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Abstract 

 

A novel space vector modulation strategy in the non-orthogonal three-dimensional coordinate system for multi-level 
three-phase four-wire inverters is proposed in this paper. This new non-orthogonal three-dimensional space vector modulation 
converts original trigonometric functions in the orthogonal three-dimensional space coordinate into simple algebraic operations, 
which greatly reduces the algorithm complexity of three-dimensional space vector modulation and preserves the independent 
control of the zero-sequence component. Experimental results have verified the correctness and effectiveness of the proposed 
three-dimensional space vector modulation in the new non-orthogonal three-dimensional coordinate system. 
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I. INTRODUCTION 

In recent years, three-phase four-wire inverters have been 
widely used in active power filters (APFs) [1]-[8], 
uninterruptible power supplies (UPSs)[9], renewable energy 
power generation [10], [11] and power conversion devices in 
three-phase four-wire power supply systems due to their 
ability to produce zero-sequence voltage. Three-phase 
four-wire inverters mainly include two topologies [2]: 
three-leg inverters and four-leg inverters, which are shown in 
Fig. 1(a) and (b), respectively. The three-leg inverters directly 
connect the neutral-point (NP) of dc-link capacitors and the 
neutral point of the power system to construct a fourth wire. 
Thus, they are also referred as three-leg center-split capacitor 
(TLSC) inverters [1]. Four-leg converters have a better 
zero-sequence compensation effect than three-leg converters. 
However, their main circuit needs more switch devices, 
which greatly increases the cost [12]. In this paper, the study 
object is a three-level TLSC inverter as shown in Fig.1(a). 

The pulse width modulation (PWM) strategy is a key 

technology in the control of multi-level three-phase four-wire 
inverters. Various PWM strategies for multilevel inverters 
have been studied and a lot of results have published such as 
carrier-based modulation (CBM) [13]-[15], space vector 
modulation (SVM) [16]-[18] and a number of PWMs with 
specific functions [19]-[22]. However, these traditional PWM 
strategies are all realized on the two-dimensional (2D) plane. 
With these strategies, it is difficult to output and control the 
zero-sequence component of reference voltage. Therefore, the 
study of the PWM strategies for three-phase four-wire 
inverters mostly focuses on the three-dimensional (3D) 
modulation algorithm [1]-[11], [23]-[31]. The three-leg 
center-split capacitor topology was first presented in [23], 
and a 3D hysteresis modulation was proposed for pulse 
control. The 3D hysteresis modulation is simple and easy to 
implement. However, its switching frequency is not fixed. In 
order to overcome the drawback of 3D hysteresis modulation, 
a fixed switching frequency 3D hysteresis, which was 
realized by the real-time changing of the hysteresis width 
with a look-up table, was proposed in [24]. However, the 
design of the look-up table is quite complex. A carrier-based 
PWM technique extending the offset voltage concepts to the 
three-phase four-wire converter is equivalent to the 
symmetrically aligned three-dimensional space vector 
modulation (3D-SVM) [25]. However, the appropriate offset 
voltage injection requires complex calculations and is only 
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suitable for four-leg converters. Compared with other 
modulation strategies for three-phase three-wire inverters, the 
3D-SVM strategy is a high-quality PWM control method that 
offers many advantages such as a low output distortion, high 
bus voltage utilization and digital implementation simplicity. 
Therefore, a three-dimensional space vector modulation 
(3D-SVM) suitable for three-phase four-wire converters has 
been extensively studied. Two types of 3D-SVM based on the 
α-β-γ and a-b-c coordinate systems have been developed. The 
first 3D-SVM, based on the α-β-γ coordinate system, was 
proposed for two-level three-leg center-split capacitor 
inverters [1]. Then based on the 3D-SVM proposed in [1], a 
symmetrical components control method was added to 
improve the control effect under unbalanced conditions [26], 
[27]. The authors of [28] expanded the α-β-γ 3D-SVM to 
three-level TLSC inverters, and offered a simple control 
method for the NP potential balance. The algorithm 
complexity of the α-β-γ 3D-SVM for TLSC inverters 
increases dramatically with an increase in the number of 
levels. Many studies have been dedicated to simplifying the 
three-level 3D-SVM based on the α-β-γ coordinate system to 
a two-level 3D-SVM [2], [3], [5]. This approach plays a 
certain role in reducing algorithm complexity. However, it 
still has many limitations when applied to multi-level 
converters. To solve these problems, some scholars have 
established a three-phase orthogonal a-b-c 3D coordinate 
system, and done research on 3D-SVM for multi-level 
three-phase four-wire inverters in this coordinate system [5], 
[6], [29]-[31]. The 3D-SVM based on the a-b-c coordinate 
system does not require multiplication or trigonometric 
operations when calculating the duration of vectors. 
Therefore, it is simple and easy to expand to higher-order 
topologies when compared with the α-β-γ 3D-SVM. However, 
the a-b-c 3D-SVM does not separate the symmetrical and 
asymmetrical components very well. Moreover, the NP 
potential control is relatively complicated in this 3D-SVM. 
The authors of [7], [32], [33] analyzed the duty cycle of 3D 
space vectors and proposed a 3D direct pulse width 
modulation (3D-DPWM) strategy that is similar to the 
3D-SVM strategy based on the a-b-c coordinate system. 
Besides, a simple NP potential control method has been 
added to the 3D-DPWM. Recently a hybrid 2D and 3D SVM 
strategy that is suitable for both balanced and unbalanced 
conditions was presented in [11]. Further analysis of the 
mathematical description and the inverter output voltage 
distortion of the hybrid SVM have been conducted in [34]. 
However, the modulation section of the hybrid SVM is still 
performed in the α-β-γ coordinate system. Thus, the 
contradiction between the calculation complexity and the 
control flexibility zero-sequence voltage is still unresolved. 

