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ABSTRACT 
 

The power supply systems, which require low-voltage / high-current output has been changing from the conventional 
centralized power system to a distributed power system.  The distributed power system consists of a bus converter and 
POL.  The most important factor is the system stability in bus architecture design.  The overlap between the output 
impedance of a bus converter input impedance of POL causes system instability and has been an actual problem.  By 
increasing the bus capacitor, the system stability can be easily improved.  However, due to limited space on the system 
board, the increasing of bus capacitors is impractical.  An urgent solution of this issue is strongly desired. This paper 
presents the output impedance design for on-board distributed power system by means of three control schemes of a bus 
converter. The output impedance peak of the bus converter and the input impedance of the POL are analyzed and then 
conformed experimentally for stability criterion.  Furthermore, the design process of each control schemes for system 
stability is proposed. 
 
Keywords: Distributed power system, Stability, Input impedance, Output impedance 
 
 

1. Introduction 
 

Various LSI is used in the telecommunication 
application equipments and the driving voltage also 
greatly varies.  On the other hand, an increase of the load 
current is also remarkable by an advanced LSI function.  
Since the present LSI is designed in accordance with 

semiconductor manufacture technology, the tolerance 
level of the operating voltage is very narrow. 
Consequently, the voltage drop by the wiring impedance 
of power lines causes a malfunction of the LSI.  In order 
to reduce the malfunction of the LSI by the voltage drop, 
it is proposed that the converter is arranged very close to 
the LSI. This converter is called POL. Thus, the power 
supply system which requires the low-voltage/high-current 
output has been changing from the conventional 
centralized power system to a distributed power system. 
The distributed power system consists of first-stage 
isolated DC-DC converter as a bus converter and 
second-stage non-isolated DC-DC converter as a POL. 
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However, recently, the instability phenomenon in a 
distributed power system is posing a problem.  This is an 
instability phenomenon resulting from the overlapping 
between the output impedance of a bus converter and the 
input impedance of a POL. By increasing the bus 
capacitor, the system stability can be easily improved.    

However, due to limited space on the system board, the 
increasing of bus capacitors is impractical.  An urgent 
solution of the issue is strongly desired, and various 
discussions of system stability has been reported[1-9].  
Then, we have also reported the detailed discussion of 
system stability by control schemes of a bus converter 
(Un-regulated, Semi-regulated and Full-regulated)[10-15].   
However, so far, the detailed discussion of the practical 
design of a bus converter about an on-board distributed 
power system has not been reported.  This paper presents 
the optimal design of a bus converter for an on-board 
distributed power system by means of three control 
schemes of the bus converter. 
 

2. Impedance analysis 
 

The on-board distributed power system consists of a bus 
converter and a POL.  The half-bridge converter with the 
most popular circuit of the power–stage is used as a bus 
converter, and the synchronous buck converter with the 
most popular circuit is used as a POL. Figure 1 and 2 
show the circuit diagrams, respectively.  Even if each 
converter has stable operations, the instability 
phenomenon may occur by connecting two converters in a 
series.  The input and output impedance is greatly 
concerned to the system stability.  From a previous report 
of reference15, it is necessary to set the peak value of the 
output impedance to smaller than the low-frequency value 
of the input impedance |Zin(0)| for system stability.    
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Fig. 1.  Bus converter. (Half-bridge converter) 

R

Lo

+

-
vo

Co

rcVb

rl

 
Fig. 2.  POL. (buck converter) 
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In this section, the low frequency value of the input 

impedance and the peak value of the output impedance are 
analyzed.   

 
2.1 Input impedance 
At first, the low-frequency value |Zin(0)| of the input 

impedance is estimated.  The input impedance of POL 
can be derived as the following equation[17-19]. 
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From Eq. (2), the low-frequency value of the input 
impedance |Zin(0)| is given by the following equation. 
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|Zin(0)| has minimum value at rated load, so the estimation 
of |Zin(0)| must be at rated load.  Next, the output 
impedance is examined. 
 

2.2 Output impedance 
  The output impedance of a bus converter can be 
derived. 
Open loop case,  
 

( )
( )

2

2
( )

1
b b b b

b b

b b c b b L c L
o

b b b L c

s L C r s L C r r r
Z s

s L C sC r r

+ + +
=

+ + +
      (4) 

 

Closed loop case, 
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where, 
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k : sense gain products error amp. gain.  
PWM : gain of the comparator. 

 
In an open loop case, the peak frequency is the same 

resonant frequency fp of the loop gain T(s) as shown in 
Fig. 3, and the peak value of the output impedance can be 
derived from Eq. (4). 
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In a closed loop case, the output impedance peak moves 
to crossover frequency fc as shown in Fig. 3.  In this 
instant the peak value of the closed loop output impedance 
can be derived from the following equation,  
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where, 
 

(0) sT k PWM Vα = = ⋅ ⋅                    (11) 
 

Moreover, from the transfer function of loop gain, the 
crossover frequency fc is expressed as follows by means 
of peak frequency fp of the loop gain. 
 

