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Abstract 

 

Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial 
stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel 
torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the 
well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the 
torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived 
for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between 
the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are 
presented to demonstrate the correctness of the analysis and the superiority of the proposed methods. 
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I. INTRODUCTION 

The momentum flywheel is the key actuator for the attitude 
control of space stations, satellites, etc., [1]-[3]. Traditionally, 
the torque command of the flywheel periodically changes 
according to the attitude command of the spacecraft [4]. 
Meanwhile, the flywheel motor operates alternately between 
motoring and braking operations to precisely track the 
reference torque [5]. Therefore, the high-performance 
controllers designed for braking operations are as important as 
the one for motoring operation [6], [7]. Typically, there are 
three kinds of braking methods [5], i.e., regenerative braking, 
dynamic braking and plug braking. Plug braking and dynamic 
braking are applied in low-speed and high-speed ranges, 
respectively, while regenerative braking is rarely used in 
attitude control flywheel driving systems because the dc/dc 
converter or ultracapacitor, which is responsible for obtaining 
the regenerative energy [8], will results in increased complexity 
of the controller design and hardware configurations as well as 
a decrease in the system reliability.  

During the past few decades, a majority of the publications 
on motor driving systems have focused on motoring operation. 
Due to the development of hybrid electric vehicles (HEVs) 
[9]-[11] and smart power grids [12], regenerative braking has 
also attracted an increasing amount of attention. However, 
motoring operation possesses better linearity than braking 
operation and regenerative braking, which usually evaluate the 
high regenerative efficiency [13] that does not demand 
high-precision torque/speed tracking performance. Therefore, 
the control methods used in motoring operation and 
regenerative braking cannot be directly applied in the dynamic 
and plug braking process. At the same time, analytical studies 
on dynamic and plug braking have been very limited. A 
flywheel braking torque ripple suppression method was 
proposed in [5], in which the dynamic braking torque ripple is 
suppressed by a predictive controller and the plug braking 
torque ripple is reduced by changing the PWM modulation 
pattern. However, the proposed predictive controller in [5] does 
not guarantee decent robustness against system parameter 
perturbations and the system dynamics in plug braking 
operation are not fully analyzed. Therefore, further studies are 
necessary to achieve satisfactory flywheel control performance. 

Compared with the other brushless DC motors (BLDCMs) 
in industrial applications, the two-time-scale quantities of the 
BLDCMs in flywheels are better separated for two reasons.  
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Fig. 1. Buck converter-based BLDCM drive system block. 
 

 
Fig. 2. Energy flow diagrams. 

 
First, permanent magnet motors with a coreless stator are 

usually used in flywheel driving systems in the aerospace 
application owing to the absence of core loss [7], [14], which 
leads to a small motor inductance. Second, flywheels have a 
larger inertial moment than slender rod driving motors. It is 
widely accepted that the singular perturbation technique serves 
as an effective tool to deal with multiple-time-scale linear and 
nonlinear systems [15], [16]. Therefore, it is well-suited for 
analyzing flywheel driving systems. Meanwhile, the singular 
perturbation technique can provide us more insights into the 
dynamic couplings in plug braking dynamics, which the 
traditional distributed PID regulator fails to consider. Based on 
the singular perturbation analysis, the variable structure 
controller [20], [21] is adopted in this paper to achieve 
high-precision torque/speed tracking performance with easy 
implementation. 

This paper is organized as follows. Section II describes the 
model of dynamic braking and proposes a composite controller 
design strategy which combines slow- and fast- time portions 
based on the singular perturbation theory. Meanwhile, a simple 
control strategy for plug braking is proposed in Section III. 
Discussions of the main experimental results are presented in 
Section IV. Finally, some conclusions are stated in Section V. 

 

II. MODELLING AND COMPOSITE CONTROLLER 
DESIGN FOR DYNAMIC BRAKING 

Fig. 1 and Fig. 2 show the configuration of a flywheel 
motor driving system [18] and the energy flow in three 
different operations, respectively. In the motoring process, 

the electrical energy provided by a DC power source is 
transformed into the kinematic energy stored by a flywheel 
and thermal energy dissipated by the driving circuit. In the 
dynamic braking operation, kinematic energy is converted 
into thermal energy on the dynamic braking resistance to 
generate braking torque. When the rotation velocity of the 
flywheel is below a certain level, the back electromotive is 
insufficient to generate torque with required magnitude. 
Therefore, the Buck converter is modulated to supply plug 
braking voltage. Due to the energy limitations in satellites, it 
is useful to operate the motor first as a generator (dynamic 
braking) and then as a plug brake (plug braking) to perform 
the full braking action from running speed to standstill. 
Clearly, the system dynamics of plug braking is more 
complex than that of dynamic braking. Therefore, the 
analysis on dynamic braking is given first. 

