition; (b) during short output protection; (c) stable waveform during the short output condition. reliability of the MOSFETs. Although the switching frequency of the converter is just f_{r2} =200 kHz at the short output, the converter can still be in steady operation with a small resonant current. Fig. 16 shows experimental waveforms under normal operation at $V_{in} = 400$ V. With third order harmonics injection, the current waveforms i_r are saddle-shaped, as shown in Fig. 16 (a). It is very close to a square waveform with a low RMS current under nominal operation, which results in low conduction losses. Fig. 16 (b) presents waveforms at the maximum output voltage and power 500 V/3300 W with a minimum frequency of 81 kHz. In addition, Fig. 16(c) provides waveforms at a 300 V/300 W output with a Fig. 16. Waveforms of the S_I driver voltage (v_{GSI}), voltage across S_I (v_{DSI}), and resonant tank current (i_r) at different loads: (a) $V_o = 400 \text{ V}$, $P_o = 3300 \text{ W}$; (b) $V_o = 500 \text{ V}$, $P_o = 3300 \text{ W}$; (c) $V_o = 300 \text{ V}$, $P_o = 300 \text{ W}$; (d) $V_o = 50 \text{ V}$, $P_o = 200 \text{ W}$. frequency of 128 kHz. In Fig. 16 (b) and (c), the two design points, both in critical situations, have achieved ZVS turn-on. And it has verified the effectiveness of the proposed design method. Moreover, it can be seen from Fig. 16 (d) that the primary switches can achieve ZVS turn-on at the minimum output voltage 50 V, while this is difficult for the conventional LLC converter. #### VI. CONCLUSIONS A multi-resonant converter with a notch filter has been chosen for vehicle charging applications. It has been found that the notch capacitor ratio q has a stronger impact on the normalized notch frequency f_{r2n} and the second series resonant frequency f_{r3n} than the notch inductor ratio k. Therefore, the resonant capacitors C_p and C_r should be well-designed before the other resonant elements. Unlike k and q, the magnetizing inductor ratio L_n and the normalized load Q determine the peak gain of the curves. By providing a sufficient voltage gain M_{max} at (V_{o_max}, P_{o_max}) , the primary current decreases with $(L_nQ)^{-1}$, which depends on the maximum switching frequency f_{nmax} under normal operation. Based on the above analysis, a detailed design procedure for the multi- resonant converter has been provided. Experimental results show that the chosen converter can achieve a wide output range 50V-500V within a small frequency range, soft start-up and short output protection without a large surge current in the resonant tank. Furthermore, the converter can achieve stable operation with a small current at the short output. In spite of two additional resonant elements, the chosen converter can still gain a high efficiency due to the injection of third order harmonics. With these advantages over the LLC converter, the multi-resonant converter with a primary notch filter is more promising for the vehicle charging applications. ## ACKNOWLEDGMENT This work was supported in part by the National Key R&D Program of China under Grant 2016YFB0601603, and in part by the National Natural Science Foundation of China under Grant 51677054. # REFERENCES - [1] A. Y. Saber and G. K. Venayagamoorthy, "Plug-in vehicles and renewable energy sources for cost and emission reductions," *IEEE Trans. Ind. Electron.*, Vol. 58, No. 4, pp. 1229-1238, Apr. 2011. - [2] Yihua Hu, Rong Zeng, Wenping Cao, Jiangfeng Zhang, et al, "Design of a high-power, high step-up ratio modular DC-DC converter by the matrix transformer approach," *IEEE Trans. Ind. Electron.*, Vol. 63, No. 4, pp. 2190-2202, Apr. 2016. - [3] A. Khaligh and S. Dusmez, "Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles," *IEEE Trans. Veh. Technol.