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ABSTRACT 
  

A linear transfer function for the output current control of frequency-controlled resonant inverters is proposed in this 

paper. The circuit of resonant inverters can be transformed into two coupled circuits through the complex phasor transform. 

The circuits consist of cross-coupled power sources and passive elements. The circuits are used to induce the state space 

equation, which is transformed into the 4
th

 order cross-coupled transfer function. The 4
th

 order cross-coupled transfer 

function is modeled into a 2
nd

 order linear transfer function based on a behavior analysis of the pole and zero locations that 

facilitate a simple and intuitive linear transfer function. The feasibility and validity of the proposed linear transfer function 

were verified by simulation and experiment. 
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1. Introduction 

 

Resonant inverters are usually structured to control the 

power by regulating either the input voltage at the AC 

terminal or the operating frequency. From the controller's 

perspective, the simplest and most stable method would be 

changing the operating frequency 
[1]

. With the resonant 

inverter, the change of the operating frequency may control 

output current amplitude. However, it is not possible to 

acquire the transfer function because resonant inverters are 

modeled as a cross-coupled form 
[2][3][4]

. Therefore, it is a 

general practice to select a current controller through 

experiments. If the resonant circuit is modeled by means of a 

general phasor transform, L  and C  are modeled as the 

reactive element and the complex resistance element. It is 

possible to make an equivalent circuit by using the complex 

phasor transform with modulated frequency. This equivalent 

circuit is very useful to simulate the envelope response 
[5][6][7][8][9][10]

. It is difficult to obtain a transfer function directly 

by using a complex variable. Therefore, the bode diagram is 

obtained from the simulation result and the transfer function 

is determined indirectly 
[11][12][13]

. 
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In this paper, we propose the linear transfer function of 

the frequency-controlled series resonant inverter based on 

the complex phasor transform. Through the complex 

phasor transform, a state space equation is acquired. The 

behavior of each variable is studied by simulating the state 

space equation. The linear frequency-to-output current 

transfer function is modeled based on the key observations 

of the pole and zero locations that facilitate a simple and 

intuitive linear transfer function. The feasibility and 

validity of the proposed linear transfer function are 

verified by Matlab simulations and experiments of an 

actual RLC  series resonant circuit. 

 

2. Circuit Description and Operation 

 

Any analog modulated signal (AM, FM, or PM) can be 

described by the following general expression:  

 

)sin()()cos()()( 21 ttVttVtV ccs                  (1) 

 

Where )(1 tV  and )(2 tV  are the modulation signals and 

c  is the angular frequency of the carrier. (1) could also 

be written as  

 

)]exp())()(Re[()( 21 tjtjVtVtV cs                (2) 

 

or as 

 

)]exp())((Re[exp(arg)()( tjtVtVtV cs             (3) 

 

Where “arg(V(t))” is ))(/)((tan 12

1 tVtV . (3) implies 

that the modulated signal in the time domain )(tVs
 can be 

represented by a generalized phasor where both its 

magnitude and phase are time dependent. The expression 

of the complex phasor, )(tV


 and )(tI


 are 
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       (4) 

 

The magnitudes of )(tV


 and )(tI

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are equal to the modulation envelope of the original signal. 

The complex phasor representation can be used to drive the 

low frequency equivalent circuits that represent the envelope 

behavior of the system without involving the high frequency 

carrier. The general formula of the frequency-variable voltage 

source is assumed to be of this form. 

 

)]sin(cos[)( ttAtV m

m

cs 



                   (6) 

 

Where  and  
m  are the modulation index and 

modulation frequency respectively. The generalized 

voltage complex phasor is given in (7). 
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From (4) and (7), we can obtain real and imaginary 

parts of voltage as follows :  
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

  (8) 

 

Since the voltage source and current have been divided 

into the real and imaginary parts, the resonance current is 

also divided. The proposed methodology is demonstrated 

by considering the resonant circuit shown in Fig.1(a) 

driven by a modulated voltage. 

In order to define the transfer function, the series 

resonant inverter is represented by the envelope equivalent 

circuit shown in Fig.1(b)
[7]

. The inductor, capacitor, and 

Vs(t)
L R

C
I(t)

L R

C

Vc

V1 - jV2

I1 + jI2

c Lj

j cC

1

 
(a) Series resonant circuit.     (b) Small signal phasor model. 

