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Abstract  

 

This paper proposes an improved low frequency Selective Harmonic Mitigation-PWM (SHM-PWM) technique. The proposed 
method mitigates the low order harmonics of the output voltage up to the 50th harmonic well and satisfies the grid codes EN 50160 
and CIGRE-WG 36–05. Using a modified criterion for the switching angles, the range of the modulation index for non-linear SHM 
equations is improved, without increasing the switching frequency of the CHB converter. Due to the low switching frequency of the 
CHB converter, mitigating the harmonics of the converter up to the 50th order and finding a wider modulation index range, the size 
and cost of the passive filters can be significantly reduced with the proposed technique. Therefore, the proposed technique is more 
efficient than the conventional SHM-PWM. To verify the effectiveness of the proposed method, a 7-level Cascaded H-bridge (CHB) 
converter is utilized for the study. Simulation and experimental results confirm the validity of the above claims. 
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I. INTRODUCTION 

Multilevel converters have gained a lot of attention in recent 
years due to their salient features such as lower stress across 
the semiconductors, lower common-mode voltage generation, 
lower harmonics in the output waveform, and lower EMI 
generation [1], [2]. In all of the multilevel structures, a stepwise 
voltage waveform is synthesized to reduce the total harmonic 
distortion (THD) and harmonic content. These converters are 
categorized as diode clamp converter, flying capacitor 
converter and cascaded H-bridge (CHB) converter. Among 
these topologies, the CHB has the highest modularity and it can 
be easily scaled to different voltage and power levels. 
Therefore, it is selected for further study in this paper.  

In the applications such as Flexible AC Transmission 
Systems (FACTS) [3], High Voltage DC lines (HVDC) [4], 
and electrical drives [5], it is important to achieve high 

efficiencies while the THD is minimum. This goal can be 
achieved through employing low frequency modulation 
techniques for the CHB converters. According to [6]-[18], 
selective harmonic elimination (SHE), selective harmonic 
mitigation (SHM) and selective harmonic current mitigation 
PWM [31], [32] are the most prominent low frequency 
modulation techniques. The implementation of these methods 
in CHB converter has met with the following challenges: 

1) Due to a large number of non-linear equations, solving 
and finding answers is not simple. 

2) To limit the switching loss, a minimum number of 
switching transitions should be utilized to satisfy grid codes.    

In the SHM approach, instead of complete elimination of 
low order harmonics like the SHE method, the non-linear 
equations are solved to keep the low order harmonics smaller 
than the specified limits in grid codes. Hence, as an advantage, 
the possibility of finding solutions for a wide range of 
modulation indices is higher. It is also worth mentioning that in 
conventional SHM, each cell has one switching transition in a 
quarter-cycle. However, in selective harmonic 
mitigation-PWM (SHM-PWM) the number of switching 
transitions can be more than one. This feature helps to mitigate 
more number of harmonics without increasing the number of 
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H-bridge cells in the CHB converter. Thus, the SHM-PWM is 
selected for further study and adoption in this article.   

The SHM-PWM technique was first proposed in [12] for a 
CHB inverter. The switching frequency of each switch was 
limited to 750 Hz and the low order harmonics (lower than 50) 
were mitigated in a three-phase inverter. In [13], a closed loop 
implementation of the proposed idea in [14] was carried out 
and the results were satisfactory. The voltage of the capacitors 
can be variable to increase the degrees of freedom [9], 
[15]-[20]. However, in this method, the inverter should be fed 
by variable DC sources which results in a lot of 
implementation difficulties. 

A SHM-PWM approach based on equal DC-link voltages in 
a CHB inverter was introduced in [21]. It uses nine switching 
angles in each quarter-cycle. Therefore, the switching 
frequency of each power switch is limited to 150 Hz. However, 
this method can only eliminate non-triplen harmonics up to the 
40th term.  

