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Abstract 

 

With the rapid development of microgrid technology, microgrid projects are no longer limited to laboratory demonstrations and 
pilot platforms. It shows greater value in practical applications. Hence, the smooth interaction between a microgrid and the main grid 
plays a critical role. In this paper, a control method based on active disturbance rejection control (ADRC) is proposed in order to 
realize seamless transitions between grid-connected and islanding operation modes and stable operation with variable loads. It is 
verified by simulations that the proposed ADRC-based method features better performance when compared to conventional 
proportional-integral-differential (PID) control. Meanwhile, the stability of the third-order extended state observer (ESO) in 
second-order ADRC is validated by using Lyapunov stability criteria. 
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I. INTRODUCTION 

Nowadays, with the limited amount of fossil fuel and 
increasing environmental concerns, traditional power systems 
all over the world have been significantly changed with energy 
management methods migrating from centralized generation to 
distributed generation. Plenty of technical research has been 
conducted in the European Union (EU) under the 5th, 6th and 
7th framework program with the goal of sustainable energy and 
distributed generation [1]. A microgrid is comprised of various 
types of distributed sources as well as energy storage, load and 
control units to form an isolated power system. Meanwhile, 
microgrids can be connected to the main grid [2]. With its 
operational flexibility, the power availability of critical loads 
can be uninterrupted. Many countries, such as those in the EU, 
the United States of America, Canada, Japan, etc., have been 

involved in microgrid research by means of laboratory 
demonstrations and pilot projects. Most of the work has been 
done in regards to microgrid operation, protection, control, 
energy management and the impact of microgrids on 
conventional power systems.  

The operation modes of microgrids can be classified into 
three categories, i.e., grid-connected mode, islanding mode and 
the transition process between them. Microgrid related research 
is no longer only focused on islanding operation. Coordination 
between different operation modes is a prerequisite for the 
smooth interaction between a microgrid and the main grid. 

Since renewable energy sources are dispersedly connected to 
the common bus in a microgrid, the control and operation of 
power electronic interface inverters is a key issue in the 
operation of microgrids [10], [11]. 

Droop control is widely employed as a decentralized method 
for load power sharing. Output current sharing accuracy is 
degraded due to the effect of a voltage drop across the line 
impedance. This effect is similar to the reactive power sharing 
in a microgrid. To enhance the reactive power sharing accuracy 
in a microgrid, several methods for improved droop control 
have been proposed [9]. A compensating method was put 
forward in which the remote voltage signal is measured and an 
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integrator term in the conventional Q-V droop control is 
employed [12]. The voltage amplitude in the Q-V droop 
control was replaced by a variable representing the time rate of 
the change in the voltage magnitude [13]. The voltage droop 
across the impedance was estimated in grid-connected 
operation to reach the modified slope in the Q-V droop control 
[14]. A modified control based on the conventional droop 
control is implemented based on feed-forward current control, 
which allows the converter to work in several modes and 
permits the inverter to work as a grid supporting source or as 
an ancillary service provider when it works in the 
grid-connected mode [15]. In [16], decoupled droop control 
techniques were proposed and analyzed to obtain the 
independent relationship between the frequency vs. active 
power and the voltage vs. reactive power. The maximum load 
flow is also an important factor in the conventional droop 
control [9]. In [17], it is proposed that the maximum load flow 
is considered in droop-control-associated optimal power flow 
problems. 

Furthermore, the integration of single-phase loads in 
microgrids can also induce unbalanced voltage and current in 
islanding operation. A control algorithm in the time domain 
can cope with this issue and stabilize the output of the 
grid-connected controller by detecting the negative sequence 
voltage and current [18]. In [19] and [20], the impact of 
unbalanced and non-linear loads on different microgrid 
operation modes are further analyzed. Meanwhile, the 
detection and elimination of unbalance currents have been 
proposed. 

In order to achieve smooth transitions between the 
grid-connected and islanding modes, 
proportional-integral-differential (PID) control and some other 
modern control algorithms are commonly employed [9]–[20]. 
However, PID control has inherent drawbacks and modern 
control algorithms are to some extent impractical in power 
electronic inverter control [24]. 

Active disturbance rejection control (ADRC) is proposed 
based on consideration of the existing drawbacks of modern 
control theory and the advantages of conventional PID control. 
It does not depend on an accurate mathematic model and it 
utilizes an extended state observer (ESO) to detect and 
compensate the disturbance in a system. So far, the ADRC 
method has been applied in aviation, precise instrumentation, 
generator control and some other applications. 