A novel 3D-SVM strategy which is suitable for multi-level 
TLSC inverters is proposed in this paper. Based on 
comparing and analysing two traditional coordinate systems 

(α-β-γ and a-b-c), a novel non-orthogonal three-dimensional 
coordinate system (K-L-0) integrating the advantages of both 
of the classical coordinate systems is introduced in this paper. 
The novel non-orthogonal 3D-SVM is established in the 
K-L-0 coordinate system. In additional, in terms of the 
inherent neutral-point (NP) voltage unbalance of the 
multi-level TLSC inverter, a simple NP voltage control 
strategy is replenished in the non-orthogonal 3D-SVM. 
Finally, experiments are conducted on the three-level TLSC 
inverter and the correctness and feasibility of the proposed 
new 3D modulation strategy have been verified. 

 

II. NON-ORTHOGONAL THREE-DIMENSIONAL 
COORDINATE SYSTEM 

A. Novel Coordinate System 

In order to improve the research of the 3D-SVM for 
three-phase four-wire multi-level inverters, a reasonable 
three-dimensional coordinate system should be established first. 
In previous studies the most commonly used three-dimensional 
coordinate systems can be divided into two types: α-β-γ and 
a-b-c coordinate systems. 

Coordinate transformations from the ABC to α-β-γ 
coordinate systems well separate the symmetrical components 
(positive-sequence and negative-sequence components) and 
asymmetrical component (zero-sequence component) of any 
space voltage vector. Therefore, space vectors in the α-β-γ 
coordinate system have definitude physical meanings and the 
zero-sequence component of these vectors can be directly 
represented by the γ-axis coordinate. This will allow the α-β-γ 
3D-SVM to have greater flexibility in terms of NP voltage 
balance and zero-sequence voltage output. However, the 3D 
modulation algorithm implemented in this coordinate is very 
complex and requires lots of trigonometric functions and 
coordinate translation operations, which greatly increases the 
system consumption and cost. In addition, this 3D modulation 
algorithm is difficult to expand to multi-level inverter 
applications. 

Going from the ABC to the a-b-c 3D coordinate system does 
not need any coordinate transformation, because the a-b-c 3D 
coordinate system is just a spatial expression of the ABC 
three-phase voltage. The symmetric and asymmetric 
components of the space vectors in the a-b-c coordinate system 
are not separated and cannot be directly represented by 
coordinates of three-axes. This means that there is still 
coupling between the three coordinate variables of the space 
vector in the a-b-c 3D coordinate system. The 3D-SVM based 
on the a-b-c coordinate system does not require complex 
trigonometric functions or coordinate transformation when 
selecting combined vectors as well as calculating the dwell 
time of the selected vectors. Thus, it overcomes the 
shortcomings of the large computation of the α-β-γ 3D-SVM. 
Besides, the 3D-SVM based on the a-b-c coordinate system is  
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Fig. 1. Circuits of three-level three-phase four-wire inverters: (a) three-leg center-split capacitor; (b) four-leg center-split capacitor. 
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(a) K-L-0 coordinate system. 

 

1V
2V

3V 4V
10V

5V
11V

6V
12V

7V
13V

8V
14V

9V
15V

16V

17V

18V

19V

20V

21V

22V

23V24V

25V

26V 27V

 
(b) K-L plane. 

 

Fig. 2. Distribution of basic space vectors in the K-L-0 coordinate 
system and projections on the K-L plane. 
 
easy to expand to circuit topologies with more levels. However, 
the coupling relations among the three axes coordinates make 
the control of the zero-sequence voltage output and the NP 
voltage balance relatively complex.  

Although there is a great difference between the two 
three-dimensional coordinate systems, both of them have 

orthogonal characteristics. In order to integrate the advantages 
of the two traditional coordinate systems, a novel 
non-orthogonal three-dimensional coordinate system (K-L-0) is 
introduced in this paper. In this system, the K-L axis locates on 
the α-β plane, and the K-axis coincides with the α-axis, the 
L-axis leads the β-axis π/6, and the 0-axis coincides with the 
γ-axis. The transformation coefficient matrix from the ABC 
three-phase to the K-L-0 non-orthogonal three-dimensional 
coordinate system is presented in equation (1). Here, all of the 
coordinate transformations are used in the proportional 
transformation for description convenience. 

0

1 0 1

0 1 1

1 1 1

K a

L b

c

U U

U U

U U

    
         
        

               (1) 

Three-level three-leg center-split capacitor inverters have 
27 different switching combinations, which correspond to 27 
different space vectors in the 3D coordinate system. The 
distribution of all of the space vectors in the K-L-0 coordinate 
system and the projections of these vectors on the K-L plane 
are shown in Fig. 2. 