Conventionally, to obtain SHE-PWM and SHM-PWM 
equations for the CHB inverters, the switching angles of 
H-bridge cells are usually arranged sequentially. However, in 
[11], [22], a new idea for the SHE-PWM technique has been 
presented, which tries to eliminate the above criterion. The 
main goal of this idea is to increase the search space for the 
mathematical solver and to have a wider range of available 
solutions. 

In [23], a combination of the SHM and SHE modulation 
techniques was proposed, where a technique was used to 
produce appropriate waveforms for a four-leg three-level NPC 
inverter. In this study, by using SHM technique, the non-triplen 
harmonics in the phase legs are mitigated. In addition, the 
fourth leg is controlled by SHE to eliminate important 
low-order triplen harmonics. In [24], an inverter scheme of a 
low frequency modulation index was proposed for high power 
applications. Moreover, the SHE and SHM techniques have 
been used in wide variety of applications [25]. 

In this paper, the idea of non-sequential switching angles is 
extended to the SHM-PWM technique to improve the solution 
range. A lot of effort has been devoted to mitigate non-triplen 
low order harmonics up to the 50th term by just nine switching 
angles in a quarter-cycle of the fundamental period. In other 
words, the switching frequency of the switches is limited to 
150 Hz in a 7-level CHB inverter. Furthermore, the grid codes 
EN 50160 and CIGRE-WG 36–05 [21], [26], [27], are 
considered in the development of the proposed SHM-PWM 
method. The validity of the proposed method is verified by 
simulations and experiments on a 7-level CHB inverter. 

 

II. CASCADED H-BRIDGE STRUCTURE 

Among the various multilevel converters, the CHB converter 
has a modular structure and requires the minimum number of 
components to synthesize the same number of voltage levels. 
As is shown in Fig. 1, the CHB inverter is made of N series  
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Fig. 1. Structure of a CHB inverter. 
 

TABLE I 
MAIN SWITCHING STATES IN AN H-BRIDGE CELL 

Vac S1 S2 S3 S4 

+Vdc 1 0 0 1 

0 1 0 1 0 

0 0 1 0 1 

-Vdc 0 1 1 0 

 
connected H-bridge cells. The CHB inverter tries to synthesize 
the desired AC output voltage (Vout) from the distinct DC 
voltages, i.e., Vdc1, Vdc2, …, VdcM . In the symmetric CHB 
structures, the voltages of all DC links are considered to be 
equal, and this assumption is used in this article. Hereafter, the 
DC link voltages are assumed to be Vdc.     

Each H-bridge cell in Fig. 1 can generate three different 
voltage levels, i.e.,  Vdc, 0, and –Vdc at its AC terminals. Table I 
shows different switching states which can be used to 
synthesize a voltage level at the cell AC terminal. It is evident 
that the total number of voltage levels that can be synthesized 
at the inverter phase AC voltage is 2M+1, where M is the 
number of H-Bridge cells.  

  

III. SELECTIVE HARMONIC MITIGATION 
MODULATION (SHM-PWM) FOR CHB 

INVERTERS 

A. Basic Equations of the SHM-PWM Technique  

In the SHM-PWM method, first a cycle of a predefined 
voltage waveform is considered. Then using the Fourier series 
analysis formula, the Fourier series coefficients of the voltage 
waveform are calculated. Next, the amplitude for each of the 
voltage harmonics is determined and they are used in the 
non-equality equations of SHM-PWM, except the first 
harmonic which is used to control the amplitude of the output 
voltage. In these equations, the upper limits are determined 
according to selected grid codes, which should be satisfied.   

