
Modeling of Belt-Pulley and Flexible Coupling Effects on · · · 319

JPE 11-3-10

Modeling of Belt-Pulley and Flexible Coupling
Effects on Submarine Driven System Electrical

Motors
Mehrdad Jafarboland† and Mahmoud Zadehbagheri∗

† Dept. of Electrical Eng., Malek-ashtar University of Technology, Isfahan, Iran
∗Dept. of Electrical Eng., Islamic azad University, Yasooj branch, Yasooj, Iran

Abstract

Nowadays numerous research projects are being conducted in the field of electric motors. Non-modeling of flexible connections
such as couplings and the belt-pulley do not show some real behaviors. With an increase in the number of connections and drive
factors, these Non-modeled modes become more important. The coupling of two electric motors, instead of one motor, in submarine
propeller force is an obvious example which shows that Non-modeled vibration modes caused by flexible connections can disturb
controller operation and make undesirable vibrations in the submarine body. In this paper a dynamic model of flexible connections
and a completed dynamic model of two different coupled electric models is presented. A robust controller for the completed model
is also amended so that the two controlling targets of a desired speed adjustment and an appropriate load division between the
two motors with sufficient accuracy are achieved.
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I. INTRODUCTION

Batteries supply the energy needs of most submarines in
subsurface motion. In these submarines, DC motors are used
as drive motors. In [1] and [2], instead of one motor, two DC
electric motors with different nominal powers and mechanical
couplings of their shafts are used to increase the low speed
of submarine drive system efficiency. The sum of the nominal
power of these two motors is equal to the nominal power
of the primary single motor. In [3] and [4] a controlling
system is presented which can control two different motors
by mechanical couplings so as to make the motors speed
adjustable for a desired speed and to divide the load power for
each desirable load power in proportion to the nominal current
existing between the two motors. In [5]–[7] the prior con-
troller was so optimized so that load power might be divided
optimally between two different coupled motors. In previous
literature the speed of two motors corresponded to the steady-
state proportion of a belt-pulley and, finally, it corresponded to
the gearbox/propeller velocity steady-state ratio. Thus, in the
variables of the system mode there is only one independent
speed and the two other speeds are dependent. However, as
a result of existing flexible factors e.g. coupling and a belt-
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pulley, the speed of its sides cannot be interrelated by a belt-
pulley steady-state velocity. Consequently, it corresponded
to the gearbox/propeller velocity constant ratio. In precise
modeling these three speeds are independent of each other
and the system will rise two degrees. In this way, behaviors
are likely to arise which have not been simulated before. In the
present study, flexible coupling and a belt-pulley are modeled
precisely and designed for a higher rating controller system to
meet previous objectives and, also, the influences of this new
modeling is examined. This paper deals with the modeling of
flexible couplings and a belt-pulley and their effects on system
behavior.

II. COUPLING SYSTEM OF TWO SUBMARINE DRIVE
ELECTRIC MOTORS

A dynamic model of two different independent drive DC
motors with their shafts coupled by a gearbox, as shown in
Fig. 1, together with a controller are derived from [1] and [5].

A. Dynamic Model of Coupled Motor

In Fig. 1, a large motor (ML) is coupled with a small motor
(MS).

Subscript L denotes the large motor parameters and sub-
script S denotes the small motor parameters, respectively. C
is the flexible coupling and G is the gearbox.

The equations of the dynamic behavior of these two dif-
ferent mechanical coupled motors are as indicated in the
following set of equations (1).
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Fig. 1. Schematic of two mechanical coupled motors.
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Here, VaL & VaS are the armatures voltages, iaL & iaS are the
armatures currents of the motors, RaS & RaS are the resistances
and LaL & LaS are the inductances of the armatures. kLϕL
& kSϕS are the constants and excitation fluxes of the two
motors, Vf L & Vf S are the voltages, i f L & i f S are the excitation
currents, R f L & R f S are the resistances and L f L & L f S are the
inductance of the excitation coils. ωL & ωS are the angular
speeds and TeL & TeS are the electrical torques of the motors. β
is the equivalent coefficient of friction and J is the equivalent
moment of inertia of the system expressed by the relations
β = βL + k2

LβS +βG +βP/k2
G and J = JL + k2

LJS + JG + JP/k2
G.