Assume that the voltage of dc-linked capacitors are same 
and equal to half of the voltage on the DC bus (1/2udc). Then 
use 1/2udc to get the p.u. values of the terminal voltage 
uxo(x=a,b,c) shown in Fig. 2(a). It can be concluded that: Uxo =1, 
when the switching state of the X-phase (X=A, B, C) is “P”; 
uxo=0, when the switching state of the X-phase is “O”; and 
uxo=-1, when the switching state of the bridge arm X-phase is 
“N”. The corresponding K-L-0 coordinates of the 27 
fundamental voltage space vectors are marked in the K-L plane 
as shown in Fig. 2(b). For calculation convenience, 
proportional transformation is used in this article so that the 
coordinate units for each of the axis in Fig. 2 are not perfectly 
equivalent, where the units of the K and L axes are 1/3udc, and 
the unit of the 0 axis is 1/6udc. 

B. Equivalent Analysis of Different Coordinate Systems 

From Fig. 2, the distribution of the 27 basic space vectors 
in the K-L-0 coordinate system are entirely consistent with 
those of the α-β-γ coordinate system, and all of these vectors  
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(b) K-L-0 (α-β-γ). 

Fig. 3. Distribution of basic space vectors in different coordinate 
systems. 

 
sequentially distribute in a regular hexagonal prism [3], [8], 
[25]. While in the a-b-c 3D coordinate system, the 
corresponding basic space vectors are located in eight cubes 
whose directions are opposite [27], [28]. The distribution and 
mutual correspondence relationship of all 27 space vectors in 
the α-β-γ, K-L-0 and a-b-c coordinate systems are shown in 
Fig. 3. 

Any form of coordinate transformation is an affine 
transformation which can be achieved by compounding five 
basic sub transformations, such as: Translation, Scale, Flip, 
Rotation and Shear. The affine transformation preserves 
collinearity, flatness, parallelism, and ratios of distances. 
Therefore, a straight line (or plane) is transformed into 
another straight line (or plane). If a point divides a line in a 
given ratio, the transformed point divides the transformed 
line in the same ratio [9]. The coordinate transformation from 
the a-b-c to the K-L-0 non-orthogonal coordinate system 

shown in equation (1) can be further decomposed into 
equation (2). 

Where, Tαβγ is the coefficient matrix of the Clark 
transformation, and T1 is the coefficient matrix of the 
transformation from the α-β-γ to the K-L-0 coordinate 
systems. Obviously T1 is a full rank matrix. Therefore, there 
must be only one [UK, UL, U0]

T in the K-L-0 coordinate 
system corresponding to the arbitrary vector [Uα, Uβ, Uγ]

T
 in 

the α-β-γ coordinate system. Beyond that, T1 is also a 
combination of a scaling and a sheer transformation. 
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 (2) 

This means there are two steps from the α-β-γ to the K-L-0 
coordinate system, and the two steps are as follows: 

1) Sheer the β-axis to the K-axis. 
2) Scale the object obtained in step 1) along the three axes 

by 
3

2
, 3  and 3, respectively. 

Firstly, Clark transform matrix Tαβγ is a full rank matrix. 
Then it can be split into equation (3) in terms of sub 
transformations. 
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 (3) 

In equation (3), the affine transformation from the a-b-c 
coordinate system to the α-β-γ coordinate system consists of 
three steps[9]: 

1) Rotate the a-b-c coordinate around the a-axis by π /4 
radians in the counterclockwise direction. 

2) Rotate the coordinate system obtained in step 1) around 
the b-axis by 0.1959π radians 

3) Scale the object obtained in step 2) by 6 3  along the 

a and b-axes and by 3 3  along the c-axis. Then the α-β-γ 

coordinate system can be obtained. 
The characteristic of the affine transformation ensures that 

the relative position and distance proportions for all of the 
vectors (including the basic and reference vectors) in the 
different coordinate systems are kept unchanged. Therefore, 
the 3D-SVM has an equivalent result in three different 
coordinate systems. For example, if the reference voltage 
space vector locates in the blue tetrahedron shown in Fig. 
2(a), then after the coordinate transformation it locates in the  
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Fig. 4. Basic units within the first triangular prism. 

 
blue tetrahedron presented in Fig. 2(b). Although the relative 
position of the tetrahedrons in the coordinate system has 
changed, the four basic space vectors which construct the 
tetrahedron remain unchanged and the distance proportions of 
the reference voltage and basic vectors are also kept constant. 
It can be concluded that the output of the reference voltage 
only depends on the switching state and duration time, 
regardless of the coordinate system. 

 

III. NON-ORTHOGONAL THREE-DIMENSIONAL 
SVM 

No matter which 3D coordinate system is used, the vertices 
of four adjacent basic space vectors can be connected to form 
a tetrahedron. For example, tetrahedrons composed of the 
vectors V4(POO), V10(ONN), V21(PNO) and V15(ONO) in 
different coordinate systems are presented in Fig.3. In 
classical 3D-SVMs, the four basic voltage vectors nearest 
tothe reference vector are commonly selected to compose the 
reference vector [2]-[6], [29]-[31]. The entire 3D space can 
be divided into 48 tetrahedrons according to the distribution 
of the 27 basic space vectors. According to solid geometry, 

the vertex of the reference vector just falls in the tetrahedron 
formed by the vertexes of four selected basic vectors. 
Therefore, finding the tetrahedron which contains the vertex 
of the reference vector will obtain the nearest four basic space 
vectors used to compose the reference vector. In this paper, 
each tetrahedron consist of the adjacent four basic space 
vectors is called a basic unit for synthesizing the reference 
vector. 