The general equation of the SHM-PWM method is shown in 
the following: 
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where ω is the output frequency in radians. In addition, an and 
bn are coefficients of the Fourier series. In the predefined 
waveform in Fig. 2, the an coefficients are eliminated in the 
output harmonic spectra, because of the quarter-wave 
symmetry. Hence, the Fourier series expansion of the 
predefined waveform is simplified as:  
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where Kij is +1 if the ith transition edge in Fig. 2 is rising, and it 
is -1 if the transition edge is falling. The main purpose of the 
SHM-PWM method is to control the amplitude of the 
fundamental harmonic and to mitigate the selected harmonics 
from the output voltage. The first coefficient in (3), i.e., b1 
controls the amplitude of the fundamental harmonic (or the 
modulation index ma), and it is determined by: 
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where ma represents the modulation index and it can vary 
between 0 and m for a 2m+1 level CHB converter. In this 
paper, a 7-level waveform is considered and shown in Fig. 3. 
The SHM-PWM equations are defined to satisfy the grid codes 
EN 50160 and CIGRE-WG 36–05 [15], [30], [31]. The limits 
of these codes are shown in Table II. As can be seen from 
Table II, the THD value must be restricted to 8%. 

According to (2-5), the SHM-PWM equations for the 
predefined waveform in Fig. 3 are derived as:  

   (6) 

where H1 is the amplitude of the fundamental harmonic and Lm 
determines the upper limit of the mth harmonic according to the 
standards. 

B. Proposed SHM-PWM Algorithm 

Generally, in a CHB converter, each level of the output  

TABLE II  
GRID CODS: EN 50160 AND CIGRE WG 36-05 

Harmonic limits 

Non-triplen harmonics Triplen harmonics 
Harmonic 
order, n 

Voltage 
limits, Li 

Harmonic
order, n 

Voltage
limits, Li

5 6% 3 5% 

7 5% 9 1.5% 

11 3.5% 15 0.5% 
13 3% 21 0.5% 
17 2% >21 0.2% 

19 1.5%   

23 1.5%   

25 1.5%   

>25 0.2+32.5/n   

THD (40th) 8%   
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Fig. 2. Predefined voltage waveform of the SHM-PWM. 
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Fig. 3. A 7-level predefined voltage waveform in SHM-PWM. 
 

waveform is generated by a specific cell. For example, in a 
2m+1 level converter, like the one in Fig. 1 and for the 
predefined waveform in Fig. 2, the first, second and mth 
H-bridge cells should contribute to the modulation in the phase 

intervals of (
111 1n  ), (

221 2n  ) and ( 1 mm mn  ), 

respectively. This contribution can be shown by: 

1

1

11 1n m10 ... ... ...
2m

Cell Cellm

mn

          
 

     (7) 

According to the above rule, the 1st, 2nd, ..., m-1th cells are 
turned on more than the last cell. Therefore, their power losses 
are unequal. As a result, this can reduce the reliability of the 
converter due to different power losses. Thus, the ON-time of 
the switches is a key factor in the design of SHM-PWM 
technique in industrial applications.  

Furthermore, solving the non-linear equations in (6) and 
finding solutions over a wide range of modulation indices are 
not easy. However, in this paper, another rule is used for the 
sequence of switching, which helps to get more degrees of 
freedom for solving the non-linear equations in the 
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SHM-PWM method [23]. In addition, it also results in a better 
distribution of power loss. In the proposed rule, for a specific 
modulation index, three arbitrary switching angles are devoted 
to each of the H-bridge cells. As an example, the following 
arrangement may be applied for a specific modulation index: 
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According to (8), there is no constraint for the H-bridge cells 
to be involved in the modulation sequentially. In other words, 
each of the H-bridge cells can contribute to the transitions at ni 

(i=1,…,m) arbitrary switching angles. This feature gives more 
relaxation to the mathematical solver in finding solutions to 
non-linear equations.  
It is worth mentioning that for a specific modulation index, the 
command of the switching transitions can be changed between 
H-bridge cells in a regular way to equally distribute the power 
loss among them in either the conventional or proposed method 
in this paper.  

C. Solving SHM-PWM Equations 

One of the key challenges associated with SHM-PWM is to 
solve the non-linear equations with the trigonometric terms. 
Many different methods have been proposed to solve these 
equations [28]-[30]. In this paper, particle swarm optimization 
(PSO) algorithm [21] is used to solve them. 

