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Abstract

This paper proposes a new harmonic elimination PWM (HEPWM) scheme for voltage source inverters (VSI) based on the
curve fittings of certain polynomials functions. The resulting equations to calculate the switching angle of the HEPWM require
only the addition and multiplication processes; therefore any number of harmonics to be eliminated and the fundamental amplitude
of the pole switching waveform (NP1) can be controlled on-line. An extensive angle error analysis is carried out to determine the
accuracy of the algorithm in comparison to the exact solution. To verify the workability of the technique, an experimental single
phase VSI is constructed. The algorithm is implemented on a VSI using a 16-bit microprocessor. The results obtained from the
test rig are compared to the theoretical prediction and the results of the MATLAB simulations.
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I. INTRODUCTION

The advantages of harmonic elimination pulse width mod-
ulation (HEPWM) over the conventional sinusoidal PWM
(SPWM) for Voltage Source Inverters (VSI) are widely rec-
ognized. These include [1], [2]:

o For a given VSI switching frequency, the incidence of
the first nonzero harmonic is almost double compared to
the SPWM scheme, resulting in a superior pole switching
waveform harmonic spectrum.

e About a 50% reduction in the inverter switching fre-
quency is achieved which contributes to a reduction in
the switching losses of the VSIL

o A higher pole switching waveform fundamental ampli-
tude is attainable before the minimum pulse-width limit
is reached

o Over-modulation is possible, contributing to higher uti-
lization of the power conversion process.

Considering these issues, HEPWM can be a useful alterna-
tive to the more popular SPWM, especially for the high power
inverters used in the mains and drives applications. Under
these circumstances, switching losses are a major concern and
HEPWM provides an ideal solution, especially for inverters
that are switched in the low kHz range. However, despite
its benefits, the widespread use of HEPWM is somewhat
hindered because the equations to calculate the switching
angles are non-linear and transcendental; restricting it to off-
line computation using extensive numerical techniques such
as the Newton-Raphson method [3]. The problem with this
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method is that if the initial values are not chosen correctly, it
may result in large iteration cycles which can take many hours
to complete. In some cases the solution can not converge at
all.

Assuming that all the HEPWM angles are successfully
calculated using an off-line computer, they are then stored
in memory and called upon whenever the PWM waveform
is to be constructed. This approach is popularly known as
Programmed HEPWM and it is well documented by [4].
Although simple, it requires a large amount of memory to
store all the calculated angles. This is particularly troublesome
when frequent changes in the modulation parameters, such
as the amplitude or frequency ratios, are needed. For motor
drive applications where the operating frequency varies over a
wide range, interpolations in-between points may be required
for greater accuracy, thus adding complexity to the algorithm.
However for an inverter that has a fixed frequency output, e.g.
for utility applications, the use of programmed HEPWM is
acceptable as recently demonstrated by [5], [6].

Research has been carried out to derive HEPWM equations
for on-line calculation. The main advantage of the on-line ap-
proach is the absence of memory to store the switching angles.
Furthermore all the angles can be calculated as demanded by
the modulation parameters. It appears that all of the schemes in
this category require some sort of approximation of the “exact”
HEPWM switching angles to arrive at simpler equations
suitable for real time computation. One of the early attempts
for such work was carried out by [7]. He derived a set of
non-transcendental equations for a near-optimal solution using
sine-wave approximations. Using this scheme, the HEPWM
switching angle equations are reduced to a non-transcendental
form that permits on-line computation. Another HEPWM
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scheme, based on regular sampled PWM was suggested by
[8]. The same author also carried out similar work for a
space vector modulation scheme [9]. A HEPWM scheme using
bipolar switching was proposed in [10]. Other, more complex,
methods were proposed by Liang using the Walsh functions
[11] and by Kato using a homotopy-based computation [12].
Chiasson later proposed a conversion of the HEPWM equation
to a set of polynomials and by applying the resultant theory
derived a complete solution for the switching angles [13]. This
technique has been applied to multilevel inverter structures
[14], and further extended to multilevel inverters with non-
equal DC sources [15]. More recently a HEPWM scheme for
multilevel inverter using genetic algorithm was proposed [16].

