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ABSTRACT 
 

42V electrical power systems are on their way to replacing the present l4V systems in automobiles and 42V/14V dual 

voltage systems have been proposed to provide backward compatibility with the existing components for the 14V systems. 

A synchronous buck/boost converter is an attractive topology for 42V/14V dual voltage systems since it offers the 

possibility of bi-directional operation without additional components. In this paper, transient currents generated during 

converter startup or changes in operation modes between buck and boost are analyzed and a cost effective solution to 

remove the transient currents is proposed. The validity of the proposed control strategy is investigated through simulation 

and experiment with bi-directional converters. 
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1. Introduction 

 
The use of electrical/electronic loads to improve 

performance, fuel economy, passenger comfort, 

convenience and safety in automobiles has been growing 

exponentially. A typical luxury class vehicle today draws 

between 1200W to 1500W of steady state power from the 

electrical system and has about 2.5 km of wiring in the 

harness
[l]

. 42V electrical power systems are on their way 

to replacing the present l4V systems in automobiles and 

42V/14V dual voltage systems have been proposed to 

provide backward compatibility with the existing 

components in 14V system
[2][3]

. Fig. 1 shows one of the 

popular architectures for implementing the 42V/14V  

dual voltage system. A bi-directional DC/DC converter is 

equipped with 42V and 14V buses and batteries are 

connected to each bus, respectively
[4]

. 

In implementing a DC/DC converter, a non-isolation buck 

or boost is a good topology because the isolation between 42V 

and 14V buses is not required in automobiles and the voltage 

conversion ratio of input and output is only about 1/3 or 3. The 

voltage conversion ratio is not exactly 1/3 or 3 because of 

power losses, efficiency and control methodology.  

A synchronous buck/boost topology using active switches 

instead of diodes is considered to be more attractive because 

bi-directional operation is possible without additional 

components and the efficiency is a little higher than that of 
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ordinary diode buck and boost topologies
[5][6]

. 

Fig. 2 shows the synchronous buck/boost converter 

where switches Q1 and Q2 are operated as the main switch 

or as the freewheeling diode according to the operating 

direction. Unlike typical converters for power supplies, this 

synchronous buck/boost converter has voltage sources on 

both sides of its input and output. Therefore, whenever the 

controller is started up and the operation mode is changed 

between buck and boost, abnormal transient currents can 

flow because the transient switching duty is not the same as 

the regular duty related with the converter input voltage and 

the output load voltage.  

The topology for a bi-directional converter in this paper 

is not a special one, and there are several papers written on 

the use of this topology. However, they dealt with control 

method, improvement of efficiency, and noise problems in 

the converter. They did not deal with converter 

startup
[7-12]

.  

Compared with previously discussed approaches, the 

converter in this paper has the following characteristics 

and advantages: 

1) The bi-directional converter has voltage sources on 

both input and output.  

2) When the controller is implemented by a 

conventional PWM IC, the transient currents during the 

startup and mode changing between buck and boost are 

analyzed. 

3) A cost effective solution to remove the transient 

current is proposed.  
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Fig. 1.  Dual battery 42V/14V system. 
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Fig. 2.  Synchronous buck/boost converter with voltage sources   

in input and output. 

The validity of the proposed control strategy is 

investigated through simulation and also through 

experiments with bi-directional converters. 

 

2. Transient Current during Startup 

 

The voltage conversion ratio of the synchronous 

buck/boost converter is given by: 
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If the bus voltages, V42V and V14V are 36V and 12V, 

which are the nominal voltages of the batteries, the 

switching duty for Q1 and Q2 should be about 1/3 and 2/3, 

respectively. If the bus voltages are changed according to 

the battery charge and discharge conditions during the 

converter operation, the switching duty has to be changed 

as much as the changed in the bus voltage ratio. Since the 

DC/DC converter has a voltage source load on both sides 

of the input and output, there are some points to consider 

for smooth operation when the controller is started up or 

when the operation mode is changed between buck and 

boost. 
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Fig. 3.  Relationships between voltage transfer ratio and duty- 

ratio of main switch. (a) Buck mode (b) Boost mode (c) 