βL and JL are the coefficient of friction and the moment of
inertia of the large motor, respectively. βS and JS are the
coefficient of friction and the moment of inertia of the small
motor, respectively. βG and JG are the coefficient of friction
and the moment of inertia of the gearbox, respectively. βP and
JP are the coefficient of friction and the moment of inertia of
the propeller, respectively. The shafts of the two motors are
connected to each other by a belt-pulley and to the propeller
by a gearbox. kG is the conversion factor of the gearbox and
kL is the conversion factor of the belt-pulley.

B. Block Diagram of the Controller System

When coupled, the nominal power of the load is higher than
that of the nominal power of a large motor. This power also
becomes higher as the propeller speed gets higher. Obtaining
higher speeds, which are generally far beyond the nominal
speed of motors, becomes possible through excitation voltage
control. Thus, the armatures voltage is constant and equal to
the nominal voltage. Here two separate controllers were used
to achieve two objectives. The first objectives is adjusting the
motors speed so that it is equal to a desired speed and the
second is adjusting the two motors’ power share appropriately.
Controller 2 (K2) is independent of controller 1 (K1) and, as
shown in Fig. 2, only adjusts the motors speeds by adjusting
the large motor excitation voltage in order to meet the desired
speed for a submarine propeller. The function of this controller
is to the slow dynamic of motors (mechanical specification)

Fig. 2. Slow dynamic of system and controller 2.

Fig. 3. Fast dynamic of system and controller 1.

[8], [9]. A slow dynamic model of two coupled motors along
with the distortion and uncertainty in motors parameters is
denoted by G2. The input of controller 1 is the speed error
which, according to (2) below, is equal to the difference
between the large motor speed and the desired speed. In Fig.
3, controller 1, which is assigned to the motors fast dynamics
(electrical specification), is dependent on the function of
controller 2, which acts on the basis of the error stated in
equation (3) and adjusts the small motor excitation voltage to
make the two motors armatures current ratio (iaS/iaL) reach a
steady-state value k = IaL(N)/IaS(N). A fast dynamic model of
two coupled motors at the steady-state speed of the working
point is denoted by G1. The N subtitle is the nominal value
of quantities.

eω = ωre f −ωL (2)

ei = (iaL− iaS× IaL(N)/IaS(N)). (3)

III. MODELING OF FLEXIBLE CONNECTIONS

Fig. 4 shows the laboratory system used for testing the
model. Here an eddy current brake system plays the role of
the load and is located in the middle. The right-hand shaft
of the eddy current brake system is connected with the large
motor by a flexible coupling and the left-hand shaft of the
eddy current brake is connected with the small motor by a
belt-pulley.

A. Modeling of Flexible Coupling

Flexible coupling is illustrated in Fig. 5. The rubber exist-
ing between the two involved metal parts has elasticity and
through vibration the location of the two shafts on both sides
of the coupling vibrate correspondingly. This resembles spring
motion. The friction between the rubber surface and the metal
along with the relevant losses are simulated by the coefficient
of the friction while the losses caused by rubber transformation
are added to the coupling setting [10], [11].

Fig. 6 shows the rubber stress based on the theory of Huber-
Mises-Hencky (HMH) and Fig. 7 shows the dynamic model
of flexible coupling behavior, respectively.

KC is the spring modulus for coupling and βC is the
coefficient of friction for coupling while J1 and J2 are the
moment of inertia corresponding to the first and second sides
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Fig. 4. Motors and load (eddy current brake) connection through belts- pully
and flexible couplings.

Fig. 5. Figure of flexible coupling.

of coupling. Tin is the input torque and Tout is the output torque.
θ1 and θ2 are the angles of shafts on the two sides of coupling.