On-line HEPWM schemes are normally implemented using
high performance digital signal processors. This is inevitable
due to the significant computing power required for the
switching angles calculations. However, it would be desirable
if a general microprocessor could be used with the condition
that a reasonably accurate output waveform could be achieved.
However, to use such a microprocessor, the HEPWM algo-
rithm must be efficient enough to ensure sufficient time to
calculate the pulse width, thus avoiding the need for memory
storage. For this reason, this paper proposes a simple on-line
HEPWM scheme that can be suitably implemented using a
fixed point microprocessor. It is based on the polynomial curve
fitting of the trajectories of the exact HEPWM angles. It will
be shown that the proposed scheme allows for efficient real-
time computations with acceptable error margins. The viability
of this scheme is validated using MATLAB simulations and
hardware results.

II. DERIVATION OF ON-LINE HEPWM EQUATIONS

A generalized bipolar PWM waveform with M number of
chops per half-cycle is depicted in Fig. 1. It is assumed that this
waveform is periodic and has half-wave symmetry with per
unit amplitude. Such a waveform is the representation for the
pole switching waveform of a three phase inverter, i.e. voltage
from one of the phases to the virtual ground. For the line
to line voltage of the inverter output, the triplen (multiple of
three) harmonics are cancelled. In Fig. 1, a basic square wave
is chopped and a relationship between the number of chops
and the number of possible harmonics that can be eliminated
is derived. The odd switching angles a1, as, a5 . .. etc. define
the falling edge transitions and the even switching angles o,
g, ag ... etc. define the rising edge transitions. Since the
waveform is quarter-wave symmetric, only the odd harmonics
exist (i.e. B,, = 0) and they are given by the following Fourier
Series representation:

m

4
A, =—|1+2 Z(—l)k cos nay, | odd harmonics only (1)
nm —

Equation (1) has m variables (a7 to «,,) and a set of
solutions is obtainable by equating any m — 1 harmonics to
zero and assigning a value to the fundamental. Thus both
the harmonic incidents and the fundamental components can
be independently controlled. These equations are nonlinear as
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Fig. 1. Generalized quarter-wave symmetric HEPWM.

well as transcendental. A solution of these equations can be
obtained using the Newton-Raphson iteration method:

ay aq
Q2 Qa2
=1 . (2)
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The trajectories for the switching angles («ay...q,,) ver-
sus the per-unit amplitude of the fundamental component of
the pole switching waveform (NP1) for an odd number of
switching per quarter cycle can be obtained by MATLAB
computation. Figs. 2(a) and (b) show examples of trajectories
calculated for m=3 and 13, respectively. From Figs. 2(a) and
(b) the highest intersection point for the trajectories with the
y-axis is 60°. Furthermore, the switching angle «,, is equal
to 60° when NP1 equals zero for all values of m. From Fig.
3 the angular separation of the trajectories at the y-axis can
be defined as:

2 x 60°

Angular separation =
g p mrl’

m is odd 3)

It can also be seen from Fig. 3 that for NP1 ranges from 0
to 0.8, the trajectories approximate a straight line. This region
is denoted as the linear slope region. Hence a straight-line
approximation of the trajectories could be used. However, for
a NP1 that is greater than 0.8, the trajectories are no longer
straight lines. This is defined as the non-linear slope region.
Nevertheless, the straight-line approximation could still be
used with an error correction scheme for the region of NP1 that
is greater than 0.8. Observing Figs. 2(a)-(d), the trajectories of
the odd and the even switching angles are parallel lines over
most of the range of NP1. Also the slopes of the trajectories
reduce with increasing values of m. Therefore, to obtain a
relationship between the slopes of the trajectories for different
values of m, the slopes should first be normalized towards
the angular separation of the trajectories. At NP1 = 0.8, the
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Fig. 2. Trajectories of switching angles for an odd number of switchings
per quarter cycle. (a) m=3, (b)=13.
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normalized slope, Ay, can be computed as:
60°(k +1)
(m+1)
2 x 60° ’
m+1
60° (k)
(m+1)
2 x 60°
m+1
Equations (4) and (5) are used to plot out Ay versus k
on separate graphs for odd and even values of k£ as shown
in Figs. 4 and 5, respectively. Fig. 4 shows the variation of
A}, for odd and even values of k, for several values of m.
The graphs suggest that for odd values of k, the function Ag