The main difference between these techniques is in the 
accuracy and speed of the optimization technique in terms of 
finding solutions. The PSO technique uses the best local 
particles (solutions) in each iteration to guide the other particles 
(solutions) in order to find the best global particle. 
Consequently, in each iteration the objective functions of all 
the particles are checked to find the local and global best 
particles. The main equations which are used in the PSO 
technique are shown in the following equations: 
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where w is a weighted factor which is determined by the 
iteration number. x and v are the position and velocity for each 
of the particles, respectively. Moreover, in each iteration, these 
parameters should be updated, while the best position of the 
local and global swarms are stored in the pbest and gbest 
parameters, respectively. The objective function is defined as 
follows [19]: 
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where Hi  represents the ith objective function to be minimized  

 
    (a) 

 

 
    (b) 

Fig. 4 Obtained solutions. (a) Proposed SHM-PWM. (b) 
Conventional SHM-PWM. 
 
and λ is a real factor that is lower than unity. If λ = 1, the 
corresponding harmonic will be same as the defined limits in 
Table II. 

For an interval of 1.7<ma<2.89, the corresponding equations 
are solved and the results are shown in Fig. 4(a). It can be seen 
that there are always answers for modulation indices between 
1.7 and 2.89. Meanwhile, in the conventional approach, there 
are no answer in some of the modulation indices (e.g., in ma= 
2.13) or in ma< 1.84. Fig. 4(b) shows the obtained answer sets 
by the conventional approach. It is also worth mentioning that 
it is possible to find different solutions based on the proposed 
approach for a specific modulation index, which gives more 
flexibility in the selection of answers from the view point of the 
THD and power losses. 

The obtained solutions, which are shown in Fig. 4, always 
meet the requirements of the standards for both the 
conventional and the proposed technique. As long as a 
solution meets the requirements of the standards for all of the 
harmonics up to the 50th and the THD, it can be considered as 
a solution. The main objective of this paper is to increase the 
solution range of the SHM-PWM technique, not to make 
harmonic magnitudes less than those of the conventional 
technique. Therefore, for some harmonic orders of the 
proposed technique, the harmonic magnitudes can be higher 
than those of the conventional technique. However, because 
these harmonics meet the requirements of the standards, there 
is no issue in terms of them being considered as a solution for  
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 ma=1.75  

 

 

 ma=1.85  

 

 

 ma=2.2  

 

 

 ma=2.7  
Fig. 5. Output phase voltage (left) and its corresponding voltage for each of the H-bridge cells (right) at different modulation indices. 
 

TABLE III 
SWITCHING ANGLES OF THE PROPOSED METHOD WITH DIFFERENT MODULATION INDICES 

Modulation Index 11 12 13 21 22 23 31 32 33 

1.7 0.103366 0.121309 0.741659 0.176030 0.342558 1.311165 0.666244 1.280078 1.408369
1.75 0.087246 0.118919 0.714617 0.158518 0.225411 1.293509 0.654947 0.686776 0.816049
1.85 0.070206 0.117099 0.620986 0.52276 0.701065 0.713281 0.148911 0.486899 1.502086
1.9 0.121940 0.171233 0.680752 0.206532 0.409360 1.088634 0.451172 1.101606 1.427351
2.2 0.039570 0.200946 0.731467 0.660646 0.689968 0.827511 0.173996 1.03996 1.30489
2.5 0.122271 0.407316 0.841304 0.440196 0.879644 0.933045 0.368412 0.974253 1.017620
2.7 0.089698 0.125310 0.389775 0.173063 0.353182 0.659427 0.314969 0.716731 0.741867

2.745 0.076250 0.105631 0.351695 0.146971 0.320778 0.603458 0.275462 0.648835 0.684992
2.89 0.015 0.025432 0.303608 0.109799 0.286864 0.341842 0.248657 0.369296 0.397888

 
the SHM-PWM.  