 

Fig. 1.  A resonant circuit and the equivalent circuit model. 
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Fig. 2.  An envelope equivalent circuit. 
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resistance are equivalently modeled by the phasor 

transform. Therefore, the cross-coupled equivalent circuit 

that considers the input elements )(1 tV  and )(2 tV , voltage 

sources LI c2  and LI c1 , current sources CV cc 2  

and CV cc 1  as well as R  L  C  elements may be 

defined as in Fig.2. 

The state space equation may be induced from the 

cross-coupled equivalent circuits as shown in Fig. 2 and 

represented in the following (9). 
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The output current equation is defined in the following (10) 
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where the state variable 1x is defined as 
1I , 2x  as 

1cV , 

3x  as 
2I  and 4x  as 

2cV . 

 

3. Linear Transfer Function Induction 

 

(9) and (10) can be converted to the transfer function. 

)(1 sI  and )(2 sI  could be written as (11) and (12). (11) and 

(12) can be expressed as the following equations (13) and 

(14) in order to observe the variation of the poles and zeros. 
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Fig. 3.  Zeros and poles of the cross-coupled transfer function. 



570                       Journal of Power Electronics, Vol. 9, No. 4, July 2009 

 

 

 

Input components of )(1 sI  and )(2 sI  are )(1 sV  and 

)(2 sV . In order to observe the response characteristics of 

the )(1 sI  and )(2 sI , the poles and zeros of 

)(1 sF , )(2 sF , )(3 sF , and )(4 sF  are plotted in the S domain 

as the below. 

The real parts of all the poles have the same value and 

the imaginary parts increase as the operating frequency 

increases as shown in the Fig.3. The poles are related to 

the response and stability of the system. When the poles 

have the same real value, the dominant poles are 

determined by the poles with the lower natural frequency. 

Response can be mainly determined by dominant poles, 

)(2 sF  and )(4 sF . 

Generally the resonant inverters have high Q (quality 

factor) value for high efficiency and controllability. And 

the operation range of resonant inverters is between the 

resonant frequency and upper half-power frequency. 

These conditions can be expressed as following. 

 

10 
R

L
Q

                                 (15) 

 

)
2

1
1(1

0 Q

C 


                      (16) 

 

Under the conditions (15) and (16), the coefficient A , 

C , E  and F  is satisfied with 22 /8 LRoc  . 

Therefore (13) and (14) can be simplified as following. 
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Considering the operating conditions of resonant 

inverters, (15) and (16), the coefficients of L2/1  and 

24/ LR o have a relationship of 24/2/1 LRL o . (17) and 

(18) can be simplified again as below.  
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According to (19) and (20), )(1 sI  and )(2 sI  are 

affected by the input of )(1 sV  and )(2 sV , respectively. 

From (19) and (20), )(1 sM  and )(2 sM  can be expressed 

as 2
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respectively. The poles of )(1 sM  and )(2 sM  are 

obtained as below. 
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When 
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4,3  . Therefore, the real 

part of each pole is the same but, the imaginary part is 

different. The pole with the lower imaginary part 

dominantly affects the response. Accordingly, the 

dominant poles are 3s  and 4s . Under the condition (15) 

and (16), 
oc  /  can be assumed as 1/ oc  . Thus, 

(19) and (20) can be simplified by the above conditions.  

 

 

)(

2

2

2

1
)( 1

2

21 sV

L

R
s

L

R
s

L
sI

oc 







































        (23) 



Modeling of a Transfer Function for Frequency Controlled Resonant Inverters             571                  

 

 

 

 

)(

2

2

2

1
)( 2

2

22 sV

L

R
s

L

R
s

L
sI

oc 







































      (24) 

 

The frequency-variable 
m  builds the real part of 

voltage )(1 sV  and the imaginary part of voltage )(2 sV  as 

(8). The even function of )(1 sV  has AC and DC 

components at limited value of 
m / . And the odd 

function of )(2 sV  has only an AC component. So )(1 sI  

induced from )(1 sV  becomes the dominant part. And 

)(2 sI  induced from )(2 sV  can be negligible since the 

high frequency AC component is filtered by the system 

poles. So we can assume )()( 1 sIsI  . 

The steady state current is defined as DCI  and can be 

expressed as following. 
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The magnitude of the DCI  is determined by the 

typical RLC  resonance curve shown in Fig. 4. 

 

The envelope of the output current as a function of the 

operating frequency is defined as a constant oK  and 

expressed as below.  
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IDC


K0  =   tan 

 
 

Fig. 4. RLC  series resonant curve. 