To realize the stable operation of microgrids, the advanced 
ADRC method is applied in this paper to design a microgrid 
controller. Based on a microgrid with two distributed 
generators (DGs), a second-order ADRC controller is 
implemented. It is used to control and output voltage and 
current in the d and q axis simultaneously. Meanwhile, the 
coupled terms are regarded as disturbances to be eliminated. 
Hence, seamless transitions between grid-connected and 
islanding modes can be achieved. A microgrid simulation  
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Fig. 1. Typical configuration of a microgrid. 
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Fig. 2. Three-phase voltage source inverter in a microgrid. 

 
platform with two DGs is implemented in MATLAB/Simulink. 
Both PID and ADRC based methods are tested and compared. 
It can be demonstrated that based on the detection and 
compensation of inside and outside disturbances by using a 
third-order ESO, the ADRC method can ensure flexible 
interactions between microgrids and the main grid during 
operation mode transitions and load variations. 

Moreover, Lyapunov stability theory is used to verify the 
stability of a third-order ESO in a second-order ADRC. 

 

II. TYPICAL MICROGRID CONFIGURATION AND 
INVERTER MODEL 

A. Typical Microgrid Configuration 

The typical configuration of a microgrid is shown in Fig. 1. 
A microgrid is commonly comprised of multiple DGs. As an 
example, two DGs are included in this system. Meanwhile, 
the DC side of each DG is considered as a constant DC 
source. PMW inverters are used for DC sources to generate 
three-phase signals at the AC side. LC filters are used to 
eliminate high-order harmonics, while power cables, switches 
and transformers are used to interconnect the local DGs to the 
main grid. In terms of the two DGs, droop control is used for 
DG #1, and the frequency and voltage are established by 
using DG #1. Meanwhile, DG #2 runs in the PQ operation 
mode and supports the active and reactive power to the grid. 
It can be seen that the most common approach for connecting 
DGs to the main grid is to use a voltage source interface 
inverter [21], [22]. Hence, the operation of the DG units is 
essentially implemented based on the control of the interface 
inverters. 
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B. Typical Configuration of the Interface Inverter and its 
Mathematical Model 

The typical configuration of a voltage source interface 
inverter in a microgrid is shown in Fig. 2. 

In Fig. 2, udc represents the DC source voltage, Lf represents 
the filter inductance, r represents the equivalent filter resistance, 
Cf represents the filter capacitor. Meanwhile, uA, uB and uC 
represent the middle point voltages of each phase, O is the 
neutral point of the filter capacitor, uao, ubo and uco are the 
capacitor voltages, iLa, iLb and iLc are the inductor currents, and 
iao, ibo and ico are the inverter output currents. 

By using the Kirchhoff voltage and current theory, it can be 
derived that: 
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By collecting (1), a mathematical model in the d-q axis can 
be obtained: 
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Assuming that the three-phase voltage is represented as: 
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where Um is the amplitude of the three-phase voltage. By using 
Park’s transformation, it yields that: 
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By using the instantaneous active and reactive power theory, 
the power exchange between a local microgrid and the main 
grid is reached as: 
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It can be seen that by adjusting the grid-connected current  
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Fig. 3. Coupling terms between id and iq. 

 
in the d-q axis, the power exchange between the microgrid 
and the main grid can be regulated. 

Based on the results in (2), its differential expression can 
be shown as: 
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It can be seen that id and iq are highly coupled, and that 
they influence each other. This phenomenon can also be 
shown in the control diagram in Fig. 3. 

The coupling term between id and iq impacts the current 
control effect. If this coupling is not properly eliminated, the 
performance of the microgrid controller is degraded, and the 
difficulty of obtaining a smooth operation mode transition is 
increased. 

Since ADRC does not rely on a model and is free of 
parameter derivations, it can be applied to coupled current 
control. These coupling terms can be included in system 
disturbances. By using ESO, they can be easily estimated and 
compensated. 

 

III. DESIGN OF A SECOND ORDER ADRC 
CONTROLLER 

A. Active Disturbance Rejection Control 

ADRC is derived based on the conventional feedback 
theory in PID control by Dr. Jingqing Han. Its basic idea is to 
use an extended state observer to estimate and compensate 
overall system disturbances, including both external and 
internal disturbances. Hence, a control diagram that is free 
from disturbance is established [26], [27]. A control diagram 
of ADRC is shown in Fig. 4.  