Extending the solution range of the SHM-PWM technique 
does not relate to the optimization technique used to solve 
(11). The only parameter that can extend the solution range is 
to increase the constraints of the objective function. 
Therefore, in this paper, by extending the switching angle 
constraints of the SHM-PWM, the range of the obtained 
solutions are extended as shown in Fig. 4 (a).  

In Fig. 5, the output phase voltage (left) and corresponding 
contribution of the H-bridge cells (right) are shown for some 
specific modulation indices. As shown, the contribution of 
different H-bridge cells varies as a function of the modulation 
index. The corresponding switching angles are shown in Table 
III. 

The proposed method helps to achieve a better distribution 
of the power loss among the H-bridge cells when compared to 
the conventional approach. To verify this behavior, the ON 
times of different H-bridge cells in a quarter period is measured 
in radian and shown in Fig. 6. In addition, the ON time as a 
function of the modulation index for both the conventional and 
the proposed approaches are also shown. As can be seen, the 
variance of the proposed method is considerably smaller than 
that of the conventional SHE-PWM, especially for high 
modulation indices. Therefore, the power losses of the 
proposed technique are distributed more evenly between the 
cells of the converter. As a result, it can improve the reliability 
of the proposed technique than the conventional technique.  
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Fig. 6. ON times of different cells as a function of the modulation index in both the proposed approach and the conventional SHE-PWM 
(p=proposed, c=conventional). 

 
TABLE IV 

SIMULINK AND EXPERIMENTAL PARAMETERS 

Parameter Symbol Value 

Number of H-Bridge modules N 3 

Nominal DC link voltage of the CHB inverter VDC 30 V 

AC side voltage frequency f 50 Hz 

Switching frequency of inverter fs-i 150 Hz 

Capacitance C 4 mF 

Power MOSFET S IRF540N

 

 
 

Fig. 7. Associated SHM-PWM generator. 
 

 
 

Fig. 8. Hardware prototype for the experimental investigation. 
 

IV. SIMULATION AND EXPERIMENTAL RESULTS  

In this paper, to verify the effectiveness of the proposed 
SHM-PWM method, several simulations and experiments have 
been carried out on a 7-level CHB inverter. The MATLAB 
Simulink environment has been used to simulate the 7-level 
converter. The controlling system is shown in Fig. 7. Moreover, 
in the practical implementation, a CORTEX M4 ARM 
processor is used as a controller to implement the SHM-PWM 
algorithm. The parameters of the simulation and hardware 
prototype are shown in Table. IV. In addition, the hardware 
prototype in the experiments is shown in Fig. 8.  

To show the validity of the proposed method, some 
simulations are carried out based on the switching angles in 
Table III for different modulation indices. The results of the 
simulations are shown in Table V. The MATLAB FFT toolbox 
is used to calculate the harmonics based on the data that is 
extracted from oscilloscope. The corresponding harmonic 
analysis of the experimental phase voltages are also given in 
Table VI. To compare experimental results of the proposed and 
conventional methods, the same tests are carried out and 
reported for both of them. As shown in Table VI, the proposed 
SHM-PWM method can mitigate the low order harmonics of 
the output voltage up to the 50th order. Furthermore, the triplen 
harmonics are automatically be eliminated from the harmonic 
spectra when a 3-phase inverter is used. As can be seen, the 
proposed method successfully fulfills the grid code 
requirements, while the switching frequency is 150 Hz. Fig. 9 
demonstrates the harmonic spectra of the output waveform at 
ma=2.7. Moreover, waveforms of the practical 
implementation for modulation indices of ma=1.9, 2.4 and 
2.745 are shown in Fig. 10. The harmonic spectra and THD 
of the waveforms in Fig. 10 can be found in Table VI. 