1c pf fα= +                              (12) 
 

From Eq. (10) (12), the peak value of a closed loop 
output impedance is expressed as follows. 
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As shown in Eq. (13), if fc is equal to fp, it becomes the 
same as Eq(9).  Therefore, the peak value of output 
impedance is calculable by means of Eq. (13). 
 

3. Output impedance characteristics 
 

The output impedance characteristic of each control 
shames (un-regulated, semi-regulated, and full-regulated) 
is different, and each bus converter has different 
operations. Therefore, the output impedance design 
suitable for the feature of each control method is required.  
From now on, the output impedance design for each 
control shames is considered. 

 
3.1 Un-regulated 
In an un-regulated case, the output impedance is the 

same as open-loop output impedance because this control 
method has no control loop.  In order to reduce the peak 
value of output impedance, it is effective to make the 
inductance small or to enlarge the capacitance. 

Generally, an un-regulated bus converter is operated at 
a maximum duty ratio.  Therefore, the inductor of the bus 
converter can be reduced as small as possible to reduce the 
system instability. The peak value of the output impedance 
is reduced with the small inductor. Figure 4 shows the 
experimental result of the relationship between the output 
impedance and inductance.  Moreover, Fig. 5 shows the 
analytical and experimental results of the relationship 
between the peak value of output impedance and 
inductance. Both results agreed well with each other.   
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Fig. 3.  Output impedance peak. 
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3.2 Semi-regulated 
A semi-regulated bus converter has a control loop. 

However, regulation is related to a variation of input 
voltage, therefore the output impedance is the same as an 
un-regulated case.  In this case, the duty ratio is changed, 
and the inductor of the bus converter cannot be reduced. 

Therefore, a very large bus capacitor is needed to 
reduce the peak value of output impedance.   

Figure 6 shows the experimental result of the 
relationship between the output impedance and 
capacitance.  Moreover, Fig. 7 shows the analytical and 
experimental results of the relationship between the peak 
value of output impedance and capacitance. Both results 
agreed well with each other. 

 
3.3 Full-regulated 
A full-regulated bus converter has a feedback loop, so 

the output impedance characteristic is changed.  
Therefore, output impedance can be made small with a 
wide bandwidth.  Figure 8 shows the experimental result 
of the relationship between the output impedance and 
bandwidth.  Moreover, Fig. 9 shows the analytical and 
experimental results of the relationship between the peak 
value of output impedance and bandwidth.  Both results 
agreed well with each other.   

Next, the relationship between the capacitance and 
output impedance peak is examined in a closed loop case.  
In a closed loop case, if capacitance Cb changes to 
Cb+Cadd, the peak frequency fp of the loop gain is 
changed as follows. 
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Fig. 4.  Inductance and output impedance. 
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Fig. 5.  Inductance and peak value of Zo. 
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Fig. 6.  Capacitance and output impedance. 
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Fig. 7.  Capacitance and peak value of Zo. 

 
Therefore, the crossover frequency fc is changed as 
follows. 
 

' 1 'c pf fα= +                            (15) 
 

Moreover, frequency ratio fc’/fp’ is given as the following 
equation. 
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From these results, output impedance peak can be 
expressed as in the following equation. 
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where,  
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Figure 10 shows the experimental result of the 

relationship between the output impedance and 
capacitance in a closed loop case.  Moreover, Fig. 11 
shows the analytical and experimental results of the 
relationship between the peak value of output impedance 
and capacitance in a closed loop case.  Both results 
agreed well with each other. In this case, the total ESR is 
greatly changed by the additional capacitor. 

Moreover, the total ESR is quite changed by the 
additional capacitor. Furthermore, in the case of the closed 
loop, ESR has a great influence to the output impedance 
peak.  Therefore, estimation of ESR is very important. 
 

4. Optimal design of bus converter 
 

In order to evaluate the performance of this system, the 
experiment circuits are implemented using the 
specifications and parameters in Table 1.  

 
Table 1 Circuit parameters 

Input Volotage

Symbol Description Value

Output ConditionVo/Io

Vin

3.3V/5A

48V

Vb

Output Inductor of Bus Converter

12V
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Registance of Lb

ESR of Cb

Output inductor

Output capacitor

Registance of Lo

ESR of Co

270µH

100µF

2.8µH

820µF

300mΩ

25mΩ

25mΩ

10mΩ

Output Capacitor of Bus Converter

Bus Volotage

B
us C

onverter
PO

L

kb Feedback gain (with sence gain) 0.9
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Fig. 8.  Bandwidth and output impedance. 
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Fig. 9.  Bandwidth and peak value of Zo. 
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Fig. 10.  Additional capacitance and output impedance. 
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Fig. 11 . Additional capacitance and peak value of Zo. 
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Here, the case with two POLs is discussed as an actual 
example.   The practical design process is shown below. 
 