Duty ratio of main (Q1), auxiliary switch (Q2) at Buck 

mode (d) Duty ratio of main (Q2), auxiliary switch (Q1) 

at Boost mode. 
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When most converters are turned on, the switching 

duty and output voltage are designed to increase slowly 

because of a soft-start function. However, the soft-start in 

this DC/DC converter will show an abnormal transient 

current. As shown in Fig 3(a), if the input and output 

voltages are 42V and 14V, and the bi-directional converter 

is operating as a buck converter, the duty ratio will start 

from 0, and it will be operated in boost mode until the 

duty ratio reaches 0.33. If there is no voltage source at the 

output, output voltage will increase from 0V to 14V. 

However, as shown in Fig. 3(c), if there is a voltage 

source at the output and the duty ratio is less than 0.33, the 

output voltage can not increase according to the duty ratio, 

because the output voltage is already 14V. When this 

happens, Q2 becomes the main switch, and it is operated 

in boost mode. Therefore, the direction of the inductor’s 

current flows in reverse.  
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Fig. 4. Current mode synchronous buck converter circuit. 

 

 
 

Fig. 5.  Transient current simulation results during startup. 
(a) Q2 PWM signal (b) Error amp output voltage Vc  

(c) Inductor current IL. 

As shown in Fig. 3(b) and Fig. 3(d) similar results are 

shown during boost mode. To prevent this situation, the 

switching duty of the converter should instantaneously 

become value related to the input and output voltage ratio 

without soft-start. However, due to several capacitive 

components including the error amp compensator, the 

soft-start feature cannot be suppressed perfectly.  

Fig. 4 shows the current mode PWM circuit diagram 

for a synchronous buck converter without additional soft 

start elements. This circuit is based on the internal block 

diagram of a Linear Technology LT1339 PWM controller 

for use as a prototype. This control IC is suitable for high 

power synchronous buck/boost converter applications up 

to 60V and it has a differential amplifier with high 

common mode input voltage for current sensing.  

As shown in Fig. 5, the simulation results through PSIM 

show the transient state during buck startup. The important 

parameters for the simulation are listed below: 

 

- VIREF : 0.95V, G:15, Gm:0.9mЅ 

- L : 7μH, Rs : 0.003Ω, fS : 70kHz 

 

Due to the capacitor (C2) of the error amp compensator, 

the error amp output, VC, is slowly increased. Since the 

current feedback loop has an offset voltage (0.7V), Q2 is 

turned on and the output source voltage becomes short 

until VC reaches the offset value. Most of the PWM ICs 

have the voltage offset in the feedback loop or on the error 

amp output to get the noise margin. Even though there is 

no offset, an abnormal negative transient current flows 

during startup and an abnormal negative current cannot be 

detected protected against because the PWM IC including 

op amp, comparator and differential amp for current 

sensing operates with only a single voltage supply. 

 

3. Proposed Method 

 

Fig. 6 shows the inductor current waveform according 

to the amplitude of the load current. 

The synchronous buck/boost converter with voltage 

sources at the input and output terminals is always 

operated in a Continuous Conduction Mode (CCM) and 

the current can flow in the reverse direction as the output 

current decreases.  This is due to a path which allows 

reverse current flow
[13]

. Therefore, when the load is large, 
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as shown in Fig. 6(a), the inductor current always flows 

from input to output. However, when the load is small, the 

inductor current can flow in reverse from output to input 

as shown in the shaded region of Fig. 6(b).  This happens 

because the current from the output can flow through the 

Q2 switch with the role of a diode. 

However, the control IC which is fed by a positive 

single power supply cannot detect the negative feedback 

current as shown in the shaded region of Fig. 6(b).  As a 

result, the controller operates the converter in a 

Discontinuous Conduction Mode (DCM) according to the 

output current level
[14][15]

. Therefore, this converter should 

be analyzed separately for each mode. The peak current 

that flows through the inductor can be defined with bus 

voltages, inductance L and the switching period, TS, by the 

following equations: 
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Detected current flowing through a shunt resistor (Rs) is 

converted to voltage signal, and the feedback currents, 

VISW and VIFB in Fig. 4 are as follows. 
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Fig. 6.  Inductor current waveforms according to the amplitude 

of the load current. (a) Inductor current when the load is 

big (b) Inductor current when the load is small. 