 

V. DISCUSSION 

The proposed mitigation technique meets the voltage 
harmonic distortion limits of power quality standards instead of 
completely eliminating the low order harmonics of the CHB 
voltage. Therefore, the number of harmonics which can be 
mitigated in the SHM-PWM is higher than 2k-1, where k is 
the number of switching transitions of a single-phase CHB in 
each quarter of a period. However, to find the exact number 
of harmonics that can be mitigated with k number of 
switching transitions, the optimization technique should be 
solved and checked with trial and error. As demonstrated in 
this paper, with 9 switching transitions in each quarter of a 
period, the conventional SHM-PWM technique has a very 
limited solution range (1.84<ma<2.89 with some unsolved 
points). To solve this issue in the proposed technique, the 
constraints of the switching angles of the converter are 
improved. As a result, the solution range is increased to 
(1.7<ma<2.89). 

1.9 (p) 1.9 (c) 2 (p) 2 (c) 2.2 (p) 2.2 (c) 2.4 (p) 2.4 (c) 2.6 (p) 2.6 (c) 2.89 (p) 2.89 (c)
Cell 1 (rad) 0.9385 1.1678 0.67611 1.17533 0.9999 1.4862 0.9742 1.3366 1.17539 1.48334 1.2768 1.48597
Cell 2 (rad) 0.68419 0.6956 0.7574 0.6782 0.7718 0.8369 1.1282 1.1084 1.0379 1.1263 1.40522 1.30551
Cell 3 (rad) 0.79308 0.34518 0.88926 0.46657 1.131 0.51075 1.14105 0.56277 1.175 0.77698 1.2927 1.1912
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TABLE V 
THD AND HARMONIC COMPONENTS OF THE SIMULATION RESULTS FOR THE PROPOSED AND CONVENTIONAL SHM-PWM METHODS 

(1. Maximum THD case; 2. Minimum THD case)  
Harmonic 

order 
Grid code 
limits,% 

1.71 1.75 1.85 1.9 2.2 2.5 2.7 2.7452 2.89 

  p p p c p c p c p c p c p c p c 
5 6 3.57 2.27 1.06 3.4 1.55 2.10 1.31 0.03 3.17 0.86 2.72 0.48 0.82 3.23 5.7 5.84
7 5 4.93 4.66 0.48 5 2.41 4.42 4.65 4.68 2.73 2.92 0.72 2.99 0.43 3.4 1.8 1.54
11 3.5 2.54 1.25 3.27 2.24 1.76 2.94 1.34 2.18 0.89 1.72 1 2.13 0.02 3.47 3.33 2.79
13 3 2.93 2.83 2.51 1.56 1.31 0.77 2.79 2.69 1.75 2.87 2.64 2.39 2.3 2.58 1.56 0.91
17 2 0.4 0.26 0.35 2 0.32 0.23 0.04 0.95 0.77 0.99 1 1.32 0.34 0.47 0.71 1.56
19 1.5 1.22 1.45 1.19 0.11 1.03 0.94 0.56 1.24 1.23 1.38 1.22 1.26 0.81 0.91 0.57 1.48
23 1.5 0.67 1.2 1.05 1.5 1.4 0.8 1.04 0.02 1.23 1.27 0.95 1.38 0.2 0.23 0.64 0.3 
25 1.5 1.32 1.3 0.43 0.02 0.83 1.04 0.88 0.14 1.29 0.89 0.73 1.15 0.33 1.47 0.96 0.03
29 1.32 0.63 0.68 0.92 0.57 0.39 0.27 1.23 0.19 1.16 1.31 1 0.83 0.18 0.62 0.81 0.21
31 1.25 0.87 0.87 0.35 1.24 1.11 0.46 1.14 0.11 0.07 0.55 0.97 0.23 0.27 0.94 0.69 0.44
35 1.13 0.5 0.72 0.18 1.12 0.2 0.69 1.05 0.04 0.89 0.83 1.03 0.03 0.67 1.13 0.72 0.34
37 1.08 0.25 0.33 0.1 1.07 0.53 0.32 0.28 1.08 0.95 0.36 0.58 0.1 0.54 0.22 0.68 0.03
41 0.99 0.32 0.24 0.31 0.99 0.68 0.83 0.3 0.98 0.6 0.9 0.35 0.98 0.57 0.72 0.14 0.83
43 0.96 0.44 0.59 0.57 0.37 0.85 0.5 0.81 0.74 0.06 0.11 0.85 0.42 0.84 0.13 0.2 0.95
47 0.89 0.17 0.76 0.63 0.6 0.66 0.46 0.07 0.89 0.64 0.88 0.16 0.82 0.14 0.26 0.52 0.26
49 0.86 0.15 0.69 0.34 0.85 0.53 0.72 0.3 0.82 0.25 0.82 0.16 0.59 0.67 0.8 0.55 0.31

