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ABSTRACT

In this paper, a diagnosis method for switch open-circuit faults in three-phase PWM inverters is proposed, which

employs support vector machine (SVM) as classifying method. At first, a discrete wavelet transform (DWT) is used to

detect a discontinuity of currents due to the fault, and then the features for fault diagnosis are extracted. Next, these

features are employed as inputs for the SVM training. After training, the SVM produces an optimized boundary which is

used identifying the fault. Finally, the fault classification is performed online with instantaneous features. The

experimental results have verified the validity of the proposed estimation algorithm.
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1. Introduction

Three-phase PWM inverters have been applied to
industrial applications such as motor drives, power
supplies, power quality conditioners, etc. The design and
control techniques for PWM inverters have matured in
commercial products as a result of efforts to enhance their
performance. Despite well-developed designs and control
algorithms, unexpected faults have often deteriorated the
total reliability of the system. However, inverter fault
diagnosis techniques have been paid little attention.

In induction motor drives, fault detection methods for
winding insulation deterioration, rotor bar breakage,
bearing damage, rotor eccentricity, etc. have been
researched "M On the other hand, techniques for
diagnosing inverter faults have been proposed in M7
where switch open-circuits and short-circuits, DC-link
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capacitor faults, line-to-earth faults, etc are categorized.
Apart from the capacitor fault, the switch fault occurs
most frequently. The switch short-circuit fault, which is
the most frequent in switch-type faults, usually results in a
shut-down mode for system protection. The switch
open-circuit fault occurs due to frequent thermal cycling
and gating driver failures. The switch open-circuit
produces a dc-offset which may cause thermal damage in
the opposite switch of the same leg and further gives the
secondary faults to loads such that the motor bearing may
be damaged due to torque pulsations or high currents may
flow into the LC filters of UPS systems and the
transformers. This paper focuses on the diagnosis of the
switch open-circuit faults.

For detection of open-circuit faults, the inverter output
voltage can be utilized ). However, this method requires
additional voltage sensors even though its detection is fast.
Most commonly, the current signal instead of the voltage
is used for detection of switch open-circuit faults 1'%, In
[8], a fault diagnosis technique using a neural network was
proposed, which includes a training process with the seven
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fault patterns according to the average of the Concordia
current vector trajectory. This method gives a correct
result, but its performance is not guaranteed in transient
states. In addition, a technique using the current trajectory
and the instantaneous frequency analysis was proposed .
where the instantancous frequency analysis cannot
discriminate which switch is in fault, and a correct
diagnosis is not guaranteed in transient states. In [10], the
fault detection is performed by the ratio of the DC and the
fundamental components of phase currents. However, in
the case of applied vector control strategy, this method
might generate a wrong fault flag since distorted sine
waveforms are produced, which means the average in a
cycle is positive or negative, when re-generating or
braking modes occur due to sudden speed reference
change. In [11], a fault diagnosis method using a neural
network for multi-level inverters was introduced, in which
the training of the neural network uses coefficients of the
FFT (Fast Fourier Transform) analysis of output voltages.
In this method, output voltage information for one full
cycle is needed for FFT analysis.

In this paper, a new fault diagnosis technique that
applies a DWT (Discrete Wavelet Transform) and a
pattern recognition algorithm called a SVM (Support
Vector Machine) is proposed. The instant when a fault
occurs is detected with the DWT, and then the faulty
switch is identified using the SVM. In the proposed
scheme, fault detection and identification is performed in
less than a half cycle. Whereas the current trajectory or
artificial neural network techniques which use average
current vectors need at least one cycle of current
information, considering transient states. The effectiveness
of the proposed diagnosis scheme has been verified by
experimental results.

2. Open-Circuit Faults of Inverter Switches

Fig. 1 shows the typical three-phase PWM inverters.
The switches of a leg are postulated ideal and operating
without a dead-time. Fig. 2 shows the operating modes of
switches at the normal condition (a-n, b-n) and the fault
condition (a-f, b-f). Fig. 2(a) shows one casc where the
current-polarity is positive and (b) is the other case. First,
if the upper switch of a leg, for example, switch S1 of leg
A, is in fault, the corresponding phase voltage is decided

by the polarity of current-flow and the switching pattern of
switch S2. Leg A is connected to positive dc-bus by the
upper by-pass diode D1 as shown in Fig 1. In this case, the
current is rapidly decreased to zero through diode D2 and
kept at zero, and other two phase currents are in opposite
phase as shown in Fig. 3. Then, if upper switch S1 of leg
A is in fault as the negative-current flows, the switch fault
does not affect the current flow since the current flows
through diode D1 as shown in Fig. 3. On the contrary, if
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switch S2 of leg A is in fault, a fault phenomenon occurs
at the negative-polarity of the current flow since leg A is
connected to the negative DC-bus by the bottom by-pass
diode D2. Consequently, if a switch open-circuit fault
arises, the current is kept in zero for about a half-period,
so that the current includes DC-offset components.