Before modeling and designing the controller for a 
momentum flywheel system in braking operation, the 
singularly perturbed model applied in this paper is briefly 
introduced here. Consider the following class of singularly 
perturbed systems having the following form [15]: 

11 12 0 0

21 22 0 0

( )

( ) ( )

dx
A x A z x t x

dt
dz

A x A z B z u z t z
dt



   

    


 (1)

where x and z are the slow and fast dynamic states of the 
system (1), and ε is a small non-negative parameter. By setting 
ε = 0, the slow-dynamic subsystem obtained from (1) can be 
described as [23]: 



Precise Braking Torque Control for Momentum Flywheels Based on a …                955 

 

11 12

21 220 ( )

s

s s s

dx
A x A z

dt
A x A z B z u

  

   

 (2)

 

where the superscript s denotes the Quasi static component of 
the corresponding state. If the feedback controller law us 
depends on xs only, there exists a smooth isolated solution for 
equation (2) with respect to zs in the form zs=h(xs, us(xs)). The 
slow-dynamic subsystem can be re-described as [16]: 

11 12 ( , ( ))

( , ( ))

s

s s

dx
A x A h x u x

dt
z h x u x

  

 

 
(3)

 

Therefore, the first step of the controller design for (1) is to 
look for a control law us(xs) to guarantee the closed-loop 
stability of the Quasi static component of the state variables in 
(3). Meanwhile, in order to maintain the validity of the control 
structure designed for (3), a control law that limits the effect of 
the boundary layer component of (1) on the system states x and 
zs should be synthesized. To this end, consider the reduced fast 
subsystem as [23]: 

22 ( )
e

e s e edz
A z B z z u

dt
     (4)

 

where ze = z - zs is the boundary layer component of the fast 
state variable z, while ue = u - us is the boundary layer 
component of the control law. Thus the second step is to 
design a control law ue depending on ze that can rapidly drive ze 
to near zero so that the slow-dynamic model (3) remains valid. 

A. Dynamic Braking Operation Analysis 

The main current path during dynamic braking is 
illustrated in Fig. 3.  

Based on the average modeling approach, the full-order 
dynamic equation of a flywheel motor in dynamic braking 
operation can be derived as: 

 

2ab e T ab

b dy
d s

t d dis

di
L k v v R i

dt
dv v

C i D
dt R R

d
J k i B

dt



  


   


  




   


 (5)

 

where J and ω denote the inertial moment and angular speed 
of the flywheel rotor, kt is the torque coefficient, ke is the 
line-to-line back electromotive force (EMF) coefficient, Bd is 
the velocity damping coefficient, τdis is the disturbance torque, 
i is the motor winding current, v is the Buck converter 
terminal voltage, vT is the diode conduction voltage, Rab is the 
line-winding resistance, Cb is the Buck converter parallel 
capacitance, Rd is the dynamic braking resistance, Rs is the 
switch conduction resistance, and Ddy is the cycle duty ratio 
of T8, respectively. In addition, in the following passage, the 
superscripts s and e denote the quasi steady and boundary  

 
Fig. 3. The main dynamic braking state current path. 
 
layer components of the fast dynamic states, and the 
subscripts dy, pl and mt represent the control variables in the 
dynamic braking, plug braking and motoring operations, 
respectively. 

Note that Lab and Cb are much smaller than J. Hence, i and 
v are treated as fast-time states and ω is the slow-time state. 
According to the singularly perturbed system theory, the slow 
dynamic subsystem of (5) can be written as: 

t

s
d dis

d
J k i

dt
B


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(6)
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(7)

where Ds 
dy is the Quasi static component of the control effort. 

From (7), the Quasi static components of is and vs can be 
resolved as: 

2
( , )

( + ) /

( 2 )( + )

( + )

s s e T
dy dy s

ab d s dy

s e T d s
s
dy ab d s
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i f D
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

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 (8) 

Based on (8), the nonlinear function mapping is into Ds 
dy is 

given by: 

1 + )
( , )

2

s
s s d s
dy dy s

e T ab

R R i
D f i

k v R i



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
（

（ ）-
 (9) 

Note that f-1 
dy(ω, is) is a function of ω. This is because back 

EMF (keω) provides the braking supply voltage during 
dynamic braking. 