It is necessary to further study these basic units in the 
K-L-0 coordinate system. Since all of the 27 space vectors 
distribute symmetrically in 3D space, it only needs to 
consider the basic units within the first triangular prism to 
cover all of the types. All of the basic units in the first 
triangular prism are illustrated in Fig. 4. 

First, define a vertex with the smallest 0-axis coordinate in 
a basic unit as the datum point of this basic unit and the 
datum point is represented by a capital letter A, as shown in 
Fig. 4. Although the eight basic units within the first 
triangular prism are not completely consistent with each other, 
they have some similarities: (1) the four vertexes of each 
basic unit are located on a different 0-axis component plane; 
(2) the datum point and vertex with a maximum 0-axis 
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component have the same K and L axes coordinates. 
According to the projection of the eight basic units shown in 
Fig.4, the first large triangular prism can be divided into four 
small triangular prisms PI1-PI4, and the space expressions of 
PI1-PI4 are shown as equation (4). 
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The eight basic units distributed in PI1-PI4 can be divided 
into three categories based on their spatial vertical distance to 
the 0-axis. (1) The purple tetrahedron nearest the 0-axis, 
which is formed by a small vector and a zero vector, is called 
the center basic unit, and the ones located in PI1 are shown in 
Fig. 3(a)-(d). (2) The blue tetrahedron, which has a smaller 
spatial vertical distance to the 0-axis and is formed by a small 
vector and a middle vector, is called the middle basic unit, 
and the ones located in PI2 are illustrated in Fig. 4(e) and (f). 
(3) The red tetrahedron farthest away from the 0-axis, which 
is formed by a small vector, a middle vector and a large 
vector, is called the edge basic unit, and the ones located in 
PI3 and PI4 are shown in Fig. 4(g) and (h). 

A. Determination of Basic Unit 

It is not difficult to determine that to select the appropriate 
space vectors to construct the reference voltage vector, the 
specific basic unit wereh the reference voltage resides should 
be determined first. Select (int (UK), int (UL)) as the K and L 
axes coordinates of the datum point of the possible basic unit 
were the reference vector is located, where int(*) is an 
integral function which removes the fractional part of the 
input data. If (int (UK), int (UL))≠(0,0), the corresponding 
switch status [Sa, Sb, Sc] of the vectors [int (UK), int (UL), -2]T 
and [int (UK), int (UL),-1 ]T can be obtained by left 

multiplying the inverse matrix of equation (1). If Sx∈{-1，0，

1} (x=a, b, c) the vectors are selected as the datum point 
vector, and the vertex of this vector is regarded as a possible 
datum point.  

 

Among the eight basic units within the first large triangular 
prism shown in Fig.4, the edge basic unit located in PI3 and 
PI4 has only one tetrahedron in the 0-axis direction, the 
middle basic units located in PI2 have two tetrahedrons in the 
0-axis direction and they have the same projection on the 
KL-plane, while the center basic units located in PI1 have four 
such tetrahedrons in the 0-axis direction. This means the 
vertex of the reference voltage vector just locates in the edge 
basic unit, otherwise the datum point of the basic unit where 
the reference voltage vector locates in cannot be completely 
determined by only the K and L axis components of the 
reference voltages. Therefore, the datum point should be 
further corrected with the 0-axis component of the reference 
vector. Fig. 5 shows two reference voltage vectors V1 

ref

=[UK1,UL1,U01]
T and V2 

ref=[UK2,UL2,U02]
T which are both 

located in PI2, where UK1=UK2, UL1=UL2 and U01>U02.  

1
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Fig. 5. Basic units within the first triangular prism. 

 
TABLE I 

RELATIONS BETWEEN THE BASIC UNIT VERTEXES 

Conditions 

for 

component 

Vector coordinates 

VB VC VD 

K>0, L>0, 

K>L 
VA +[1,0,1]T VB +[0,1,1]T

 

VA +[0,0,3]T

K>0,L>0, 

K<L 
VA +[0,1,1]T VB +[1,0,1]T

 

K>0,L<0 VA +[1,0,1]T VB +[0,-1,1]T

K<0,L<0, 

K<L 
VA +[-1,-1,1]T VB +[-1,0,1]T

 

K<0,L<0, 

K>L 
VA +[-1,-1,1]T VB +[0,-1,1]T

 

K<0,L>0 VA +[0,1,1]T VB +[-1,0,1]T

 

Although V 1 
ref  and V 2 

ref  have the same K and L axes 
components, the two reference vectors are located in different 
basic units of A2B2C2D2 =[(1,1,-1), (1,0,1), (2,1,0), (1,1,2)] 
and A1B1C1D1=[(1,0,-2), (1,1,-1), (1,0,1), (2,1,0)]. 