It can be seen that an ADRC system is commonly 
comprised of three parts, i.e., a tracking differentiator (TD), 
an extended state observer (ESO) and a nonlinear state error 
feedback (NLSEF). 

B. Design of the Microgrid Controller 
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Fig. 4. Control diagram of ADRC. 
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Fig. 5. Control diagram of an interface inverter in a microgrid. 

 
A control diagram of an interface converter in a microgrid 

is mainly composed of three closed loops, as shown in Fig. 5. 
The outer most loop is used to control the power. By 

measuring the main grid voltage mainu and current 0i , the 

active and reactive power can be calculated. Meanwhile, 
based on the operation mode of each DG, by using the PQ, 
droop or Vf control, the reference voltage of the inner control 
loop can be derived. The inner control diagram consists of 
voltage and current loops. The output of the voltage 
closed-loop is the reference value of the current closed loop. 
The current reference is calculated by using the voltage 
reference and the measured voltage. Meanwhile, PWM 
signals are generated by the inner current loop in order to 
drive the IGBTs and to realize the desired microgrid 
operation. This double loop system, including both voltage 
and current closed-loops, can rapidly track the power 
references, which makes the inverter behave as a voltage 
source. The dynamics and control accuracy can be further 
enhanced by using an inner current loop [24], [25].  

In order to increase the dynamic response of the inner 
current loop and further enhance the control accuracy, the 
error should be eliminated with the designed controller. In the 
meantime, the impact of parameter deviations should also be 
considered. Hence, the second-order ADRC controller is 
employed to better track system dynamics. By focusing on 
the current in the d-q axis, the second-order ADRC controller 
is designed. 

Based on the control algorithm of the ADRC, ud is selected 
as the control variable in the d axis to fast track the reference 
current idref. A control diagram based on ADRC for id is 
shown in Fig. 6. 
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Fig. 6. Control diagram of an ADRC-based current control for id. 
 
Here, the coupling term is regarded as a disturbance. By 

using ESO, the disturbance can be estimated. At the same 
time, by using ADRC, the disturbance can be compensated. 
Therefore, the decoupling control can be achieved. 

It is set that Lqfd iLu  '
d  and '

q q f Ldu L i   . 

Substituting the above expressions into (7) yields: 

          (8) 

Since '
d  and '

q  can be considered as an internal 

disturbance and the changes of id and iq are only related to 
the physical model, the coupling of id and iq can be realized. 

Taking the design of a second-order control diagram as an 
example, the third-order ESO is the critical part in designing 
the ADRC controller. The most important part of the ADRC 
is to estimate disturbances in real-time. Based on this 
real-time result, compensation can be achieved. The ESO can 
effectively estimate the overall disturbance in a system, 
including external disturbances, e.g., noises, and internal 
disturbances, e.g., parameter derivations. Hence, the original 
system can be improved. Based on the design principle of the 
n-order ESO in the ADRC theory, the estimator of id is 
established as follows: 
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where z1, z2 and z3 are the states under estimation, z1 
follows id, z2 follows iq, z3 follows the total disturbance of the 
system including internal disturbances, coupling terms, 
external disturbances, etc., b is the estimated value of b, and 
fal(e1) is a nonlinear function with the same sign as e1. 

By discretizing (9), it is achieved that: 
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where T is the sampling period. 

The design of TD is shown as follows. In the PID control, 
there is always a trade-off between a fast response and 
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over-shoot. In order to solve this problem, a predefined 
transient period is commonly used to extract the error signal, 
and the step reference can be smoothed and changed to a 
ramped signal. Hence, the over-shoot can be weakened. 
However, in ADRC, the error signal can be accurately 
extracted by using a TD unit. Therefore, a fast response can 
be realized without over-shoot. Meanwhile, the differential 
signal of the system response can also be achieved. Therefore, 
the range of the system parameters can be improved. 

Here the complex function of the speed optimum control 
u=fhan(x1, x2, r, h) is adopted. With the sampling period T, 
the discretized TD can be expressed as: 

     (11) 
The variable x1(k) is replaced by x1(k) - v(k) in order to 

realize the fast tracking of v(k). The variable h is replaced by 
h0, and h0 should be independent and larger than h so that the 
noise amplification of the differential term can be effectively 
eliminated. The variable h0 is called the filter factor of TD, 
and r0 is used to determine the rate of the transient period. 