Subtracting (7) from (5)，the fast dynamic subsystem is 

given by: 

+ +

e
e e

ab ab

s e s e e ee
dy dy dye

b
d s d s d s

di
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 (10)

By applying the small signal modelling technique, the fast 
dynamic subsystem (10) can be further linearized as: 

+

e
e e

ab ab

s e s ee
dy dye

b
d s d s
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D v v ddv
C i

dt R R R R


  



    

 (11) 
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Fig. 4. Plug braking current paths with the ON_PWM pattern. 
 
where [ie  ve]=[i  v]-[is  vs]

 
is the boundary layer component 

of the fast dynamic states, de 
dy is the control law for the fast 

dynamic subsystem, and the final control effort is a linear 
combination of the control laws designed for the fast- and 
slow- dynamic sub-systems, i.e., de +Ds =D. 

B. Dynamic Braking Operation Control Strategy 

  According to the fast-dynamic and slow-dynamic 

subsystems given by (6), (7) and (11), the two-time scale 

controller outputs, i.e., de 
dy and Ds 

dy, are derived in this part.  
When only considering the slow-dynamic subsystem 

modeled by (6) and (8), the following is obtained: 

( , )t

se r
dy d dis

d d
J k J

dt dt
f D B

 
      (12)

where ωr denotes the reference speed and ωe=ω﹣ωr.  

Here the expected speed error differential equation is 
expected as 

 

2 1 0e e et
        (13)

where γ2  and  γ1 are constant coefficients and γ2 , γ1 >0. 
Substituting (13) into (12), the expected slow dynamic 

system input Ds 
dy can be obtained as: 

1
ˆ+ )ˆ( , )

ˆ2

s
s s d s
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D f i
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
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where 2 1
ˆ ( ) /s

e e r d dis tt
J Ji J B k           . 

Notice that the fast dynamic variables i and v should 
rapidly converge to the quasi steady components is and vs 
determined by (8). Upon this, the performance of the slow 
dynamic subsystem control law (14) can be guaranteed and 
the influence of the boundary layer components on the slow 
subsystem can be minimized. Considering that the variable 
structure control (VSC) has the advantages of robustness and 
easy implementation [22][23], it is applied here to control the 
boundary layer subsystem. 

When the VSC switching surface is chosen as λdy(x
e 
dy)= λ1 

dyi
e+ 

λ2 
dyv

e, the dynamics of (11) on the switching surface can be 
described as: 

1 2/
e

e e
ab ab dy dy

di
L R i i

dt
     (15)

where λ1 
dy/ λ

2 
dy should be smaller than Rab to guarantee system 

stability. To reduce the computational demand and algorithm 
complexity, only the variable structure control law in the VSC 
is adopted. Then the variable structure control law can be 
given by: 

1

2

( ) ( ( ) )

C ( + )( ( ) )
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( 2 )
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(16)

 

where eB  is the input vector of (11), ρvs(λdy)=flp(λdy/(|λdy|+ 

ξ)), flp( ) is the low-pass filter operator, and σ and ξ are 
positive constants. The gain of the variable structure 
component, i.e. σ, should be large enough to offset 
uncertainties and matched disturbances [22]. Then the 
composite control can be obtained as: 

1
2

C ( + )( ( ) )
ˆ( , )

( 2 )

s e
dy dy dy

s
b dy ab d s vs dy dys

dy
dy e T

D D d

D R R R k
f i

k v

  


 


 

 
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

(17) 

 

III. ANALYSIS AND CONTROLLER DESIGN FOR 
PLUG BRAKING 

A. Plug Braking Operation Analysis 

  During plug braking operation, the ON_PWM pattern is 
applied to reduce the modulation ripple and electromagnetic 
interference [5]. As illustrated in Fig. 4, the upper switches 
are used for phase conversion, while the lower switches are 
employed for regulating the torque current by PWM in the 
ON_PWM pattern. Meanwhile, the Buck converter is used 
for offering a plug voltage that is higher than the line-to-line 
back EMF amplitude to avoid uncontrollable current. 