Therefore, oK can be obtained as following. 
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In order to obtain the steady state gain, let 0s  in 

(23) and the following equation can be derived.  
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The coefficient, satisfying the condition that the DC 

gain of transfer function is in unity, should be the inverse 

of )0(I . The product of the magnitude, 
0K  and the 

inverse of )0(I  can be expressed as new coefficient 
1K , 

shown in following (29).  
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The proposed linear transfer function of the 

frequency-controlled resonant inverter is defined in Fig. 5. 

 

4. Simulation and Experimental Results 

 

Matlab simulation of the proposed transfer function is 

performed. The simulation parameters are shown in Table 

1. 

 

c +
+

I(s)

( s + R/2L )  +  ( c - 0 )
2 2

 s + R/2L

IDC

 

Fig. 5.  The block diagram of the proposed inear transfer 

function. 
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Table 1.  Simulation parameters.  

Parameter Value 

Input voltage : Vs 47[V] 

Load : RL 10[Ω] 

Inductor : L 0.72[mH] 

Capacitor : C 0.09[uF] 

Resonant frequency : fo 19.8[kHz] 

 

The step responses around the resonant frequency were 

simulated under the condition of frequency change from 

20.2kHz to 20kHz and 20.7kHz to 20.5kHz. Furthermore, 

the step response in the vicinity of the upper half-power 

frequency was also simulated by the application of 

frequency change from 21.2kHz to 21kHz. The simulation 

results are shown in Fig. 6. 

 

 

(a) Step response(20.2kHz20kHz) 

(0.5A/div, 0.2ms/div) 

 

(b) Step response(20.7kHz20.5kHz) 

(0.5A/div,0.2ms/div) 

 

(c) Step response(21.2kHz21kHz) 

(0.5A/div, 0.2ms/div). 

 

Fig. 6.  Simulation results. 

Experimental setup was built and the controller was 

implemented using dsPIC30f2020 from Microchip in 

order to verify the feasibility of the proposed transfer 

function. The experiment was performed under the same 

condition as that of the Matlab simulation. The 

experimental configuration is shown in Fig. 7. 

The step response, obtained from the experiment 

performed under the condition of frequency change from 

20.2kHz to 20kHz, was illustrated in Fig. 8. The step 

responses determined from both the experiment and 

simulation were compared in Fig. 8. The step responses 

determined from both the experiment and simulation 

performed under the condition of frequency change from 

20.7kHz to 20.5kHz were shown in Fig. 9. 

The measured and simulated step responses monitored 

around the resonant frequency perfectly coincide. 

 

 
 

Fig. 7.  The configuration of the experimental setup. 

 

 
 

Fig. 8.  Experimental waveforms: step response 

(20.2kHz 20kHz) (0.5A/div, 0.2ms/div). 

 

 
 

 

Fig. 9.  Experimental waveforms: step response 

(20.7kHz 20.5kHz) (0.5A/div, 0.2ms/div). 
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The step response in the vicinity of the upper 

half-power frequency was also experimented by the 

application of frequency change from 21.2kHz to 21kHz. 

The response is shown in Fig. 10. The bode plots of the 

transfer function and experimental result at the operating 

point 20.6kHz are shown in Fig.11. 

The difference between the simulated and experimental 

responses is observed in the transient region as the 

operating frequency gets close to the upper half-power 

frequency. The difference between the experiment and 

simulation in the step response is due to the linear transfer 

function model. However, the rising time and settling time 

of the experiment and simulation agree with each other. 

Therefore, the frequency controlled resonant inverter can 

be modeled as the proposed 2
nd

 order linear transfer 

function. The precise agreement between the simulation 

and experimental results shows that the proposed linear 

transfer function can predict the envelope dynamics 

accurately. 

 

5. Conclusions 

 

This paper presents a novel 2
nd

 order linear transfer 

function of frequency-controlled resonant inverters based 

on behavior analysis of the pole locations that facilitate a 

simple and intuitive linear transfer function. The 

modulation input voltage and the circuit have been 

equivalently modeled into the cross-coupled equivalent 

circuits using the complex phasor transform. The 

cross-coupled state space equation has been established 

from the equivalent circuits. It has been simplified into the 

linear transfer function which was driven by observing the 

pole diagrams and the behavior of the circuit.  

The feasibility and validity of the proposed method 

were verified by means of computer simulations and 

experimental results. The simulation results and 

experiments show that the proposed linear transfer 

function can predict the current envelope dynamics 

accurately at between the resonant frequency and upper 

half-power frequency. 

 

References 

 

[1] E.X. Yang, F.C. Lee, and M.M. Jovanovic, “Small-signal 

modeling of series and parallel resonant converters,” in 

Proc. of  IEEE APEC'92, pp. 785-792, 1992. 