*, Vol. 61, No. 8, pp.3475-3489, Oct. 2012. - [4] M. Yilmaz and P. T. Krein, "Review of charging power levels and infrastructure for plug-in electric and hybrid - vehicles," in Proc. IEEE Elect. Veh. Conf., pp. 1-8, 2012. - [5] Y. Jang, M. M. Jovanović, J. M. Ruiz, M. Kumar, and G. Liu, "Implementation of 3.3-kW GaN-Based DC-DC converter for EV on-board charger with series-resonant converter that employs combination of variable-frequency and delay-time control," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, pp. 1292-1299, 2016. - [6] F. Musavi, M. Craciun, D.S. Gautam, W. Eberle, W.G. Dunford, "An LLC resonant DC-DC converter for wide output voltage range battery charging applications," *IEEE Trans. Power Electron.*, Vol. 28, No. 12, pp. 5437-5445, Dec. 2013. - [7] Y. Hu, W. Cao, S. J. Finney, W. Xiao, F. Zhang, and S. F. McLoone, "New modular structure DC-DC converter without electrolytic capacitors for renewable energy applications," *IEEE Trans. Sustain. Energy*, Vol. 5, No. 4, pp. 1184-1192, Oct. 2014. - [8] Huiqing Wen, Weidong Xiao, and Bin Su, "Nonactive power loss minimization in a bidirectional isolated DC-DC converter for distributed power systems," *IEEE Trans. Ind. Electron.*, Vol. 61, No. 12, pp. 6822-6831, Dec. 2014. - [9] W. Sun, H. Wu, H. Hu, and Y. Xing, "Resonant tank design considerations and implementation of a LLC resonant converter with a wide battery voltage range," *Journal of Power Electronics*, Vol. 15, No. 6, pp. 1146-1455, Nov. 2015. - [10] H. Wang, S. Dusmez, and A. Khaligh, "A novel approach to design EV battery chargers using SEPIC PFC stage and optimal operating point tracking technique for LLC converter," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, pp. 1683-1689, 2014. - [11] B. K. Lee, J. P. Kim, S. G. Kim, and J. Y. Lee, "A PWM SRT DC_DC converter for 6.6-kW EV onboard charger," *IEEE Trans. Ind. Electron.*, Vol. 63, No. 2, pp. 894-902, Feb. 2016. - [12] Haoyu Wang, "A pulse width modulated LLC type resonant topology adpated to wide output voltage range," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, pp. 1280-1285, 2016. - [13] H. Pan, C. He, F. Ajmal, H. Chen, and G. Chen, "Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications," *IET Power Electron.*, Vol. 7, No. 11, pp. 2887-2894, Aug. 2013. - [14] J. Yamamoto, T. Zaitsu, S. Abe, and T. Ninomiya, "PFM and PWM hybrid controlled LLC converter," *IEEE International Power Electron. Conf.*, pp. 177-182, May 2014. - [15] Q. Chen, J. Wang, Y. Ji, and S. Liang, "Soft starting strategy of bidirectional LLC resonant DC-DC transformer based on phase-shift control," in *Proc. of IEEE Conf. Ind. Electron. and Appl.*, pp. 318-322, 2014. - [16] F. Musavi, M. Craciun, D.S. Gautam, W. Eberle, W.G. Dunford, "Control strategies for wide output voltage range LLC resonant DC-DC converters in battery chargers," *IEEE Trans. Power Electron.*, Vol. 63, No. 3, pp. 1117-1125, Mar. 2014. - [17] B. Yang, "Topology investigation for frontend DC/DC power conversion for distributed power systems," Ph. D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003. - [18] W. Feng and F. C. Lee, "Optimal trajectory control of LLC resonant converters for soft start-up," *IEEE Trans. Power Electron.*, Vol. 29, No. 3, pp. 1461-1468, Mar. 2014. - [19] C. Fei, W. Feng, F. C. Lee, andQ. Li, "State-trajectory - control of LLC converter implemented by microcontroller," in *Proc. Appl. Power Electron. Conf. Expo.*, pp. 1045-1052, 2014. - [20] R. Zheng, B. Liu, and S. Duan, "Analysis and parameter optimization of start-up process for LLC resonant converter," *IEEE Trans. Power Electron.*, Vol. 30, No. 12, pp. 7113-7122, Dec. 2015. - [21] D. Fu, F. C. Lee, Y. Liu, and M. Xu, "Novel multi-element resonant converters for front-end DC/DC converters," in *Proc. IEEE Power Electron. Spec. Conf.*, pp. 358-364, 2008 - [22] D. Huang, P. Kong, F. C. Lee, and D. Fu, "A novel integrated multi-elements resonant converter," in *Proc. IEEE Energy Convers. Congr. Expo.*, pp. 3808-3815, 2011. - [23] T. Mishima, H. Mizutani, and M. Nakaoka, "An LLC resonant fullbridge inverter-lin DC-DC converter with an anti-resonant circuit for practical voltage step-up/down regulation," in *Proc. IEEE Energy Convers. Congr. Expo.*, pp. 3533-3540, 2012. - [24] T. Mishima, H. Mizutani, and M. Nakaoka, "A sensitivity-improved PFM LLC resonant full-bridge DC-DC converter with LC anti-resonant tank circuitry," in *IEEE Trans. Power Electron.