3. Discrete Wavelet Transform

DWT is a efficient tool applied not only to the field of
such signal processing as noise elimination and image
compression but also in the analysis of disturbances in

waveforms owing to its capability to detect discontinuities
quickly "2,

In the multi resolution analysis (MRA) which is a
method of DWTs, a multi resolution approximation is

characterized by the scaling function ¢ that generates an
orthogonal basis of each space V,. For example, the
approximation of s at the scale2’/and2’" are equal to
their orthogonal projection onV, andV,,, respectively,
where V; is included inV, ;. In the same way, the wavelet
function y carries the detail components required to
increase the resolution of a signal approximation, where

y is an orthogonal basis of W, which is the orthogonal

complement of V,inV, ;asV, , =V, ®W,.
The orthogonal projection of f on V,, can be

decomposed as the sum of orthogonal projection onV, and

W, as

PVHf:PVJf"'PWJf (1)

where,

P f= z<f¢jn>¢jn, il z<f,wj,n>wj,n

$,(0=27"¢(27t-n), w,O=2"y(27t-n).

The Py, / and the compliment of 7, /', provide the details
of £, which appear at the scale 2’ and disappear at the
coarser scale2’. Therefore, W,is called a detail space or
wavelet space. Any ¢, ,€V,,cV,and y,,,,e W, cV,
can be decomposed in the orthogonal basis {¢;,},.; of

V; as

+00

¢j+l,p = Z < ¢j+l,p’¢j,n > ¢j,n =

n=—ow

> -2, @

Viap= Z < V/j+1,p=¢j,n > ¢j n= Z gln _zp]¢j,n (3)

n=-w n=—c0

Taking the inner product with / on each side gives

a,[p Zh n—2pla aj*h[—Zp] (€))]

d.[p Z gln-2pla,[n]=a;*g[-2p] 6))
where “*” means a convolution.

The process of (4) and (5) is shown in Fig. 4. To sum up,
the DWT is to project a function with filters from a higher
resolution domain to a lower one sequentially as shown in
Fig. 4. In Fig. 4, & 1is a kind of low-pass filter and g is a

high-pass filter, a;is an approximation coefficient and d,

is a detail coefficient or a wavelet coefficient which results
from mapping f to wavelet spaces.

4. Support Vector Machine

The SVM is a classifying method used often for pattern
recognition applications like face recognition as well as
for data mining ',

The objective of the SVM is to find out a separating
boundary with a maximum distance between two classes

composed of training data, where one class is a white

circle group and the other is a black circle group, as shown

in Fig. 5. It can be achieved by solving the following dual
[14]

problems

Fig. 4. Filter bank structure for DWT.
(3-stage, 3-channel structure)



380

N N N
Maximize: W(a)=2ai—%ZZaiajyiyjK(xi,xj) ©)
i=1 i=1 j=1
N
Subject to: ¥ oy, =0, 0<a, <C, Vi=(12,..N) @)
i=1
K(x,x)=(<x,x'>+1) 8)

where «; is a Lagrange multiplier, (x;,y,) iS a training
data set in which x; is input data and y, is output data. C is a
constant for a trade-off between the performance and the
generalization, and K (x,x") is a polynomial kernel function
that performs the non-linear mapping into the feature
space.

Solving (6) with the constraints of (7), the Lagrange
multipliers  {o,}Y; are determined and a separating

function is obtained as

f(x)=sign [% oy K(x;.x)+ b] ©

i=1

where b is a bias term as

1w
b=-2Zan[K(x.x)+K(x.x,)]
i=1

i

and N is the number of support vectors, which are x, with
non-zero ¢ .

One advantage of the SVM is that it can provide a
globally optimized separating boundary with only a few
support vectors among lots of training data, unlike other
learning machines that have a risk of local minima.

Hyperplane (decision
X2 . boundary)
; (W) + b=

w Class2,y=-1
(W) + b= -1

X=(X1,X2) X1

Fig. 5. Classification of two classes with maximum margin.
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In addition, the SVM can be applied for function
estimation such as wind speed estimation or current
estimation "%, in which SVM is called SVR(Support
Vector Regression).