Equations associated with the dynamic behavior of flexible
coupling are as follows:

Tin = J1 θ̈1 +KC(θ1−θ2)+βC(θ̇1− θ̇2)+ J2 θ̈2 +Tout . (4)

B. Modeling of a Belt-Pulley

In addition to the variations in the rotation speed ratio,
each belt-pulley losses energy at the points connected to the
pulleys due to friction and belt transformation. These losses
can be modeled by the coefficient of friction [12]. Also, at the
accelerating time the belt has elasticity and makes the rotation
angle of both sides vibrate correspondingly. This behavior is
the same as that of a spring and can be modeled as a spring.
This model is illustrated in Fig. 8.

Here, Tin is the input torque and Tout is the output torque. J1
and J2 are the moment of inertia corresponding to the first and
second sides of coupling. The pulleys are of the same material
so that the equation of the friction torque on the two sides is
TB2 = nBTB1. If the friction coefficient of the first pulley is βB,
the second coefficient will be n2

BβB. Similarly, if the spring
modulus of the first side is KB, the spring modulus of the
second side should be n2

BKB. nB is the belt-pulley ratio. θ1 &
θ2 are the pulleys angles and θ ′1 & θ ′2 are the motion angles
of the belt attached to the first and second pulleys.

Tin = J1 θ̈1 +KB(θ1−θ ′′1 )+βB(θ̇1− θ̇ ′′1 ) (5)

T1 +KB(θ ′1−θ1)+ JBelt1 θ̈ ′′1 +βB(θ̇ ′′1 − θ̇1) = 0 (6)

T2 = nB T1; θ ′′1 = nB θ ′′2 (7)

Fig. 6. Internal stress of coupling rubber.

Fig. 7. Equivalent circuit of flexible coupling with taking into account
elasticity, friction and moment of inertia.

T2 = JBelt2 θ̈ ′′2 +n2
B KB(θ ′′2 −θ2)+n2

B βB(θ̇ ′′2 − θ̇2) (8)

n2
B KB(θ2−θ ′′2 )+n2

B βB(θ̇2− θ̇ ′′2 )+ J2 θ̈2 +Tout = 0. (9)

Appropriate approximations may be used to decrease the
system ranking.
A. Since the mass and the moment of inertia of the belt on

the two pulleys are small in contrast to the moment of the
pulleys, the shafts and the load, JBelt1 and JBelt2 can be
neglected.

B. In the present study there is no need for the values of θ ′′1
and θ ′′2 , so we can make n2

BβB and n2
BKB transfer to the

first side, integrate the setting of the two springs and the
two coefficients of friction and use the virtual location of
θ ′1.

The settings of the two springs and the coefficients of
friction after transfer are all shown together in Fig. 9. After
the transfer, the spring modulus and the coefficient of friction
of both sides are the same. This figure illustrates the torques
of the two sides. The virtual locations are denoted by Tm, Tn
and Tx, respectively.

The associated equations are as (10) and (11). Substituting
equation (11) in equation (10) yields equation (12) the corre-
sponding circuit of which is shown in Fig. 10.

Tm = KB(θ1−θ ′′1 )+βB(θ̇1− θ̇ ′′1 )+Tx (10)

Tx = KB(θ ′′1 −θ ′1)+βB(θ̇ ′′1 − θ̇ ′1)+Tn (11)

Tm = KB(θ1−θ ′1)+βB(θ̇1− θ̇ ′1)+Tn. (12)
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Fig. 8. Equivalent circuit of belt- pulley with taking into account elasticity
and friction and moment of inertia.

Fig. 9. Approximate equivalent circuit of the impact of springs and the
coefficients of friction of two sides.

Substituting the approximate equivalent circuit from Fig. 10
gives the equivalent circuit of belt-pulleys. Here J1 & J2 are
the moments of inertia corresponding to the first and second
sides, respectively, each including a pulley on the same side
and a part of the belt. KB is the spring modulus of the belt
and βB is the coefficient of the friction of the belt and pulleys.
Friction exists on both sides and on both pulleys. However,
it can be transferred to one side. θ ′1 is the angle of the belt
attached to the first pulley.