Based on average modeling technology, if the switch 
conduction resistance Rs is neglected, the differential  
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Fig. 5. Overall controller diagram. 

 
equations of the flywheel motor in the plug braking operation 
can be achieved as: 

2

1 1

1
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m
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where uc denotes the DC-supply voltage, and Dpl2 and Dpl1 are 
the PWM duty ratios of the switch T7 and the three-phase 
inverter (such as T4 in Fig.4). Lm is the Buck converter 
inductance, and im is the Buck dc-link current. Accordingly, 
the slow-dynamic subsystem and the fast-dynamic subsystem 
are described as: 
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In addition:  
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Similarly, the fast dynamic subsystem (20) can be 
linearized as: 
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(21)

From (19), the quasi steady state can be calculated as: 

1 2 1 2
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 
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(22)

B. Plug Braking Operation Analysis 

A traditional plug braking controller independently 
regulates Buck output voltage and three-phase inverter 
current. The basic principle is that the Buck converter 
regulates the output voltage to reject the influence of the 
changing load, i.e., BLDCM, and the three-phase inverter is 
regulated assuming that the supply plug voltage remains 
constant. However, the couplings of the dynamics of the 
three-phase inverter and the Buck converter are beyond the 
consideration of traditional distributed controllers and the 
controller performance can be improved if these two parts 
can be analyzed as a whole system. Therefore, a novel control 
strategy, which analyzes the overall dynamics of plug braking 
operation, is proposed as follows. 

Based on the slow dynamic subsystem described in (19), it 
can be noted that when a three phase inverter is not 
ON-PWM modulated, i.e., Ds 

pl1 = 1, it follows that upl = Ds 
pl2 

(uc+vT) + keω - vT can be regarded as the supply voltage to 
generate the braking torque current is through the resistor Rab. 
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Here upl is defined as the equivalent plug braking voltage. 
Since the magnitude of the back EMF keω declines with 
respect to the decrease of ω, the equivalent plug braking 
voltage upl also decreases with respect to the decline of the 
rotor speed if Ds 

pl2 remains constant. In order to guarantee that 
upl remains at the same level during plug braking operation, 
the controller law for the Buck duty ratio Ds 

pl2 is designed as 
Ds 

pl2(uc+vT)+keω-vT =ûpl where ûpl is a constant. Thus, the 
following is obtained: 

 

2 ˆ( ) / ( )s
pl pl e T c TD u k v u v     (23) 

By substituting (23) into (22), the nonlinear function 
mapping is into Ds 

pl1 can be derived as: 
 

1
1 ( , )

ˆ

s
s s ab T e
pl pl

pl e T

R i v k
D f i

u k v





  

 
 

 (24) 

The controller design process for the slow dynamic 
subsystem is similar to that of the dynamic braking. Here the 
expected speed error differential equation is designed as (13). 
According to (13) and (24), the feedback control design for 
the slow dynamic subsystem is given by: 
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From (21), it can be noted that the fast-dynamic subsystem 
has two inputs de 

pl1 and de 
pl2, and that the input vectors for them 

are [0 (vs+vT)/Lab  –is/Cb]
T and [(uc+vT)/Lm 0 0]T, respectively. 

The input vector for de 
pl2 is independent with the quasi steady 

states is and vs. Assuming that de 
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input for the system (21), the component (∂λpl/∂xe 
plBe)

-1 in the 
variable structure control law is a constant, where xe 
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ve]T and λpl(x
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pl) = 0 is the designed sliding surface. Therefore, 

to facilitate the control development, the controller design 
process is simplified by setting de 

pl1 = 0, and the linearized 
boundary layer subsystem can be described as: 
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Accordingly, when the sliding surface for the fast dynamic 
subsystem is chosen as λpl(i

e,ve,ie 
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The system (27) is exponentially stable as long as λ2 
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pl is set as 
0, the stability condition can be simplified as λ1 

pl/ λ
3 
pl> 0> -Ds 

pl1. 
Then the control law de 

pl2 for the fast dynamic subsystem is 
obtained as: 

1
2 3

( ( ) )
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( )
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x u v
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   
 

(28) 

  Upon this, the composite control law for the flywheel 
motor plug braking operation can be derived as: 
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(29) 
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ˆ
ˆ( , )

ˆ
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s s ab e T
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pl e T

R i k v
D D f i

u k v





  

  
 

      (30) 

The controller for the motoring operation can be designed 
by a similar approach, which is illustrated in the Appendix. 
So far, the composite controller design for a flywheel driving 
system in the velocity mode is completed. Based on the 
above analysis, the overall controller diagram is illustrated in 
Fig. 5, where the top switch in the far left dotted-line block is 
activated by the velocity/current mode selector. 