5. Fault Diagnosis of Inverter Switch

Current signals are used for the inverter switch
open-circuit fault diagnosis. However, a sudden change of
current amplitude by transient states is one obstacle in
diagnosis. a process
normalizing the amplitude of the current to a constant

performing  fault Therefore,

value is needed. The current can be normalized as
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where, i,,. are original phase currents, i,pc i are
normalized phase currents, iz and i, are the d- and g-axis
currents in a stationary reference frame.

Fig. 6 shows the original current waveform and the
normalized current waveform. In Fig. 6, the fault occurred
at around 0.5[s] and the magnitude of current rapidly
diminished to zero at that point. However, the amplitude
of the normalized current signal was not affected by load
conditions before 0.5][s].

Then, the
transformed into frequency domain by the DWT. The
DWT is realized easily with several FIR (Finite Impulse
Response) filters which are achieved by applying the db2

normalized current waveforms are

(daubechies2) scale and wavelet. The corresponding scale,
wavelet, and filter coefficients are shown in Fig. 7. The
horizontal scale of wavelet is 2N-1, where N is the order
of wavelet (N of db2 is 2). Also, the structure of FIR
filters obtained by applying db2 is shown in Fig. 8, where
the filter coefficients KO, K1, K2 and K3 are listed in
Table 1.
Fig. 9
normalized waveforms, 1% and 2™ detail coefficients

shows the original current waveforms,
obtained by applying the db2 wavelet to the normalized of

(). (d). and (g), respectively, from the top. Here, the 1"

and 2™ detail coefficients correspond to d;y; and djy» in Fig.

4. The switching frequency is 5[kHz]| and the sampling
frequencies of the FIR filters at the first and second stages
arc 10[kHz] and 5[kHz], respectively. In fact, a clear
discontinuity never occurs in the faulted phase current
waveform except for a fault instant, but the discontinuities
come about in the other phase currents while the
faulted-phase current is kept at zero as shown in Fig. 9. If
the current signal has a discontinuous condition, the detail
coefficient has a sudden increased amplitude and
narrowed wavelength for a short time at the discontinuous
point. Hence, the discontinuity can be detected easily with
a certain threshold pre-determined.

However, it cannot classify which switch is in fault not
only because the discontinuity occurs in both current
waveforms of a faulty phase and the other phases, but also
because the discontinuity may be produced due to
disturbances or abrupt reference changes. Therefore, an
additional technique for classifying the fault is required,
which is to count the zero current samples. Considering

sensor offsets, the number of current samples placed
within a certain range is counted instead. In this work, the
range is chosen from -0.2 to 0.2, within which the samples
are called zero current samples for convenience.

Fig. 10 shows normalized current waveforms and the
number of current samples within a certain range under
the normal and fault conditions. It is easily noticed that the
number of zero current samples is different according to
conditions. In order to find an optimal decision boundary
between the normal and fault conditions as shown in Fig,
4, a learning machine SVM is used.

Fig. 11 shows the current waveforms of a faulty phase
with the upper switch broken. Fig. 11(a)-(c) show the
cases when the upper-switch is broken when the positive
current flows, where (a) has a high descent and positive
average value and (b) has a high descent as well, but the
average is almost zero, and the descent in (c) is very low
and the average is negative. (d) and (¢) are the cases in
which the switch brakes when the negative current flows,
where the both descent of (d) and (¢) are nearly zero and
the average values are definitely negative. Therefore, once
a fault phase is discriminated by the SVM, the fault switch
is easily classified with the other SVM as well, of which
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features are the average of past half-cycle and the tilt
during a quarter cycle from the fault instant detected by
DWT as shown in Fig. 11.

Fig. 12 shows how to extract features for the proposed
fault diagnosis method from the normalized current
waveform, where SVM1 and SVM2 are used to classify
the faulty phase and the faulty switch, respectively. First,
the count of zero current samples for the previous half and
next quarter cycles at the detection point are chosen as the
features which are the input data of SYM1. The features
are cach numbers of filled-squares and circles that are
placed within the band width in Fig. 12. Then, the sum of
samples (sum of i[k] from k=-n; to k=0 in Fig. 12) during
the previous half cycle and the variation of samples ((i[0]
—i[nj]) in Fig. 12) during the next quarter cycle are chosen
as the inputs of SVM2, where i[0] is the current value at
the detection point of the discontinuity and i[n] is the one
at the next quarter cycle past the detection point. Also, the
n; and n; are total numbers of the current samples during
the previous half and the next quarter cycles, respectively,
which are constant without reference to the frequency. The
features explained above are used for training data of
SVMs off-line and for running inputs of SVMs on-line.
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Fig. 10. Current waveforms and histograms in (a) Normal
condition (b),(c) Fault conditions.
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Fig. 11.
current flow (d),(e): With negative current flow.