[2] R.L. Steigerwald, “High-frequency resonant transistor 

DC-DC Converters,” IEEE Trans. Ind. Electron., Vol. 

IE-31, pp. 182-190, 1984. 

[3] B.C. Pollard and R.M. Nelms, “Using the series parallel 

resonant converter in capacitor charging applications,” in 

Proc. of IEEE APEC’92, pp. 731-737, 1992. 

[4]  E. Deng and S. Cuk, “Negative incremental impedance and 

stability of fluorescent lamp,” in Proc. of IEEE APEC'97, 

pp. 1050-1056, 1997.  

[5]  S. Ben-Yaakov, S. Glozman, and R. Rabinovici, “Envelope 

Simulation by SPICE-Compatible Models of Linear Electric 

Circuits Driven by Modulated Signals,” IEEE Trans. Indus. 

Appli., Vol. 37 No.2, pp.527-533, 2001.  

[6]  S. Ben-Yaakov, M. Shvartsas, and S. Glozman, “Statics and 

dynamics of fluorescent lamps operating at high frequency: 

Modeling and simulation,” in Proc. of IEEE APEC’99, pp. 

467-472, 1999. 

[7]  C. T. Rim and G. H. Cho, “Phasor transformation and its 

application to the DC/AC analyzes of frequency 

phase-controlled series resonant converter(SCR),” IEEE 

 
 

Fig. 10.  Experimental waveforms: step response 

(21.2kHz 21kHz) (0.5A/div, 0.2ms/div). 

 

  

Fig. 11.   Bode plots of the transfer function and experimental 

result at the operating point 20.6kHz. 



574                       Journal of Power Electronics, Vol. 9, No. 4, July 2009 

 

 

 

Trans. Power Electron., Vol. 5, pp. 201-211, 1990. 

[8] A. F. Witulski and R. W. Erickson, “Small signal ac 

equivalent circuit modeling of the series resonant 

converter,” in Proc. of IEEE PESC’87, pp. 693-704, 1987. 

[9] V. Vorperian, “Approximate small-signal analysis of the 

series and the parallel resonant converters,” IEEE Trans, On 

Power Electronics, Vol. 4, pp. 15-24, 1989. 

[10] I.J. Pitel, “Phase-modulated resonant power conversion 

techniques for high-frequency link inverters,” IEEE Trans. 

Ind. Appl., Vol. IA-22, No. 6, pp. 1044-1051, 1986. 

[11] Y. Yin, R. Zane, R. Erickson, and J. Glaser, “Dynamic 

analysis of frequency-controlled electronic ballasts,” in 

Conf. Rec. IEEE Ind. Appl. 37th IAS annual meeting, pp. 

685-691, 2002.  

[12] Zhongming Ye, Praveen K.jain and Paresh C. Sen, 

“Modeling of High Frequency Resonant Inverter System in 

Phasor Domain for Fast Simulation and Control Design,”  

in Proc. of IEEE PESC'08, pp. 2090-2096, 2008. 

[13] E. Deng, “Negative Incremental Impedance of Fluorescent 

Lamp,” Ph.D. Thesis, California Institute of Technology, 

Pasadena, 1995. 

 

 

Mu-Ho Han was born in Daegu, Korea in 

1969. He received the B.S. and M.S. degrees 

in Electronics Engineering from Kyungpook 

National University, Korea, in 1992 and 

1994, respectively. Since 1994, he has been 

with Research Institute of Science and 

Technology, where he is currently a senior researcher. His 

research interests are in the areas of modeling and control of 

induction heating and power electronics. 

 

 

Chi-Hwan Lee was born in Daegu, Korea, 

in 1961. He received the B.S. degree from 

Yeoungnam University in 1984 and M.S. 

and Ph.D degrees in Electronics 

Engineering from Kyungpook National 

University, Korea, in 1988 and 1994, 

respectively. Since 1998, he has been with 

the Department of Electronics Engineering, Uiduk University, 

where he is currently an associate professor. His research 

interests are in the areas of control of resonant inverters and 

power electronics.  

 

 

 

Woo-Hyen Kwon was born in Korea on 

June 22, 1953. He received the M.S. and 

Ph.D. degrees from the Korea Advanced 

Institute of Science and Technology(KAIST). 

Seoul, Korea, in 1979 and 1993, respectively. 

He has been with the School of Electrical 

Engineering and Computer Science in the 

Kyungpook National University since 1979, where he is now a 

Professor. His research interests are in the area of static power 

converters and drives, and computer applied control systems.  