— oy

Ak = for k odd 4)

Qp —

Ak = ®)

,  for k even
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Fig. 4. Ay vs k for several values of m (for odd k).
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Fig. 5. Ay vs k for several values of m (for even k).

appears to be a polynomial (quadratic curves) with a nearly
constant amplitude. Therefore, the obvious solution would be
to apply a polynomial fit to the curves in Fig. 4. This leads to
the equation of Ay, for the odd values of k:

a2,

The generalized equation for the odd switching angles, for
any values of m and NP1, is given by:
60°(k + 1) 2x60°  Ag x NP1
o = —
T m+ 1 0.8

2
— > +0.4025, k odd (6)

} . kodd (7)

Fig. 5 shows the variation of Ay for the even switching
angles. Extrapolation shows that all the curves pass through
the origin. For increasing values of m, the values of A appear
to be asymptotic to a line drawn parallel to the x-axis and
intersecting the y-axis at 0.325. Taking this into account, the
expression of Ay for the even values of & will be in the form
of:

0.082
(m— 1!

The generalized algorithm for the even switching angles for
any value of m and NP1, is then given by:

_60° x kK 2 x60° A x NP1
R m+1 0.8

Ay =— k —2.482(m — 1)]* + 0.505 — is (®)
m

©))

, for even k




46 Journal of Power Electronics, Vol. 10, No. 1, January 2010

Absolut eror of swiching angls (degrees)

= "W

Absolute ermor of switching angles (degrees)

Absolute error of swilching angles (degrees)

(C))

Fig. 6. Variation of switching angle errors for (a) m=3, (b) m=7, (c)
m=11, (d) m=13.

Equations (6), (7), (8) and (9) can now be used to calculate
the approximate switching angles for any values of m and
NP1. These simple equations can then be implemented easily
on any microprocessor which has the multiplication command
in its instruction set. The simplicity of the algorithm allows for
very fast and efficient generation of the HEPWM waveform.

III. ANALYSIS OF THE ACCURACY OF THE ALGORITHM
A. Without error correction

The accuracy of the derived equations is evaluated by
calculating the difference between the approximate switching
angles from the proposed method and the exact switching
angles from the trajectories. The absolute difference is termed
the angle error. The plots for the error angles versus NP1 for
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Variation of error incorporating error correction for NP1 > 0.8. (a)
m=3, (b) m=7, (c) m=11, (d) m=13.

Fig. 7.

different values of m are shown in Fig 6(a)-(d). For a NP1
< 0.8, the maximum angle error for every value of m is very
small. In addition the errors decrease for increasing values of
m. This implies that the accuracy of the elimination technique
improves with higher value of m. However for values of NP1
that are greater than 0.8, the errors increase drastically. The
reason for this increase can be attributed to the departure of
the trajectories from being straight lines for values of NP1
above 0.8, as can be seen in Figs 2(a) and (b). The maximum
angle errors for odd and even switching angles for 0 < NP1
< 0.8 and 0.8 < NP1 < 1.15 are tabulated in Tables 1 and 2,
respectively.