In Fig. 5 the two basic units A1B1C1D1 and A2B2C2D2 are 
located on two sides of the plane B1C1D1=[(1,1,-1), (1,0,1), 
(2,1,0)]. Finally, the correct basic unit where the reference 
voltage vector locates in can be determined by judging the 
relative position between U0 and the plane B1C1D1. The 
equation of the B1C1D1 plane can be expressed as 
S=2*|UK-1|+|UL-1|. If 2*|UK-1|+|UL-1|>U0+1, then the reference 
vector coordinates are located within the tetrahedron A2B2C2D2; 
otherwise the reference vector coordinates are located within 
the tetrahedron A1B1C1D1 when 2*|UK-1|+|UL-1|<U0+1 is 
satisfied. 

When the datum point has completed the correction an 
offset vector [UK-int(UK), UL-int (UL), U0-Y]T can be obtained 
by subtracting the datum point vector from the reference 
voltage vector, where Y=-1 or -2. Then the reference voltage 
vector is shifted to a new space coordinate with the datum 
point as the coordinate origin. Moreover, according to the K  
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TABLE II 

COMPONENTS OF THE MODIFIED BASIC VECTORS 

Modifie

d 

vectors 

Position of the 

plane 

K-axis 

compone

nt 

L-axis 

compone

nt 

0-axis 

compone

nt 

VAB 

L=A(2) 1 0 1 

K=A(1) 0 1 1 

K=L 1 1 1 

VAC 

L=A(2) 1 0 2 

K=A(1) 0 1 2 

K=L 1 1 2 

VAD 
K=A(1)&L=A(

2) 
0 0 3 

 
and L axes coordinates of the offset vector, the coordinates 

of the other three vertices of the basic unit with A=[int (UK), 
int (UL), Y]T as the datum point can be obtained as shown in 
Table I. Once the basic unit containing the reference vector is 
determined, the four basic space vectors used to synthesize 
the reference voltage vector are selected. 

B. Computation of the Vector Duration Time 

According to the principle of the volt-second balance, there 
is a linear relationship between the reference voltage space 
vector and the selected basic voltage space vectors as shown 
in equation (5). 

ref S A 1 B 2 C 3 D 4

S , 1,2,3,4, 1i i i

V T V t V t V t V t

t d T i d

   
    

         (5) 

Where TS is the switching period, t1, t2, t3, t4 represent the 
duration times of the space vectors VA, VB, VC, VD , and d1, d2, 
d3, d4 are the respective duty cycles. Here, VA,VB,VC,VD 
represent the four vertexes vectors of the basic unit where the 
reference vector is located. In order to facilitate the calculation, 
the reference vector is still translated into the coordinate system 
with the datum point as the coordinate origin. Then equation (5) 
can be rewritten as (6). 

*
ref AB 2 AC 3 AD 4

1 2 3 41

V V d V d V d

d d d d

   


   
            (6) 

Where V* 
ref=Vref-VA, VAB =VB-VA, VAC =VC-VA, VAD =VD-VA. 

In the new coordinate system, the modified basic vector VAD 
only contains the 0-axis component while VAB, VAC are more 
complex. The three axes components for all of the modified 
basic vectors are shown in Table II. 

Where, A(x)(x=1, 2) are the K-axis and L-axis components 
of datum point A. Although the space position and geometry of 
the eight basic units in the first large triangular prism are not 
exactly the same, it is inevitable that the modified vectors VAB 
and VAC are in different space planes. From Table II, it can be 
found that at least one of VAB and VAC contains only the K-axis 
or L-axis component. However, the other one may contain both 
K-axis and L-axis components or only one component,  

TABLE III 
DUTY CYCLES OF THE BASIC VECTORS USED FOR CONSTITUTING 

THE REFERENCE VECTOR 

Positional 

relationsh

ip 

VAB in L=A (2) 

plane 
VAB in K=A (1) 

plane 
VAB in K=L 

plane 

VAC in 

L=A (2) 

plane 
Inactive state 

*
2

*
3

*
4 2 1

(2)

(1)

(3) 2

ref

ref

ref

d V

d V

d V d d





  

 

*
2

*
3 1

*
4 2 1

(2)

(1)

(3) 2

ref

ref

ref

d V

d V d

d V d d



 

  

 

VAC in 

K=A(2) 

plane 

*
2

*
3

*
4 2 1

(1)

(2)

(3) 2

ref

ref

ref

d V

d V

d V d d





  

 

Inactive state 

*
2

*
3 1

*
4 2 1

(1)

(2)

(3) 2

ref

ref

ref

d V

d V d

d V d d



 

  

 

VAC in 

L=K 

plane 

*
2 2

*
3

*
4 2 1

(1)

(2)

(3) 2

ref

ref

ref

d V d

d V

d V d d

 



  

 

*
2 2

*
3

*
4 2 1

(2)

(1)

(3) 2

ref

ref

ref

d V d

d V

d V d d

 



  

 

Inactive state
 

 

depending on the plane where the modified space vector is 
located. Taking the basic unit in Fig.4 (f) as an example: VAB 
only contains the L-axis component, VAC contains both K-axis 
and L-axis components, and VAB, VAC, VAD all contain the 
0-axis component. 

Therefore, the K-axis component of the reference vector V* 
ref

(1) is uniquely represented by VAC; the L-axis component V* 
ref

(2) is represented by both VAB and VAC; and the 0-axis 
component V* 

ref(3) is represented by VAB, VAC and VAD together. 