The design of the NSEF is shown below. Based on the 
speed optimum feedback function with damping, the 
nonlinear error feedback control can be designed and 
discretized as follows: 












0

3
0

1210

)(
)()(

,),(),(()(

b

kz
kuku

hrkcekefhanku
       (12) 

By combing (10), (11) and (12), a critical ADRC controller 
for the d axis is derived. By using the same method, an 
ADRC controller for the q axis can be also obtained. Hence, 
the control of the output voltage in the q axis can be realized. 
In Fig.5, after getting vd and vq, the modulation wave for 
PWM generation can be derived by calculating M and θ. 
Finally, the drive signals for IGBTs can be achieved. 

C. Design of the Controller Parameters 

The values of the parameters in the ESO, TD and NSEF in 
an ADRC-based microgrid controller significantly impact the 
performance of the control diagram. Based on the separation 
principle, the parameters of each control unit can be 
individually designed. The parameters to be designed in each 
of the units are h, r0 and h0 in TD, β01, β02, β03 and b0 in ESO 
and c and r in NSEF. 

For the TD control unit, the procedure of the parameter 
design is shown below. The simulation step h should be 
selected to be as small as possible. Meanwhile, it should 
ensure a sufficient stability margin and it should meet the 
requirement of computational capability. Hence, the 
parameter deviation in the system can be simulated. In the 
example system, h is selected as 5e-5. 

The variable r0 is used to determine the rate of the transient 

Fig. 7. Waveforms of id and iq. 
 

process. A larger r0 can lead to a faster transient process. 
However, the value of r0 is limited to the system capability. 
Normally, r0 is selected as [27]: 

20

0001.0

h
r                    (13) 

By considering the limitations of the system, r0 is set to 
45000 here. 

The variable h0 should be larger than h so that large 
oscillations can be eliminated. In the practical simulation 
cases, h0 is set to 5e-3. 

For the ESO unit, the design procedure is shown below. 
The selection of β01, β02 and β03 has a tight relationship with 
the simulation step. After determining the simulation step, 
the value ofβ01, β02 and β03 can be confirmed by using the 
following formula: 
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In a practical system, β01=2000, β02=55902, β01=2127000, 

and 0b = 5. 

D. Stability Verification of ADRC 

The estimation of system disturbance based on ESO is the 
most critical part of the design procedure of the ADRC. 
Therefore, the design of the ESO plays the most important 
role in the ADRC. The stability of the ESO significantly 
impacts the stable operation of the ADRC. In this paper, the 
Lyapunov approach is used to determine the stability of the 
ESO. 

Based on the aforementioned analysis, there are coupled 
terms between id and iq. These coupled terms are regarded as 
a disturbance in the ADRC design so that the decoupled 
control of id and iq can be achieved. Take the ADRC design 
for id as an example. By analyzing the results in Fig.3, iq 
exists in the control loop of id, while the impact of iq on id is 
insignificant, as shown in Fig. 7,  

where the red line represents id and the blue line represents 
iq. Since this impact is very small, it can be regarded as a 
constant, namely ωn. For a third-order nonlinear system, it 
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can be simplified as a second-order nonlinear system to 
conduct the stability analysis. 

The second-order nonlinear system in the d axis can be 
shown as: 
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Since the variable x3 is equal to ωn and is kept constant, it 
can be derived that 
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established as: 
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where β01 and β02 are real numbers that are larger than zero. 
(1) is the determined nonlinear function. 

Subtracting (18) from (17) yields: 
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By using the Lyapunov theory, for validating the stability 
of (19), a constant function V(x) should be established. This 
fulfills the requirements of (1) V(0) = 0; (2) V(0) > 0 for an 
arbitrary x ≠ 0; and (3) V(x) has a first-order differential and 
the differential of V(x) is smaller than 0. When satisfying all 
of the above requirements, V(x) is asymptotically stable. 

The function V(x) is created as: 
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Here the function of V(e1, e2) is established for fal(e) with 
the constraints |e| >δ and |e| ≤ δ. Thereby, the stability is 
demonstrated. Here, α = 1/2. 