An On-Line Harmonic Elimination Pulse Width Modulation Scheme for - - - 47

TABLE I
MAXIMUM ANGLE ERRORS FOR 0 < NP1 < 0.8

Max error even k (deg.)

m | Max error odd k (deg.)
3 0.6795
5 0.3242
7 0.2759
9 0.2136
11 0.1784
13 0.1533

0.8967
0.4535
0.3469
0.2232
0.1582
0.1154

TABLE 11
MAXIMUM ANGLE ERRORS FOR 0.8 < NP1 < 1.15

m | Max error odd k (deg.) Max error even k (deg.)
3 8.3785 8.6192
5 4.2015 4.3793
7 2.6184 2.8355
9 2.2420 2.1003
11 1.9446 1.9688
13 1.4446 1.4038
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B. With Error Correction

To account for the relatively large errors for a NP1 > 0.8,
an error correction factor is incorporated. For odd values of k

such that:

Qk(corrected) =

M[Z.00ms| A Line & —50.8 V|

@+ [0.00000 s

Inverter output waveform an NP1=0.7, fundamental

m =5 (b) m-=9.
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Fig. 9. Spectra of inverter output at NP1 = 0.7, fundamental frequency =
50Hz (a) m =5 (b) m=9. Scale: Amplitude (y-axis): 10V/div. Frequency
(z-axis): 250Hz/div. All triplens become zero when line to line voltage of a
three phase is considered.

this is done with:

(NP1 —0.8)2 52 &k > 13
ADp = ~—ro—— ——— | ——-0.5 —
k 009 | m|m+5 i
k odd (11)
For even switching angles such that:
Ok (corrected) — Ok — ADj, (12)
this is done with:
(NP1 — 0.8)2 52 k& 13
ADy = ~———— —— |———-0.5 —1,
k 009 | m|m+3 *
k even (13)

Figs. 7(a)-(f) show the absolute errors between the exact
switching angles incorporating the correction factors. Compar-
ing these to Figs. 6(a)-(d), respectively, the maximum errors
have been reduced by a factor of 3-6.

IV. HARDWARE AND MATLAB VERIFICATION

To assess the effectiveness of the HEPWM algorithm, a
200Wsingle phase H-bridge inverter is designed and con-
structed. The inverter is fed a 50V DC input voltage. The
HEPWM waveform generation was implemented using a low-
cost, fixed-point 16-bit Siemens 80C167 microcontroller. For
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Fig. 10. Spectra of inverter output at NP1 = 0.7, fundamental frequency =
50Hz (a) m = 7 (b) m=13. Scale: Amplitude (y-axis): 10V/div. Frequency
(x-axis): 250Hz/div.

comparison, a MATLAB simulation of the same inverter
system was carried out. If a three phase system is considered,
its line to line harmonic incidence is the same as a single
phase system, less the triplens. Therefore the triplens that
exist in the spectra shown here are automatically cancelled
when the line-to-line voltage is considered. Furthermore, it
has to be noted that the inaccuracy due to the step size of
the microcontroller sampling is not taken into account. Since
the resolution of the PWM module in the microcontroller
is 400ns, deviations from theoretical results are expected. In
addition, the effects of the 1 us dead time introduced to each
switching pulse are not considered. Clearly both factors affect
the accuracy significantly, particularly at high values of m
where the HEPWM pulses are nearing their minimum widths.

A. Cases for NP1 < 0.8

Figs. 8(a) and (b) show the output voltage waveform of
the inverter at NP1=0.7 for m=5 and m=9, respectively. For
m=3, the expected eliminated harmonics (besides the triplens)
are the 5th, 7th, 11th and 13th, while for m=9 the additional
eliminated harmonics are the 17th, 19th, 23rd and 27th. Figs.
9(a) and (b) show the spectra plots of Figs. 8(a) and (b)
computed using the FFT function of an oscilloscope. With
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Comparison of eliminated harmonics for inverter hardware and
MATLAB simulation. (a) m=5, (b) m=9.

Fig. 12.

a frequency axis scaled at 250Hz/div, it can be observed that
all the specified harmonics are successful eliminated. For a
three phase systems, since all triplens are absent, the first un-
eliminated harmonic is located at (3m+2). Thus if m = 5,
the first harmonic exists at the 17th or at 850Hz for a 50Hz
fundamental frequency. For m=9, the first harmonic appears at
the 31st. Figs. 10(a) and (b) show the spectral plots for other
cases, e.g. m=7 and 13, respectively.