Off-line training of the SVM using these features
determines the support vectors, Lagrange multipliers,
constant C, and bias term b. With running input data, a
fault decision can be made by using (4).

Fig. 13 shows a fault diagnosis structure with a
separating function f(x) of SVMs, where SVMI training is
performed with features obtained from all three phase
currents since a separating function obtained from the
training is applied to all three phases. The output of SVM2
is activated only when the output of SVMI is ‘“+1° which
means a fault condition.

A flow chart of fault diagnosis, in summary, is shown in
Fig. 14. At first, the normalization of phase currents is
performed. Then, a discontinuity in current waveforms is
detected with the DWT. Next, the features for fault
diagnosis are selected and collected under various
conditions, and then SVM training is performed off-line
with the features. Finally, the fault is classified by the
separating function on-line.

detection
point S x 0f SVMI
Mae Z? % 0f SVMI

NI zl[] %, of SVM2
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Fig. 12. Feature extraction from the normalized current
waveform.
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Fig. 13.  Fault diagnosis structure with separating functions.
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6. Experimental Results

The experiment has been performed to verify the
proposed method. The DSP board with a TMS320VC33 is
used as a main controller. The inverter switching
frequency is 5[kHz], the AC source voltage is 220[Vrms]
and 60[Hz], and three-phase diode rectifiers are used for
the dc-source of the inverter, of which the dc-link
capacitance is 1,950[uF]. The squirrel-cage induction
motor is rated at 3[kW], which is controlled in the indirect
vector control mode.

First, in order to confirm that the proposed method does
not make any wrong fault flags in harsh conditions
(non-fault conditions), the fault flag was observed in
abrupt variations of frequency and amplitude.

Fig. 15-17 show phase current waveforms for RL loads
(5[€2], 7ImH]) and fault flags. The flags of *-1° and ‘+1°
represent normal and fault conditions, respectively.

Fig. 15 shows the case where the amplitude of currents is
controlled constantly and the frequency of currents is
changed several times abruptly. The upper switch of the
A-phase has been open-circuited at a certain point, and then
the only fault flag of the A-phase shifted from °-1’ to “+1°.

In the case of Fig. 16, the amplitude of currents is
changed several times abruptly and the frequency of
currents is fixed. The fault condition is the same as in the
case of Fig. 15. Likewise, unless the fault condition is
produced, the fault flag is not generated.

Fig. 17 shows the case where both the amplitude and
the frequency changed sinusoidally. As the fault flag of
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the A-phase is shifted to “+1°, the flag for faulty switch
identification is changed to “+1°, which means the upper
switch fault (of the flag for fault-switch, °-1° means the

bottom switch fault and “+1° means the upper switch fault).

Fig. 18 shows real current waveforms and normalized
current waveforms.

Next, the experiments are performed for wvector-
controlled IM drives. Fig. 19 shows the case of induction
motor drives in which the speed profile changes in ramp,
which gives a correct diagnosis result (no fault flag
generated).

Fig. 20 shows the fault flags when there is a fault in the
upper or bottom switch of the A-phase. It is noticed that
the flag signal is generated correctly within a quarter-
period.

Fig. 21 shows the diagnosis results for fault-phase and
fault-switch. As the upper switch of A-phase is
open-faulted, both the fault flag for phase-A and the flag
for fault-switch identification are shifted to “+1°. As the
bottom switch of the A-phase is open-faulted, the fault
flag for phase-A is changed to “+1’ as well, but the flag for
fault-switch identification is shifted to “-1°.

7. Conclusions

In this paper, a diagnosis scheme for inverter switch
open-circuit faults has been proposed. The discontinuity
due to faults is detected with the DWT. While the faulty
phase and the faulty switch was classified with the
separating function of the SVM, which needs a little effort
with off-line training. This proposed method can detect
and classify which switch is in fault in less than a half
period, and it is robust in the transient state. Experimental
results have verified the effectiveness of the proposed
diagnosis algorithm.

Appendix

Table 1 Filter coefficients

Low-pass filter High-pass filter

KO -0.129409522550917 -0.482962913144691
K1 0.224143868041857 0.836516303737465
K2 0.836516303737465 -0.224143868041857

K3 0.482962913144691 -0.129409522550917
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Fig. 18.  Current waveforms. (a) Real current waveforms
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switch fault: (a) Normalized current waveform of
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