C. Flywheel Torque Control Strategy Configuration 

From the singular perturbation analysis, the functions 
which map the quasi steady winding current is into the duty 
cycle have been resolved as f-1 

dy(ω,is), f-1 
pl (ω,is) and f-1 

mt(ω,is). In 
the speed mode controller, the reference torque current, 
which regulates the rotor speed according to the expected 
error differential equation (13), is calculated by the slow 
dynamic controller. Then the VSC controller is employed to 
make the real torque current rapidly converge to the reference 
torque current. In the current mode controller, the control 
objective is to regulate the real toque current i to track the 
reference torque current ir. Therefore, the only difference 
between the current mode controller and the speed controller 
is that the reference quasi steady torque current is is the 
reference torque current in the former one and the slow 
dynamic controller output in the latter one. Accordingly, the 
design process for the current mode controller can be 
described as follows. As shown in Fig.5, when the current 
mode is selected, the slow dynamic controller does not work 
and the reference quasi steady torque current is is set to be the 
reference torque current ir (see Fig.5). Then the quasi steady 
control component Ds can be achieve from f-1 

dy(ω,is), and the 
boundary layer control component de can be calculated based 
on the VSC to make the boundary layer component in the fast 
dynamic states converge to the zero point. Take the dynamic 
braking operation as an example, the current mode controller 
can be resolved as: 

1
2
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s e
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Fig. 6. MSFW control system. 
 

TABLE I 
MSFW MOTOR CONTROL SYSTEM PARAMETERS 

DC Source V 28 
Rated Output Torque Nm ±0.05 
Rated Rotor Speed rad/s ±523.6 
Moment of Inertia Nms2/rad 0.0286 

Line-to-line Back EMF 
Cofficient Vs/rad 0.08 

Rated Stator Current A 2 
Phase Resistance  0.5 
Phase Inductance μH 36 

Pole Pairs  6 
Buck Converter PWM 

Frequency 
kHz 20 

 

where ir is the reference torque current. 
 

IV. MSFW MOTOR EXPERIMENTAL RESULTS 

A. Experimental Set-up 

  Fig. 6 illustrates the configuration of the Magnetically 

Suspended Flywheel (MSFW) control system developed in 
this study. The validity of the torque control scheme is 
verified by the BLDCM used in the MSFW for offering 
torque to adjust the attitude of a satellite. The BLDCM stator 
is coreless and the back EMF is trapezoidal. The rotor 
position is measured by means of a 2000-pulse/revolution 
encoder, and the dc-link current is measured by a high 
bandwidth Hall effect current sensor. They are then fed into 
the controller through a 12-bit analog-to-digital (A/D) 
converter with a 20K Hz sampling frequency. The parameters 
of the BLDCM control system are listed in Table I. The 
experimental setup, based on a DSP TMS320C31 and a 
FPGA EPF10K40 with a 40 MHz oscillator, is implemented. 

B. Experiment 1: Torque Mode Flywheel Torque Control 

  In this experiment, the torque mode control method is 
verified. Here the torque reference is converted to the current 
reference according to the equation Tr=kt·ir. In this mode, the 
flywheel torque is controlled through directly regulating the 
phase current. Therefore, the torque mode is known as the 
current mode as shown in Fig.5. In the experiment, the 

reference torque is given as Tr= ±0.05Nm, i.e. ir=0.625A. 
The system switches from motoring to dynamic braking, and 