Since the amplitudes of the eliminated harmonics are so
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Fig. 13. Comparison of result from inverter hardware and MATLAB

simulation for different valuse of m. (a) 5th harmonic (b) 7th harmonic.

small (compared to the fundamental), their presence on the
spectral plots is not clearly visible. For clarity, the amplitudes
of the first four eliminated harmonics for different values of
m are plotted in Fig. 11. As can be seen for NP1=0.7, all
the eliminated harmonic magnitudes are below 1% of the
fundamental component. Furthermore, its accuracy improves
as m increases. This is consistent with the trend for the error
angles observed in Figs. 6(a)-(d).

Figs. 12(a) and (b) compare the measured (from the hard-
ware) and the simulated (MATLAB) eliminated harmonics for
m=5 and m=9, respectively. Generally there is good agreement
between the two approaches although for most cases, the
performance of the measured harmonics is slightly inferior
to the latter. The difference is due to the microcontroller
resolution and the dead time of the practical inverter. To
investigate further, measurements are made at higher values of
m. For the 5th and 7th harmonics, as depicted in Figs. 13(a)
and (b) respectively, as m > 17 the accuracy deteriorates. This
contradicts the trend observed for the error angles. However,
the simulation plots on the same Figs appear to be consistent.
This observation confirms the fact that for large value of m,
the microprocessor resolution and the dead effects become
increasingly important. In such cases they can not be ignored.

B. Cases for NP1 > 0.8

For NP1 > 0.8, the eliminated harmonics are expected to
reappear due to the non-linearity portion of the trajectory
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Fig. 14. Spectra with m=7, NP1=1.1 (a) without correction factor (b) with
correction factor. Scale: Amplitude (y-axis): 10V/div. Frequency (x-axis):
250Hz/div.

curves. To overcome this, a correction factor is incorporated
into the HEPWM switching angle as described by Eqns. (10)-
(12). Fig. 14 shows the spectra of the output voltage without
the correction factor for m=7 at NP1=1.1. Careful observation
reveals the eliminated harmonics reappear at the S5th, 7th,
9th, 11th, 13th and 17th and 19th. Fig. 14(b) shows the
resulting spectra after the correction factor is incorporated. As
can be seen, the magnitudes of the harmonics that reappear
have been reduced significantly. Figs. 15 and 16 show the
performance of the first four eliminated harmonics for values
of m up until 17. From these Figs. it can be seen that the
elimination performance has been improved between 4 to 6
times. Furthermore, the trend of improved accuracy as m gets
higher holds until m=17.

V. CONCLUSIONS

This paper has proposed an algorithm to calculate the
switching angles on-line using a harmonic elimination PWM
scheme. The algorithm is an approximation of the trajectories
of the exact HEPWM switching angles. It results in general-
ized polynomial equations which require only the addition and
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multiplication processes, allowing its implementation using a
low cost microprocessor. Changes to the number of harmonics
to be eliminated and the fundamental amplitude of the pole
switching waveform (NP1) can be calculated independently.
This feature is particularly well suited for motor drive ap-
plications. An extensive angle error analysis to determine
the accuracy of the algorithm is carried out. The maximum
difference between the exact angle and the one calculated
using this scheme is found to be less than 1° for 0<NP1<0.8.
For higher value of NP1, the error is about 8°. However, by
incorporating an error correction scheme, the error is reduced
by between 3 and 6 times. To verify the workability of the
technique, an experimental single phase test VSI was con-
structed. The algorithm was implemented using a fixed point,
16-bit microprocessor. For comparison, a MATLAB simulation
of the same inverter system was carried out. In general, the
results obtained from the test rig were in close agreement
with the theoretical predictions and simulations. However, it
was also observed that for higher switching frequencies (m
>17), the effects of dead time and microprocessor resolution
become prominent and should not be overlooked. Further work
involving Field Programmable Gate Arrays (FPGA) may be
beneficial to extend the workability of the proposed algorithm
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to higher switching frequencies.
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