IL(AVG) is the same as the output current in the buck 

mode and the input current of the boost mode. If the 

control target of the controller is the average inductor 

current and the switching off time is decided by 

comparing the switch current, VISW, and the error amp 

output, VC, equations (2) and (3) can be applicable for 

both buck and boost mode. Therefore, as shown in Fig. 7 

if the current reference, VIREF, during startup is fixed and 

the switching is stopped until VC reaches the value, 

VISW(PK), determined by (2) and (3) and then started, the 

transient current can be removed. 

The error amp configuration in the switching blocked 

condition is shown in Fig. 8. While the gate signal is 

blocked, the inductor current(IL) can not flow and the 

feedback voltage(VIL) will be zero. 

Fig. 9(a) shows a blocking time at a fixed load current 

(IL(AVG)=6A) and different input and output voltages. Fig. 

9(b) shows a blocking time at different load current with 

the fixed input and output voltages. 
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Until now, switching blocking time, TB, has been done 

by using a transconductance amp as an error amp. As 

shown in Fig. 10, when using a conventional PWM IC 

with op amp of voltage type, equation (5) can be 

applicable. 
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Fig. 7.  Method to remove the transient current during startup. 
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Fig. 8.  Error Amp during gate block. 
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Fig. 9.  Blocking time calculation results. (a) TB at fixed       

IL(AVG)(=6A) and different input and output Voltages 

(b) TB at different IL(AVG) and fixed input and output 

voltage. 
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Fig. 10.   Voltage mode error amplifier during blocking. 
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Fig. 11.  Controller block diagram for bi-directional 

operation. 

The block diagram of the proposed controller is shown 

in Fig. 11. Two PWM controllers are used to implement 

the bi-directional operation. Only one PWM controller 

should be in operation at a time. When changes in 

operation modes are required, the controller in operation 

has to be turned off before the other controller can be 

turned on. 
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The switching signal outputs from the controllers are 

combined with OR gates and are sent to the gate drive 

circuit. The gate enable circuit is designed to block the 

gate signal with a microprocessor (MCU) until the error 

amp output reaches the correct level to reduce the transient 

current. Whenever changing the operation mode, the same 

situation with the startup happens and the microprocessor 

should enable and disable the switching signal with this 

circuit. 

The microprocessor can get 42V and 14V through the 

AD converter. It also searches for the adequate TB 

according to the input, output voltage and initial inductor 

current. However, the initial inductor current can be 

treated as a constant if it is fixed at the value that we want 

during startup. Therefore, only the input and output 

voltage are necessary to search TB. After startup, the 

microprocessor has to output current reference as the 

output voltage controller. 

An analog circuit operates as a current controller that 

limits the maximum current. A microprocessor which is a 

digital circuit operates as a voltage controller for 

controlling the output voltage, and outputs the current 

reference to the analog current controller. Therefore, when 

the output voltage is lower than the reference voltage, the 

converter outputs the maximum current. If the output 

voltage reaches the reference voltage, it controls the 

current to maintain the desired voltage, which is the same 

process used by battery chargers, so there is no possibility 

for the control signals of the two controllers to collide. 

. 

4. Simulation and Experimental Results 

 

The system parameters for the simulation are shown in 

Table 1. 
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Table 1.  System parameters for simulation. 

Parameters Value 

Input/Output Voltage (V1, V2) 42V, 14V 

Inductor (L) 7μH 

Capacitor(Cin, Cout) 20μF, 20μF 

Switching Frequency 70KHz 

Current Detecting Resistor(Rs) 3mΩ 

 

 
 

Fig. 12.  Timing during buck mode start up (1) gate blocking 

enable/disable signal (2) controller enable signal (3) 

controller PWM output for Q1 (4) actual switching 

signal for Q2. 

 

 
 

Fig. 13. Simulation results for the proposed method during buck 

mode start up. (a) PWM controller output for Q2 (b) 

error amp output Vc (c) switching signal for Q2 (d) 

output current. 