When |e| >δ, V(e1, e2) is shown as: 
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Hence, for any V(e1, e2) (e1 ≠ 0, e2 ≠ 0), it can be 
concluded that V(e1, e2)>0. 
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Hence, V  is negative definite and (19) is asymptotically 

stable. 
When |e| ≤ δ, V(e1, e2) is shown as: 
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It can be easily seen that V(e1, e2) > 0 and it is positive 
definite. 

Further, it is reached that: 
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Hence, V is negative definite and (20) is asymptotically 

stable. 
Taken altogether, for the conditions of |e| >δ and |e| ≤ δ, 

although the function fal(e) is not exactly the same, the 
corresponding ESO systems are asymptotically stable based 
on the Lyapunov stability criteria. 

 

IV. SIMULATION VALIDATIONS 

In order to verify effectiveness of the ADRC on microgrid 
mode transitions and load variations, a simulation platform 
including two DGs is implemented as shown in fig. 8. 

In this platform, droop control is used for DG #1 to support 
the voltage and frequency of the microgrid, and PQ control is 
used for DG #2 to provide constant active and reactive power 
support. The system parameters are shown below. The AC 
side voltage is 400 V, and the voltage rating of the main grid 
is 10 kV. The total load of the system is 14 kW. DG #1 and 
#2 are adjustable to provide the required active and reactive 
powers. The main parameters about the Microgrid are shown 
in Table 1. 

Because PQ control is used for DG #2, its output power 
should be constant, as shown in Fig. 9-a, Fig. 9-b and Fig.  
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Fig. 8. The simulation structure diagram. 

TABLE I 
MAIN PARAMETERS OF THE MICROGRID 

OBJECT PARAMETRE 

DG1 

DC voltage:Vdc=700V 

Switch frequency：5KHz 

Filter parameters：Lf=1.6mH, Cf=40uF 

Attachment inductance：Lc=1mH  

Droop control settings: P0=14KW, Q0=0KVar, 
V0=311V, f0=50Hz 

DG2 

DC voltage:Vdc=700V  

Switch frequency：5KHz  

Filter parameters：L1=1.2mH, C=20uF, L2=0.8mH 

Power factor：Q=1 

Rated Voltage 
and Frequency 

380V/50Hz 

LOAD 1 P=9 kW，Q=0kVar 

LOAD 2 P=5 kW，Q=0kVar 

9-c. 
Since there are no significant dynamics involved in these 

waveforms, DG#1 is selected as the main research objective 
for further study. 

A. Islanding Operation 

When a system runs in the islanding mode, the microgrid 
and the main grid are totally separated. The frequency and 
voltage of the microgrid are supported by the DGs. In this 
case, the frequency and voltage are generated by DG #1 with 
the droop control, while the constant active and reactive 
powers are generated by DG #2. In the simulation results, the 
red lines represent the curves derived from the PID control, 
and the blue lines represent the curves derived from the 
ADRC. 

The results for a smooth starting up process are shown 
below. Before t = 0.3 s, the starting up procedure gradually 
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(a) Starting up procedure. 
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(b) Load variation (decreasing) procedure at t = 0.4 s. 
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(c) Load variation (increasing) procedure at t = 0.8. 
Fig. 9. The Output Power of DG #2. 

changes to the steady state. The local active load is 14 kW 
and the local reactive power is 0 kVar. The active and 
reactive powers delivered by DG #1 are 10 kW and 0 kVar, 
respectively, and those delivered by DG #2 are 4 kW and 0 
kVar. The output voltage, current, frequency and power of 
DG #1 are shown in Fig. 10. 

It can be seen from Fig. 10 that during the starting up 
procedure, the voltage and current inside a microgrid are 
slightly distorted at the beginning, while they come to the 
normal state after a short period of time. From this standing 
point, there are no obvious differences. The output 
waveforms are composed of three parts. Among them, the red 
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Fig. 10. Results of the microgrid starting up procedure for 
islanding operation (t = 0 ~ 0.3 s). 

 
one is the result with the PID control. The blue one is the 
result with the ADRC control. The pink one is the voltage of 
the main grid. During the starting period, these three curves 
are almost equal. However, it can be clearly seen from the 
frequency curve that the ADRC has better performance when 
compared to the PID control. This shows that during the 
starting period, the ADRC is more effective with larger 
disturbances. 