Equations associated with the dynamic behavior of the belt-
pulleys are as follows:

Tin = J1 θ̈1 +KB(θ1−θ ′1)+βB(θ̇1− θ̇ ′1) (13)

T1 +KB(θ ′1−θ1)+βB(θ̇ ′1− θ̇1) = 0 (14)

T2 = nB T1; θ1 = nB θ2; ω1 = nB ω2 (15)

T2 = J2 θ̈2 +Tout . (16)

Here, ω1 and ω2 are the angular speeds of the pulleys. It
should be noted that the belt likely slides on the pulley. This
can be divided into the following two statuses. The first of
these is the balance status (steady state) during which the
motor is working at a steady state speed (most often). For
this status it is sufficient to add the belt and pulley ratio to
the sliding rate. The second status, which occurs at a variable
speed, does not happen uniformly and it usually depends on
the acceleration rate. Since the present study does not intend
to determine the precise location but to examine the controller
ability in spite of various distortions, the random function is
used for sliding in order to identify the controller ability better.
In cases aiming at location accuracy it will be necessary to
derive the equation of sliding by rotating acceleration or by
location sensors for location recognition.

IV. COUPLED MOTOR SYSTEM EQUATION CORRECTION
BY FLEXIBLE ELEMENTS

A perfect dynamic model for this system is depicted in Fig.
12. Firstly, the equations of this new structure are expressed.
Then, the obtained results are added to the previous program.

Fig. 10. Approximate equivalent circuit of the impact of springs and the
coefficients of friction of two sides.

Fig. 11. Equivalent circuit of belt and pulley with taking into account elasticity
and friction and moment of inertia.

Here, nB = kL and nG = kG and JPG are the moments of
inertia for the propeller and gearbox. Using the relations for
a belt-pulley and the coupling stated in prior sections, by
transforming the signals in the Laplace domain, they can be
written as:
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(17)

TeS = ks φs iaS (18)

TeL = kL φL iaL. (19)

In equation (1), ωL should be eliminated from the first line
and substituted with three differential equations from relation
(17).

V. SIMULATION OF COUPLED MOTOR BEHAVIOR BY
FLEXIBLE ELEMENTS

In this paper different coupled pair motors in different
conditions are studied. Since the hardest conditions are related
to motor acceleration time, the startup steps of two coupled
motors, with data as stated in Table 1, are simulated to go from
zero to 122rad/s (equivalent to 1165rpm) with a division of
the 1950W load power between the two motors. A laboratory
photo of the simulated system is shown in Fig. 13. In fig.
14 to 19 the simulation results for 100s are illustrated. Fig.
13 shows that the highest tension of the belt is at the startup
point and that it reaches up to 13 degrees, but, that it is 2.9
degrees at balance status. ∆θ of the shaft on the two sides of
a flexible coupling at the startup point reaches 6.2 degrees and
decreases to 1.8 degrees at balance status. Controller accuracy
is indicated in Fig. 15. The steady-state error of the speed
adjustment and the current ratio adjustment are 0.01rad/s and
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Fig. 12. Dynamic model of motors mechanical coupled by belt - pulley along
with the modeling of flexible coupling and flexible belt – pulley.

TABLE I
SPECIFICATIONS OF THE FIRST PAIR COUPLED MOTORS AND FLEXIBLE

CONNECTIONS

Large/Main Motor Small/Helper Motor
PN=790W
VaL=200 V
IanL=6 A
LffL=160 H
LaaL=0.0269 H
LafL=3.4978H
RaL=7.0457Ω
RfL=404.0816Ω
JL=0.011
BL=0.007

PN=520W
Vas=200 V
Ians=3.5 A
Lffs=230 H
Laas=0.02 H
Lafs=3.165H
Ras=4.821Ω
Rfs=568.5714Ω
Js=0.0085
Bs=0.003

Kb=32; KC=410; Bb=2.44; BC=0.144

0.0005A, respectively. Figures 16 and 18 indicate the armature
current of the two motors and the output torque of the two
motors, respectively.