 

 
 
Fig. 14.  Experimental results of the proposed method during 

buck mode start up. (1) PWM controller output for Q2 

(2) error amp output Vc (3) switching signal for Q2 (4) 

output current. 

Fig. 12 shows the sequence timing during startup. 

When the buck controller is enabled with the buck enable 

signal, the controller outputs the PWM switching signals 

for Q1 and Q2. However, the actual switching is delayed 

until the microprocessor enables the switching. The 

switching enable time is determined by the microprocessor 

using a blocking time table.  

Fig. 13 and 14 show the proposed method in 

simulations as well as the experimental results. Fig. 13 (1) 

shows the Q2 switching waveform before gate block. 

Although the Q2 turn on signal appears during start up, it 

is blocked by the gate block signal. Fig. 13 (2) shows the 

error amp output VC. Fig. 13 (3) shows the actual 

switching waveform applied to the switching component. 

The switching starts only after the error amp output Vc 

reaches a certain level calculated according to the input 

and output voltage. Fig. 13 (4) shows the output current.   

Fig. 14 shows the experimental results which are identical 

to the results of Fig. 13. 

To verify the proposed strategy, a control system was 

implemented using a 700W prototype. MOS-FET’s 

TO-220 packages developed for 42V applications were 

used as switches, and the system was they were designed 

with two modules because the maximum efficiency of one 

module was achieved at around 300W and the interleaved 

synchronization scheme was used to reduce the size of the 

filters
[16][17]

. The PIC18F2480 made by Microchip was 

used. 

Fig. 15(a) shows a photograph of the 700W prototype 

with a heat sink for natural convection. Fig. 15(b) shows 

the total efficiency of the converter when the ambient 

temperature was 25°C and 55°C, respectively. It is about 

95% throughout the entire output range. 

 

 
 

(a) 700W prototype with heat sink 
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(b) Total efficiency of the converter 

 

Fig. 15.   Proto type and efficiency. 

 

Fig. 16 shows the switching signals and inductor 

currents under interleaved operation in which the two 

main switches work alternatively with an 180° phase 

shift
[18][19]

.  

Fig. 17 shows the experimental results when the 

blocking time is not suitable. Fig.17(a) shows the transient 

current without the blocking time during startup, which is 

almost the same result as the result shown in Fig. 5. Fig. 

17(b) shows the transient current when the blocking time 

is shorter than the nominal value, and the output current 

flows in reverse until the error amp output reaches the 

nominal value. Fig. 17(c) shows the transient current when 

the blocking time is longer than the nominal value and the 

output current flows much more than the nominal load 

current. 

Fig. 18 is the current waveform during operation mode 

change with 0.5 sec stop duration. There is no significant 

current transient during operation mode changes and the 

current is varied according to the battery condition due to 

partially loaded conditions. 

 

 
 (a) Transient current without blocking time during startup 

 

 
 (b) Start up with an abnormal short blocking time 

 

 
(c) Start up with an abnormal long blocking time 

 

Fig. 17. Experimental results when the blocking time is not 

suitable. (1) PWM controller output for Q2 (2) error 

amp output Vc (3) actual switching signal (4) output 

current. 

 

 
 

Fig. 18.  Current waveform of a 14V terminal during operation 

mode change. 

 
 

Fig. 16.  Gate signal & inductor currents in interleaving mode 

(1) PWM signal for module #1 (2) PWM signal for 

module #2 (3) inductor current of module #1 (4) 

inductor current of module #2. 
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5. Conclusions 

 

This paper presents the transient current during startup 

of the synchronous buck/boost converter with voltage 

sources on both input and output terminals and proposes a 

cost effective solution to remove the transient state.  

This scheme can be easily implemented with simple 

additional circuits and a low cost microprocessor. As the 

microprocessor is only used to read the table and set the 

timer, large computational resources are not required for 

this method. Therefore, the program can be ported in the 

microprocessor to be used for other function such as CAN 

communication. A prototype with 700W of output power 

was designed and the effectiveness was verified through 

experimental results.  
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