1 2 3 4
* *

2

*
3

* * *
4

1

(1) (2)

(2)

(3) (1) (2)

ref ref

ref

ref ref ref

d d d d

d V V

d V

d V V V

   


 





  

        (7) 

As a result, based on the characteristics for each of the axis 
components contained by the modified basic vectors, the 
duration time of each basic vector is obtained by determination 
of the spatial position of the modified vector and simple 
algebraic operations as shown in Table III. For example, in Fig. 
4(f) the duty cycles of VA,VB,VC,VD can be directly obtained as 
equation (7). 

C. Determination of the Switching Sequence 

After obtaining the duration time of the selected basic 
vectors, the final output switching states can be determined. 
However, different combinations of the switching sequence 
bring different results. The pros and cons of various 
combinations of switching sequences are compared and 
analyzed in [25]. The results show that the symmetrical 
switching sequence usually has a lower voltage distortion and 
less current ripple. Therefore, the symmetric switching mode is 
chosen in this paper. Moreover, in order to reduce the 
switching losses, it should be ensured that there is only one 
action at each switching state changing. Earlier in the article,  
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                               (a)                      (b)                     (c) 
Fig. 6. Simplified model of the dc-link: (a) switching state “P”; (b) switching state “O”; (c) switching state “N”. 

 
the switch state [Sa, Sb, Sc] of the datum point vector VA was 
obtained by an inverse coordinate transform. Therefore, the 
switch states of VB, VC, VD can be obtained by a similar method. 
However, the matrix multiplication is complex and consumes a 
lot of system resources. Actually, in the case where the 
switching state of VA is known, the other three switch states of 
VB, VC, VD can be derived by judging the positional relationship 
of adjacent vertices. The rules are as follows: 
 

a) If the two adjacent vertices locate on the planes of L=y 
(y=0, ±1, ±2), the switch states of the two corresponding basic 
vectors produce a state change in phase A along with the 
variation direction of the zero-sequence component. Taking 
points A and B in Fig. 4(h) as an example, adding one state to 
the switching state of VA(ONN) in phase A obtain the 
switching state of VB as PNN. 

 

b) If the two adjacent vertices locate on the planes of K=y 
(y=0, ±1, ±2), the switch states of the two corresponding basic 
vectors produce a state change in phase B along with the 
variation direction of the zero-sequence component. Taking the 
two points B and C in Fig. 4(h) as an example, adding one to 
the state switching state of VB(PNN) in phase B obtains the 
switching state of VC as PON. 

 

c) If the two adjacent vertices locate on the planes of K-L=y 
(y=0, ±1, ±2), the switch states of the two corresponding basic 
vectors produce a state change in phase C along with the 
variation direction of the zero-sequence component. In Fig. 4 
(h), the switching state of VC is PON, and the switching state of 
VD is POO. On the other hand, there is only one switching 
action in each moment of the basic vector changing, when the 
switch sequence is in the order VA, VB, VC and VD. 

D. Control on Neutral-Point Potential  

The imbalance of the dc-link NP potential is a problem that 
must be considered and solved in three-level three-leg 
center-split capacitor inverters, otherwise it affects the 
waveform quality of the output voltage and threatens the safe 
operation of the power system. The influences of the switching 
state and the phase current on the NP potential [8] are 

illustrated in Fig. 6. 
If ix>0(x=a, b, c) and the switching state is “P”, the upper 

capacitor discharges. However, the working state (discharge or 
charge) of the lower capacitor is a lot more complicated 
because it depends on the switching state of the other two 
phase legs and the zero sequence current of the system. When 
the switching state is “N” the lower capacitor charges and the 
working state of the upper capacitor becomes difficult to judge. 
However, since the switching state is “O” the current has no 
impact on the neutral-point potential. However, the upper and 
lower capacitors may charge or discharge, which is decided by 
the switching state and other two phase currents. On the other 
hand, if ix<0, the result is opposite. Despite the fact that 
changes of NP potential are influenced by many factors, the 
current ix has a decisive influences on the NP potential. 
Therefore, it is possible to implement the control on the NP 
potential by changing the switching states appropriately based 
on the phase current variation. In one basic unit the vectors VA 
and VD have the same K-axis and L-axis components. Thus, the 
reallocation of the duration time between them has a minimal 
influence on the constituted reference vectors [8].  

For example, when the reference vector locates in the basic 
unit shown in Fig. 3(h) and uc1> uc2 is satisfied, if ia>0 and 
ib+ic<0, it only needs to increase the duration time of the 
switching state “POO” while reducing the duration time of the 
switching state “ONN”. If ia>0 and ib+ic>0, increasing the 
duration time of the switching states “ONN” and “POO” 
makes the neutral-point potential balanced. It does not need to 
be processed in this situation. If ia<0 and ib+ic>0, reducing the 
duration time of the switching state “POO” and increasing the 
duration time of the switching state “ONN” makes the NP 
potential tend to be balance. However if ia<0 and ib+ic<0, any 
change in the duration time between the switching states 
“POO” and “ONN” further exacerbates the imbalance. 
Although this condition rarely occurs in actual system 
operation, further study of the control method is still needed. 
By comparing the absolute values of ia and ib+ic, the switching 
state corresponding to the bigger one is chosen and its duration  
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TABLE IV 
SIMULATION PARAMETERS 