At t = 0.4 s, the load in the microgrid is suddenly reduced. 
In particular, the active power load is reduced by 9 kW. Since 
DG #2 works in the PQ control mode, its output power does 
not change. Hence, the system response regarding this load 
disturbance can be also overcome by DG #1 with droop 
control. When the load decreases, the output voltage of DG 
#1 does not change, and the output current decreases. Hence, 
the output power decreases to compensate the impact of load 
variations. In Fig. 11, when the load is suddenly changed, the 
ADRC has better performance in terms of either steady-state 
errors or transient adjusting time when compared to the 
conventional PID control. 

At t = 0.8 s, the load inside the microgrid increases. In 
particular, the active power load increases to 9 kW. It can be 
seen from Fig. 12 that with the recovery of the load, the 
microgrid voltage, current and frequency gradually recover as 
well. However, since there is still an error in the 
PID-controlled system when decreasing the load, system 
oscillations can be found in the PID-controlled system. This 
impact can be clearly seen from the voltage and current 
waveforms. For this standing point, the ADRC still has better 
performance when compared to the PID control. 
Meanwhile, it can be seen from Fig. 11 and 12 that the 
ADRC can rapidly estimate the disturbance when it appears, 
and that it can eliminate the impact of the disturbance and 
ensure a smooth transient process. 

Fig. 11. Waveforms of the microgrid load variation (decreasing) 
procedure at t = 0.4 s. 

 

Fig. 12. Waveforms of the microgrid load variation (increasing) 
procedure at t = 0.8. 
 

B. Grid-Connected Operation 

In grid-connected operation, the microgrid frequency and 
voltage are supported by the main grid. The DGs mainly 
impact the performance in terms of load variation and they 
guarantee the stable operation of the system. 
At t = 0 ~ 0.3 s, the microgrid is started and kept in the 
grid-connected mode. During this period of time, the 
microgrid turns into the steady state. The local active load is 
14 kW and the reactive load is 0 kVar. The output active 
power of DG #1 is 10 kW and the output reactive power is 0 
kVar. Meanwhile, the output active power of DG #1 is 4 kW 
and the output reactive power is 0 kVar. The output voltage, 
current, frequency and power are shown in Fig. 13. 
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Fig. 13. Waveforms of the microgrid starting up procedure for 
grid-connected operation (t = 0 ~ 0.3 s). 
 

Fig. 14. Waveforms of the microgrid load variation (decreasing) 
procedure at t = 0.4 s. 
 

Fig. 15. Waveforms of the microgrid load variation (increasing) 
procedure at t = 0.8. 
 

At t = 0.4 s, the local active load decreases by 9 kW while 
the reactive load does not change. The output voltage, current, 
frequency and power are shown in Fig. 14. 

At t = 0.8 s, the local load increases by 9 kW while the 
reactive power is kept the same. The output voltage, current, 
frequency and power are shown in Fig. 15. 

 

It can be seen from Fig. 13 that the output waveforms for 
the ADRC and PID control are both acceptable during the 
starting up period. With the ADRC control, the output 
voltage is almost the same as the main grid voltage. However, 
with the PID control, although the voltage amplitudes are 
almost in accordance with each other, there are still phase 
differences. In the current waveforms, besides the phase error, 
there are obvious current over-shoots. For frequency 
variations, the adjusting time for each control method is 
almost the same, while the maximum frequency under the 
ADRC is only 50.14 Hz. The maximum frequency under the 
PID control is about 50.22 Hz, which is higher than that for 
the ADRC. It can be further concluded that with a sudden 
disturbance, the ADRC can estimate the disturbance and 
compensate it to keep the oscillations of the system within a 
small range. Hence, the system stability can be guaranteed. 

At t = 0.4 s, the local active load suddenly increased to 9 
kW. It can be seen from the voltage waveform that with the 
load variation, the voltage curve in Fig. 14 becomes distorted. 
However, since the voltage is supported by the main grid, its 
amplitude is not changed. However, with the PID control, a 
phase differences appear. Hence, the performance of the 
ADRC is better than the PID control from this aspect. 

A similar phenomenon can be also seen from the current 
waveform. For the frequency waveform, it can be seen that 
the frequency variation with the PID control is much higher 
than the ADRC. This further demonstrate that the ADRC has 
better performance when compared to the PID control in 
terms of anti-disturbance capability. 