then to plug braking during the whole process. As shown in 
Fig. 1 and Fig. 3, the dc-link current is equal to the absolute 
value of the conduction phase current. Therefore, the dc-link 
current and phase current are sampled at the same time to 
clearly present the change of the current. In addition, in order 
to verify the superiority of the proposed method, an 
experimental comparison between a PID controller and the 
proposed controller is made as shown in Fig. 7 and Fig. 8. 
When the flywheel torque controller is designed with a 
traditional PID algorithm, the electromagnetic torque (T̂e =kti) 
can be controlled to follow the variation of the reference 
torque during the whole process (see Fig. 7(a)). However, the 
torque fluctuation is significant during the motoring and 
braking operations (see Fig. 7(d)-(f)). In addition, when the 
dynamic braking torque controller is designed with a 
traditional PID algorithm, the braking torque has a large 
fluctuation when the system switches from motoring to 
dynamic braking. Furthermore, the braking torque decreases 
with the reduction in speed. Notice that the dynamic braking 
works well in the limited high speed range. When the 
operating speed is lower than the dynamic braking lower 
boundary speed value, the required braking torque cannot be 
held and the dynamic braking is over (see Fig. 7(a)). In 
addition, from Fig. 7(c), it is found that the actual slope of the 
rotor speed is lower than the expected value during the 
motoring process, while it is larger than the expected value 
during the braking process. This is because there is a 
difference between the flywheel output torque and the 
electromagnetic torque under the action of the resistance 
torque (To=Jdω/dt = Te-τdis). 
  In order to improve the electromagnetic torque 
performance, the proposed method is applied to the flywheel 
system. Through analyzing the slow-time quasi steady state 
subsystem and the fast-time boundary subsystem in separate 
time scales, the composite control law is obtained. The 
waveforms yielded by the proposed controller are shown in 
Fig. 8. From Fig. 8, it can be found that the torque fluctuation 
amplitude decreases distinctly during the whole process (see 
Fig. 8(d)-(f)). It can also be seen that the braking torque is 
smooth during dynamic braking (see Fig. 8(a)). With the 
proposed controller the system possesses improved dynamic 
performance and torque tracking capability. 

C. Experiment 2: Speed Mode Flywheel Torque Control 

In this experiment the proposed speed mode flywheel 
torque control scheme is verified. In the speed mode, the 
speed reference is given as ωr=∫Tr/Jdt according to the 
equation Tr=J·dωr/dt. The difference between the torque 
mode and the speed mode is that they are realized through 
controlling different variables. The torque mode is realized 
through controlling the phase current (i.e. electromagnetic 
torque), while the speed mode is implemented by regulating 
the change rate of the rotor speed (i.e. the output torque). 
According to the equation To=J×dω/dt = Te-τdis, the speed  
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Fig.7. The waveforms yielded by PI controller under torque mode condition. 
 

 
Fig. 8. Waveforms yielded by the proposed controller under the torque mode condition. 

 
mode yields better torque performance due to its disturbance 
torque suppression ability. In this experiment, reference 

torque Tr is set to 0.04 Nm (i.e. dω/dt =1.3986rad/s2), and it 

changes to -0.05 Nm (dω/dt =﹣1.7485rad/s2) when the rotor 

speed arrives at 120rad/s. The waveforms yielded by the 
conventional speed mode torque controller are described in  

Fig. 9 (I). It can be found that the slope of the rotor speed and 
the flywheel torque follow the variation of the reference 
torque during the whole process. However, the speed tracking 
error is relatively large. The waveforms yielded by the 
proposed speed mode controller are reported in Fig. 9 (d). It 
can be seen that the rotor speed and flywheel torque tracking  
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Fig. 9. Flywheel speed and torque waveforms during motoring and braking states under the speed mode condition. 
 
performances are obviously improved. 
 

V. CONCLUSION 

The momentum flywheel is the key actuator for torque 
generation, and the parameter tuning of traditional linear 
controllers for the momentum flywheel, especially in braking 
operations, can be time-consuming and the tracking 
performance is limited. Some analyses and control methods 
are proposed in this paper to address these control issues of 
flywheel driving systems. At first, the singular perturbation 
theory is adopted to analyze the two-time scale quantities of 
flywheel dynamics and a high-precision torque controller is 
designed to cope with the inherited nonlinearity in braking 
dynamics. Meanwhile, a novel control strategy is introduced 
for plug braking. It shows a simple design process with 
superior control performance when compared with traditional 
distributed controllers. Finally, the effectiveness of the 
analysis and the superiority of the proposed MSFW torque 
control method have been verified by experiments. 

 

APPENDIX 

The flywheel motor dynamics during motoring operation 
can also be decomposed into a slow dynamic subsystem and a 
linearized fast dynamic subsystem, which can be represented 
as (31) and (32), respectively. 
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From (31), the linear function mapping of is onto Ds 
mt is given 

by: 
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According to (33), the linear function mapping onto Ds can 
be written as: 

1( , ) ( ) / ( )s s
mt T ab e c Tf i v R i k u v     

When the sliding surface for the fast subsystem is set as 
λmt(i

e, ve, ie 
m) = λ1 

mti
e
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mtv

e + λ3 
mti
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m, the composite controller 

output is given by: 
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