Parameter Value 

Dc-link Voltage 600V 

Dc-link Capacitor 2200uF 

Switching Frequency 5kHz 

Resistive–Inductive Load R=8Ω, L=4mH

Modulation index 0.1<M<1 

Unbalance degree 0<ε0<1 

Phase of zero-sequence component -π<φ0<π 

 

0
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

 
Fig. 7. Changing trend of the restoration degree λ with varied 
values of M and ε0, when φ0 = 0. 

 
time should be increased to suppress further expansion of the 

neutral-point imbalance within the present switching period. In 
order to facilitate the adjustment of the duration time of VA and 
VD when the NP potential is unbalanced, a NP potential balance 

factor f∈ [0,1] is introduced in this paper. The adjusted 

duration time is expressed as equations (8) and (9). 
If the duration time of VA needs to be increased and that of 

VD needs to be decreased, equation (8) is used to adjust the 
duration time. If not, equation (9) is used. Obviously the 
control of the NP potential unbalance is more effective with a 
smaller f. However, there is a greater zero sequence error in the 
output voltage at the same time. Therefore, appropriate values 
of the balance factor f are decided based on the specific 
situation of the unbalance of the NP potential. 

0 0

4 4 0 *(1 )

t t f

t t t f





  


  
                   (8) 

0 0 4

4 4

(1 )

*

t t t f

t t f




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


                   (9) 

 

IV. SIMULATION AND EXPERIMENT 

A. Simulation Results 

In three-phase four-wired multi-level converters, the output 
capability of the reference voltage is usually affected by the 
modulation index (M), the unbalance degree (ε0) and the phase 
angle the of zero-sequence component (φ0), where the  
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Fig. 8. Changing trend of the restoration degree λ with varied 
values of M and φ0, when ε0 = 0.5. 
 
unbalance degree (ε0) is defined as the ratio between the 
amplitude of the fundamental positive sequence component 
contained in the reference voltage and the amplitude of the 
zero-sequence component contained in the reference voltage. 
The phase (φ0) is the initial phase of the zero-sequence 
component of the reference voltage. 

Simulations have been carried out for the output 
performance of the reference voltage with the proposed 
non-orthogonal 3D-SVM under different values of M, ε0 and φ0 
in the MATLAB\SIMULINK environment considering the 
parameters in Table IV. 

To evaluate the output capability of the non-orthogonal 
3D-SVM for the reference voltage in different cases, the 
restoration degree of the reference voltage λ is defined in 
equation (10). 

250
1

2
2 1

1 n

nref

UU

U U




                      (10) 

Where, Uref is the reference voltage amplitude, U1 indicates 
the output fundamental voltage amplitude of the inverter, Un is 
each of the harmonic amplitudes of the inverter output voltage, 

and 
250

2
2 1

n

n

U

U
  represents the total harmonic voltage distortion 

within 50 orders. From equation (10), the inverter obtains the 
stronger output capability of the reference voltage when λ has a 
smaller value. 

Fig. 7 shows the changing trend of the restoration degree λ 
varying with M and ε0, when φ0 = 0. When the unbalance 
degree is small (ε0<0.3), the output capability of the reference 
voltage decreases with a reduction of M, and λ is primarily 
affected by harmonic distortion. With an increase of the 
unbalance degree, the output ability of the reference voltage is 
dramatically reduced in the high-modulation area (M>0.7).  

However, the output ability of the reference voltage 
increases in low-modulation area (M<0.3). 

Fig. 8 shows the changing trend of the restoration degree λ 
varying with M and φ0, when ε0 = 0. When the reference 
voltage in the moderate-modulation area (0.3<M<0.7), changes 
of φ0 have little impact on the output capability and it is kept  
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Fig. 9. Changing trend of the restoration degree λ with varied 
values of φ0 and ε0, when M= 0.8. 
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Fig. 10. Experimental prototype. 
 

high. When the reference voltage is in the high-modulation 
area (M>0.7), the output capability of the reference voltage 
strengthens with an increase of φ0. When the reference voltage 
is in the low-modulation area, the variation of output capability 
is opposite. 

Fig. 9 shows the changing trend of the restoration degree λ 
varying with ε0 and φ0, when M = 0.8. When the unbalance 
degree is small (ε0<30%), the changes of φ0 have little impact 
on the reference voltage waveform and the restoration degree is 
high. If the unbalance degree exceeds 50%, the output 
capability of the reference voltage decreases from the phase 
angle ±π/2 in both directions. 

B. Experimental Validation 

To further verify the effectiveness of the proposed 
non-orthogonal 3D-SVM, an experimental platform was built 
as depicted in Fig. 10.  

Experimental results obtained from the former prototype are 
utilized to evaluate the output ability of the reference voltage of 
the non-orthogonal 3D-SVM under different conditions. The 
latter prototype is developed to verify the strategy of the NP 
potential balance control. All of the experimental parameters 
are same as those of the simulation and shown in Table IV. An 
Agilent DSO-X3014A oscilloscope is applied to observe the 
system variables during the experiment and experimental data  
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Fig. 11. Experimental waveform when M=1. 
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Fig. 12. Experimental waveform when M=0.8. 

 
sampled by the oscilloscope at 100 kHz are imported into 
MATLAB for spectrum analysis. 