THD40th 8 7.58 6.61 4.72 7.45 4.36 5.99 6.26 6.21 5.48 5.42 4.83 5.26 2.87 6.92 7.32 7.13
THD50th  7.6 6.71 4.81 7.53 4.52 6.07 6.32 6.37 5.53 5.56 4.91 5.38 3.06 6.92 7.36 7.2 

THD  14.29 12.91 12.57 14.95 11.75 11.56 11.34 11.73 10.77 10.12 10 9.69 8.66 9.62 9.71 9.51

 
 

Fig. 9. Harmonic spectra of the experimental results ma=2.7. 
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Fig. 10. Experimental investigation of the proposed method in synthesizing SHM-PWM waveform: (a) ma=1.9; (b) ma=2.4; (c) 
ma=2.745. 
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TABLE VI 
THD AND HARMONIC COMPONENTS OF THE EXPERIMENTAL 

RESULTS FOR THE PROPOSED SHM-PWM METHOD 

Harmonic  
Order 

1.7 1.9 2.2 2.4 2.5 2.7 2.745

5 3.93 1.61 1.58 2.29 2.86 2.81 0.5 
7 5 2.26 4.59 2.26 2.7 1.06 0.17
11 2.74 1.79 0.72 0.3 0.74 0.94 0.34
13 3 1.22 3 1.06 2.01 2.53 2.76
17 0.47 0.21 0.45 0.4 0.37 0.68 0.59
19 1.37 0.99 0.17 0.48 1.39 0.99 0.62
23 0.76 1.31 1.14 1.26 1.33 0.98 0.17
25 0.97 0.96 0.92 1.24 1.15 0.93 0.23
29 0.97 0.51 0.93 0.05 1.27 1.11 0.22
31 0.98 1.15 1.08 0.63 0.24 1.18 0.15
35 0.3 0.32 0.98 0.16 0.9 1.1 0.56
37 0.17 0.44 0.8 0.26 0.77 0.57 0.56
41 0.93 0.64 0.48 0.62 0.73 0.68 0.37
43 0.51 0.83 0.52 0.16 0.25 0.68 0.94
47 0.19 0.89 0.38 0.69 0.68 0.2 0.15
49 0.11 0.58 0.18 0.66 0.08 0.15 0.57

THD40th 7.9 4.23 6.25 3.94 5.32 4.87 3.08
THD50th 7.98 4.48 6.3 4.11 5.41 4.97 3.3 

THD 14.62 11.89 11.42 8.88 10.65 9.81 8.65

 

VI. CONCLUSIONS 

In this paper, an improved optimal low frequency 
SHM-PWM modulation technique was proposed. In the 
proposed method, the switching angle constraints are 
enlarged than conventional SHM-PWM for the H-bridge cells. 
This option gives more degrees of freedom to the math solver 
of non-linear equations. Hence, a larger set of answers can be 
found over a wider range of modulation indices. The 
proposed SHM-PWM method can successfully mitigate low 
order harmonics up to the 50th term. In addition, it satisfies 
the grid codes EN 50160 and CIGRE-WG 36–05. By using 
the proposed switching constraint, the range of the 
modulation index is improved by almost 30 percent, without 
increasing the switching frequency of the CHB converter. 
Moreover, the proposed method shows a better distribution of 
the power losses among the H-bridge cells. 
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