 

In Fig. 15, the advantages of the ADRC can be further 
verified. When the system is under a disturbance, the ADRC 
uses its own capability of anti-disturbance, and the variations 
induced by the disturbance can be effectively eliminated. 
Hence, after the disturbance, the system can get back to the 
normal state smoothly. 

C. Operation Mode Transition 

The operation mode transitions of a microgrid mainly 
include “grid-connected to islanding” and “islanding to 
grid-connected”. These two mode transition procedures are 
key factors to identify if a microgrid is feasible or not. Here 
the ADRC and conventional PID controllers are still used for 
comparison. 

The results for the mode transition from the grid-connected 
mode to the islanding mode are shown and discussed below. 

The microgrid is started in the grid-connected mode. At t = 
0.4 s, an intentional islanding occurs which drives the 
microgrid from the grid-connected mode to the islanding 
mode. The critical loads are supplied by the DGs inside the 
microgrid. 
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At t = 0.4 s, since intentional islanding occurs, the switch 
at the PCC turns off, and the frequency and voltage inside the 
microgrid are supported and stabilized by the DGs. Since DG 
#1 runs in the droop-controlled mode, the frequency and 
voltage support is provided by DG #1. It can be seen from 
Fig. 16 that at the moment of disconnection of the microgrid 
at the PCC, large voltage and current over-shoots are clearly 
shown with the PID control. However, with the ADRC 
method, variations of the voltage and current are reduced to a 
large extend. It can also be clearly seen from the frequency 
waveforms that the ADRC is better than the PID control in 
terms of oscillation, transient response rate and steady-state 
error. The ADRC features fast detection and elimination of 
the disturbance and it demonstrates its outstanding capability 
to improve the performance under extremum conditions. 
Meanwhile, as long as the source power inside the microgrid 
is enough to feed the load in the microgrid, the variations of 
the frequency and voltage are small enough to ensure a 
smooth mode transition. 

At t = 1.4 s, the main grid is ready for the connection of a 
microgrid. Meanwhile, the microgrid adjusts its voltage and 
frequency to keep them the same as those of the main grid. 
Then the switch at the PCC is closed to conduct the mode 
transition. 

During islanding operation, the internal voltage and 
frequency are supported by the DGs. In the simulation, they 
are provided by DG #1 with droop control. However, since 
droop control is realized based on voltage and frequency 
deviations, during the islanding operation, they can have 
differences from those of the main grid. If directly connecting 
a microgrid to the main grid, there can be significant 
oscillations that may damage the equipment. Hence, before 
turning to the grid-connected mode, the microgrid frequency 
and amplitude should be controlled to values similar to those 
of the main grid. In Fig. 17, it can be seen that at the moment 
of grid-connection, sudden changes can be found in the 
voltage and current waveforms. The over-shoot induced in 
the PID control is much higher than that in the ADRC. 
Similar results can be found in the waveforms of the 
frequency. 

By comparing the simulation results, it can be found that 
the ADRC has better performance in terms of disturbances. It 
can rapidly compensate the disturbance and ensure stable 
system operation. Its control performance is better than the 
conventional PID control. Meanwhile, when implementing 
droop and PQ control, the ADRC still gives better results. 
Coordinated control among multiple DGs can be achieved. 
In microgrids, due to different load characteristics, the system 
operation may be changed. Resistive loads and 
inductive-resistive loads can result in different dynamic 
features during microgrid mode transitions. For example, 

when the microgrid operation changes from the 
grid-connected mode to the islanded mode at t = 0.4 s or  

 
Fig. 16. Waveforms for the mode transition from the 
grid-connected mode to the islanding mode. 

 

 
Fig. 17. Waveforms for the mode transition from the islanding 
mode to the grid-connected mode. 
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Fig. 18. Waveforms for the mode transition from the islanding 
mode to the grid-connected mode by using inductive-resistive 
loads. 
 

 
Fig. 19. Waveforms for the mode transition from the 
grid-connected mode to the islanding mode by using 
inductive-resistive loads. 
 
when the microgrid operation changes from the islanded 
mode to the grid-connected mode at t = 0.9 s, simulation tests 
using inductive-resistive loads are conducted. In the 
simulations, the local load is set to 14 kW and 5 kVar. The 
voltage curves and output power curves are shown in Fig. 18 
and Fig. 19, respectively, where the red curves show the 
results using the PID control and the blue curves shows the 
results using the ADRC control algorithm. Meanwhile, the 
magenta curve shows the grid voltage. 
 