Experimental results obtained from the former prototype are 
shown in Fig. 11, 12 and 13. Fig. 13 shows the line-to-line 
voltage of the inverter AC terminal uab, the three-phase load 
current iabc and the spectrum of uab when M=1. In Fig. 12.(a), 
since the inverter works in the inversion state with balanced 
loads and reference voltage, the three-phase load current is 
balanced. The line-to-line voltage has five levels and the 
voltage total distortion rate (THD, considering only within fifty 
orders) is 3.14%. In Fig. 11(b), a zero-sequence component 
with ε0=40% and φ0=35° is added to the reference voltage. It 
can be seen that the load currents have obvious distortion. 
From the spectrum of uab, it is found that the line-to-line 
voltage contains a large number of 3rd and 5th harmonic 
components in this case and the THD=9.4%. When M=1, the 
zero-sequence component of the converter has a weak output 
performance. As a result, a reference voltage with a large 
unbalance degree does not realize the linear output. 

Fig.12 shows the results of uab, iabc and the spectrum of uab 
when M=0.8. As can be seen from Fig.13, the unbalanced 
instruction voltage enters linear modulation area with a 
decrease of the modulation index, and the load current has no 
obvious distortion under an unbalanced reference voltage. 
From the spectrum of uab, it is found that the 3rd and 5th  
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Fig. 13. Experimental waveform when M=0.5. 
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Fig. 14. Experimental waveform when M=0.8. 

 
harmonic components of uab decrease significantly when 
compared with the line-to-line voltage, when M=1 under an 
unbalanced instruction voltage. As shown in Fig. 13, when the 
modulation index is less than 0.5, the number of uab levels is 
reduced to three and there is a sharp increase in the total 
distortion of the output line-to-line voltage. However, with a 
decrease of the modulation index, the output performance of 
the zero-sequence voltage component is further improved. 

Fig. 14 shows experimental waveforms with different NP 
balance factors for the unbalanced reference instruction voltage 
which is M=0.8 and ε0=40%. When the reference instruction 
voltage is unbalanced, it produces a low-frequency pulsation in 
the NP potential of the inverter. Fig. 14(a) shows the upper and 
lower DC link voltages (uc1 and uc2), the phase A current (ia) 
and its spectrum when the balance factor is f=0.5. The 
maximum voltage difference between the upper and lower 
capacitors is 20V when f=0.5. In addition, an obvious distortion 
appears in the load current. The THD of ia is 5.07%, and the 
proportion of the third harmonic in the fundamental frequency 
current is 3.98%. In Fig. 14(b), the maximum voltage 
difference between the upper and lower capacitors is 50V. The 
regulation on the duration time of VA and VD is relative 
weakening when f=0.9. However, the THD of ia is 3.98%, and 
the proportion of the third harmonic is 2.83%. The smaller the 
balance factor of the NP potential is, the better its suppression  
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Fig. 15. Comparison of consumed time under different 3D-SVM 
strategies. 

 
performance for the neutral-point potential fluctuation 
becomes, while the load current distortion increases. Therefore, 
an appropriate NP potential balance factor should be selected 
according to the actual situation. 

Fig. 15 shows a comparison of the consumed time under 
different 3D-SVM strategies with the same Micro controller. 
The curves show that the time consumed by the conventional 
two 3D-SVM strategies are essentially unchanged throughout 
the entire modulation index. However, the time consumption of 
the proposed non-orthogonal 3D-SVM is increased with the 
decrease of the modulation index. This is due to the fact that 
the proposed 3DSVM strategy repeatedly corrects the basic 
unit with a decrease of modulation index. The time 
consumption of the proposed non-orthogonal 3D-SVM is 
shorter than that of the α-β-γ 3D-SVM and it is close to that of 
the a-b-c 3D-SVM. However, the proposed 3D-SVM strategy 
is better than the 3D-SVM based on the a-b-c coordinate 
system in the control of zero-sequence component. 
 

V. CONCLUSIONS 

A non-orthogonal 3D-SVM strategy that is suitable for 
multi-level TLSC inverters is proposed in this paper. The novel 
3D-SVM works in a new non-orthogonal 3D coordinate system 
which integrates the advantages of two types of traditional 
three-dimensional coordinate systems. The equivalence 
between the proposed non-orthogonal 3D coordinate system 
and the traditional 3D orthogonal coordinate systems has been 
derived and verified by an affine transform. The proposed 
non-orthogonal 3D-SVM converts the trigonometric functions 
in the α-β-γ 3D-SVM into simple algebraic operations, which 
greatly reduces the algorithm complexity of the 3D-SVM. On 
the other hand, the non-orthogonal 3D-SVM has the 
decoupling expression of the symmetrical and asymmetrical 
components of the reference voltage. Therefore, it has better 
capability of zero sequence independent and NP balanced 
control than the a-b-c 3D-SVM. In addition, considering the 
inherent NP potential unbalance issue of three-level TLSC 
inverters, a simple control strategy was added to the 
non-orthogonal 3D-SVM. Finally, numerous experiments have 
verified the correctness and effectiveness of the proposed 
3D-SVM. 
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