4.1 Input impedance estimation 
The low-frequency value |Zin(0)| of input impedance is 

given by Eq. (3).  The duty ratio is D=0.275 and output 
resistance is R=0.66(Ω) from the relational input and 
output.  In this case, the |Zin(0)| is 20.6(dBΩ).  When 
two POLs of the same condition are connecting in a 
parallel, |Zin(0)| is 14.6(dBΩ).   Figure 14 shows the 
experimental result of the input impedance.  The 
low-frequency value |Zin(0)| is around 15(dBΩ) as shown 
in Fig. 12.  The experimental results and analytical 
results also compliment each other well.  If the stability 
margin is set to 6(dBΩ), then the peak value of the output 
impedance must be set to around 9(dBΩ). 
In an un-regulated case, the optimal inductance value is 
considered because the stability is improved by small 
inductance.  From Eq. (13), the optimal inductance value 
can be derived as following equation. 
 

  ( )_ _b bb optimal b C L o peakL C r r Z= +                 (19) 
 

where, the unit of |Zo_peak| is Ω. 
Since the output impedance must be set to 9(dBΩ), the 

inductance value is set to around 87(µH) from Eq. (19).  
Figure 13 shows the experimental result of the output 
impedance with small inductance. 
The inductance value is around 90 (µH), and the peak 

value of the output impedance is around 8.5 (dBΩ).   
The experimental results and analytical results further 
agree well. Moreover, in an open loop case, since the rL is 
generally larger than the rc, the output impedance does not 
become smaller than rL as shown in Fig. 4.   
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Fig. 12.  Input impedance characteristic. 

Therefore, the inductance value has minimum value.  
From Eq. (19), the minimum value of the inductance is 
given by the following equation. 
 

  ( )_ min b b bb b C L LL C r r r= +                        (20) 
 

In this case, the minimum value of inductance is around 
10 (µH). 

In a semi-regulated case, the optimal capacitance value 
is considered because the stability is improved by large 
capacitance.  From Eq. (13), the optimal capacitance 
value can be derived as in the following equation. 
 

  ( )_

_b b

b
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C L o peak

L
C

r r Z
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+
                  (21) 

 

where, the unit of |Zo_peak| is Ω.  Since the output 
impedance must be set to 9(dBΩ), the capacitance value is 
set to around 300(µF) from Eq. (16). In this case, the 
influence of the ESR is considered because the ESR 
becomes small when the capacitor is connected in parallel.   
Figure 14 shows the experimental result of the output 

impedance with a large capacitance.  The capacitance 
value is 300 (µF), and the peak value of the output 
impedance is around 8 (dBΩ).  The experimental results 
and analytical results agree well with each other.   
Moreover, the output impedance does not become smaller 
than rL as shown in Fig. 6.  Therefore, the capacitance 
value has maximum value.  From Eq. (21), the maximum 
value of the capacitance is given by the following 
equation. 
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Fig. 13.  Output impedance with small inductor. 
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In this case, the maximum value of the capacitance is 
around 2.8 (mF). 

In a full-regulated case, the optimal bandwidth is 
considered because the stability is improved by wide 
bandwidth.  From Eq. (13), the optimal bandwidth can be 
derived as in the following equation. 
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where, the unit of |Zo_peak| is Ω.  Since the output 
impedance must be set to 9(dBΩ), the bandwidth is set to 
around 5.1kHz from Eq. (23).  Figure 15 shows the 
experimental result of the output impedance with wide 
bandwidth.  The bandwidth is around4.7kHz, and the 
peak value of output impedance is around 8.5 (dBΩ).  
The experimental results and analytical results soundly 
agree with each other. 
Next, the optimal capacitance is considered in closed 

loop case.  From Eq. (17), the optimal additional 
capacitance can be derived as in the following equation.   
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            (24) 

 

In the basic parameters case, the closed loop output 
impedance peak is around 14.5(dBΩ).  Since the output 
impedance must be set to 9(dBΩ), the additional 
capacitance is set to around 150µF from Eq. (24).  Figure 
16 shows the experimental result of the output impedance 
with additional capacitance.  The capacitance is around 
150µF, and the peak value of the output impedance is 
around 9 (dBΩ).  The experimental results and analytical 
results agree well with each other. 
 

5. Conclusions 
 

This paper presents the output impedance design for an 
on-board distributed power system by means of three 
control methods of a bus converter.  The output 
impedance peak of the bus converter and the input 
impedance of the POL were analyzed, and it was 
conformed experimentally for the stability criterion.  As 

a result, the standard of the discrimination of stability on a 
frequency response of input and output impedance was 
clarified.  Furthermore, the design process of each 
control method for system stability was proposed. 
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Fig. 14.  Output impedance with large capacitor. 
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Fig. 15.  Output impedance with wide bandwidth. 
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Fig. 16.  Output impedance with additional capacitance. 
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