It can be seen that although the change of loads has some 
impact on the control performance, the voltage and frequency 
can be stabilized in a very short time. The oscillations are all 
controlled within an acceptable range. Meanwhile, the control 
performance of the ADRC control algorithm is still better 
than that of the PID control. 

D. Operation Situation under Harmonics 

 
Fig. 20. Waveforms for the harmonic voltage. 

 

 
Fig. 21. Waveforms for the voltage change under harmonics. 
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Fig. 22. Waveforms for the current change under harmonics. 

 
In order to verify the control capability for disturbances of 

the ADRC, a nonlinear harmonic disturbance was imitated in 
the simulation process, by setting up the harmonic generation 
time, amplitude, frequency, phase, etc. of the programmable 
three-phase source. The specific process is as follows: 

At t=0.25 seconds, the harmonic disturbance was added 
where the harmonic amplitude is equal to 1.08 times the unit 
amplitude (in per unit) and the phase is -450. The waveforms 
of the harmonic voltage are shown in Fig.20.            

At t=0.4 seconds, the harmonic effect is finished, and the 
system returns to the normal operation process which was 
shown in Fig. 20. 
The curves of the voltage and current under harmonics are 
shown in Fig.21 and Fig.22, respectively.  
In the simulation results, the pink lines represent the 
reference voltage and current curve, the red lines represent 
the voltage and current curve under the control of the PID, 
and the blue lines represent the voltage and current curve 
under the control of the ADRC. 

It can be seen that the PID and ADRC have better 
operation results before adding a harmonic disturbance. 
When the harmonic distortion was added as t=0.25 seconds,  
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Fig. 23. Experimental testing system. 

 

 
Fig. 24. Experimental waveforms in the grid-connected mode. 

 

 
Fig. 25. Experimental waveforms of a transition from the 
grid-connected mode to the islanding mode. 

 
all of the voltage curves have some deformation. However, 
the amplitude and phase of the voltage curve are almost 
identical to the grid voltage under the control of the ADRC. 
In addition, the amplitude of the voltage curve under the 
control of the PID is obviously changed. In the current curve, 
it is still obvious that the control effect of the ADRC is better 
than that of the PID after adding the harmonic disturbance, 
and that the current curve under the PID control is not 
smooth.            

After t=0.4 seconds, the harmonic disturbance disappears 
and the system returns to normal operation. 
The simulation results show that because the ADRC itself has 
the characteristics of disturbance identification and correction, 
the control capability of the ADRC in the face of unknown 
interference is much stronger than that of the PID. 
 

V.  EXPERIMENT VALIDATIONS 

 
Fig. 26. Experimental waveforms in the islanding mode. 
 

 
Fig. 27. Experimental waveforms for a transition from the 
islanding mode to the grid-connected mode. 
 

 
Fig. 28. Experimental waveforms of the power exchange in a 
transition from the islanding mode to the grid-connected mode. 
 
To demonstrate the feasibility of the ADRC controller, an 
experimental platform was built, as shown in Fig. 23. 
Meanwhile, the experimental results are shown in Fig. 24 - 
Fig. 28. 

In these experimental results, the yellow lines represent the 
grid voltage, the purple lines represent the grid current, the 
blue lines represent the microgrid voltage, and the green lines 
represent the microgrid current. From the experimental 
results, it can be seen that the system can run in a stable state 
whether in a transition from the grid-connected mode to the 
islanding mode or in a transition from the islanding mode to 
the grid-connected mode by using the ADRC. 

 

VI. CONCLUSIONS 

In order to realize smooth mode transitions and the 
stabilization of a microgrid, an advanced ADRC is proposed 
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and applied to microgrid controller design in this paper. A 
second-order ADRC for microgrid operation is implemented. 
This controller can ensure transitions between the 
grid-connected mode and the islanding mode. Meanwhile, it 
works for the cases of load variations. By using a third-order 
ESO, the ADRC can effectively detect and eliminate the 
internal and external disturbances. As a result, it can achieve 
flexible interactions between a microgrid and the main grid. 
In the simulation and experiment results, it can be seen that 
the ADRC has better performance than the conventional PID 
control. Meanwhile, the stability of the third-order ESO in the 
ADRC is also verified by using Lyapunov criteria. Hence, 
smooth microgrid mode transitions can be guaranteed. 
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