*, in press. - [25] H. Wu, X. Jin, H. Hu, and Y. Xing, "Multielement resonant converters with a notch filter on secondary side," *IEEE Trans. Power Electron.*, Vol. 31, No. 6, pp. 3999-4004, Jun. 2016. - [26] R. Ren, F. Zhang, Z. Shen, and S. Liu, "The third harmonics current injection scheme for LLC topology to reduce the RMS of the output current," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, pp. 1435-1439, 2015. - [27] S. De Simone, C. Adragna, and C. Spini, "Design guideline for magnetic integration in LLC resonant converters," in Proc. Int. Symp. Power Electron., Electr. Drives, Autom. Motion 2008, pp. 950-957. - [28] D. Huang, F. C. Lee, and D. Fu, "Classification and selection methodology for multi-element resonant converters," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, pp. 558-565, 2011. - [29] M. Kim, S. Noh, and S. Choi, "New symmetrical bidirectional L3C resonant DC-DC converter with wide voltage range," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, pp. 860-863, 2016. Wenjin Sun was born in Jiangsu Province, China, in 1988. He received his B.S. degree in Electrical Engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2011, where he is presently working towards his Ph.D. degree in Electrical Engineering. His current research interests include the topologies and control of power converters, distributed power generation and spacecraft power systems. Xiang Jin was born in Hubei Province, China, in 1991. He received his B.S. and M.S. degrees in Electrical Engineering from Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2013 and 2016, respectively. His current research interests include the topologies and control of power converters, distributed power generation and spacecraft power systems. Li Zhang was born in Jiangsu Province, China, in 1985. He received his B.S. and Ph.D. degrees in Electrical Engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2007 and 2012, respectively. He was a Post-Doctoral Research Fellow in the Department of Electrical Engineering, Tsinghua University, Beijing, China, from 2012 to 2014. In 2014, he joined the Faculty of Electrical Engineering, Hohai University, Nanjing, China, where he is presently working as an Associate Professor. His current research interests include the topologies and control of de-ac converters and distributed generation technology. Haibing Hu received his B.S. degree from the Hunan University of Technology, Hunan, China, in 1995; and his M.S. and Ph.D. degrees in Electrical Engineering from Zhejiang University, Zhejiang, China, in 2003 and 2007, respectively. Since 2007, he has been with the Faculty of Electrical Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, where he is presently working as a Professor in the College of Automation Engineering. From 2009 to 2012, he was a Senior Research Fellow in the Department of Electrical Engineering, University of Central Florida, Orlando, FL, USA. He is the author or coauthor of more than 90 technical papers published in journals and conference proceedings. His current research interests include digital control in power electronics, multilevel inverters, digital control system integration for power electronics, and the application of power electronics to distributed energy systems and power quality. Yan Xing was born in Shandong Province, China, in 1964. She received her B.S. and M.S. degrees in Automation and Electrical Engineering from Tsinghua University, Beijing, China, in 1985 and 1988, respectively; and her Ph.D. degree in Electrical Engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2000. Since 1988, she has been with the Faculty of Electrical Engineering, NUAA, and is presently working as a Professor in the College of Automation Engineering. She has authored or coauthored more than 100 technical papers published in journals and conference proceedings and has published three books. Her current research interests include the topologies and control of dc-dc and dc-ac converters.