Control modes are as depicted in Fig. 17. Vf 1 is the
excitation voltage of the small (helper) motor which adjusts
the two motors currents ratio and Vf 2 is the excitation voltage
of the large (main) motor which adjusts the system speed.
In this example, the existing flexible connections, in spite of
varying their tensile stiffness modulus, do not make vibrations
but, have caused losses and ∆θ of the shafts. However, in the
next example, where two larger motors with powers of 183kw
and 117kw and data as stated in Table 2, reach from zero
to 169.2rad/s (equivalent to 1615.7rpm) and a division of the
170 KW load power between the two motors is simulated,
the speed oscillations are also present and variations in the
rubber type which causes variations in the tensile stiffness will
make changes in the amplitude and frequency of oscillations.
Therefore, the dynamic behavior of the system should be
considered. This ∆θ of the belt pulleys shaft and the pulley
and ∆θ of the two sides of the flexible coupling are as shown
in Figures 20 to 23 for two different values of tensile stiffness

If a model of the flexible connections is not taken into
consideration in modeling, for practical conditions these be-
haviors will not be seen in the simulation. In the first testing
of 183kw and 177kw motors, the values kC = kb = 287000

TABLE II
SPECIFICATIONS OF THE SECOND COUPLED MOTORS AND FLEXIBLE

CONNECTIONS

Large/Main Motor Small/Helper Motor
PN=183000W
VaL=420 V
IanL=466 A
LffL=10 H
LaaL=0.00094 H
LafL=0.1856H
RaL=0.05878Ω
RfL=24Ω
JL=1.3
BL=0.123

PN=117000W
Vas=420 V
Ians=302 A
Lffs=12 H
Laas=0.00146 H
Lafs=0.28812H
Ras=0.1079Ω
Rfs=40Ω
Js=0.6
Bs=0.07

Kb=287000; KC=287000; Bb=0.05; BC=0.05

Fig. 13. Photo of motors coupling system , control system and monitoring.

Fig. 14. (a) ∆θ of belt pulleys shaft and the pulley. (b) ∆θ of the shaft on
two sides of coupling.

Fig. 15. Error in speed adjustment and error in current ratio adjustment from
startup.

Fig. 16. Main- and Helper motor current (Coupled motors).



324 Journal of Power Electronics, Vol. 11, No. 3, May 2011

Fig. 17. Drive voltages of main- and helper motors (Control modes).

Fig. 18. Output torques of main- and helper motors.

and BC = Bb = 0.05 have been used. Fig. 20 shows ∆θ of
the flexible connections during startup, and the final values
after balancing are indicated in Fig. 21. The coupling fluc-
tuations have a amplitude of 0.1245 degrees and the period
of fluctuations is 0.013s. In the second testing the values of
the tensile stiffness have become half. Fig. 22 shows ∆θ of
the flexible connections sides at startup, and the final values
after balancing are indicated in Fig. 23. In comparison with the
first testing, the amplitude of the fluctuations have doubled and
reached 0.2494 degrees but the frequency of the fluctuations
has decreased and the relevant period is 0.018s.

VI. NECESSITY OF MODELING FLEXIBLE COUPLING VIA
SIMULATION

In the previous section the effects of changing motors
and also changing the rubbers characteristics of the flexible
coupling on the amplitude and frequency of oscillations was
observed. This modeling also effects the controllers. In this
step, the pair motors from Table II are used. The motors are
started from the inertia state and the two controlling aims are to
achieve a speed of 169[rad/s] and to divide the 235.3[kW] load
power between the two motors. In this section three tests are
done. In the first test the flexible coupling is neglected. Fig. 23
shows the errors of speed adjustment and the errors of dividing
the armature current of the two motors, respectively. We

Fig. 19. Different speeds of mechanical part including base, main and helper
motor and load.

Fig. 20. ∆θ of the two sides of belt and pulley and two sides of the flexible
coupling for main motor of 183kw and helper motor of 117kw.

observed that after achieving the steady state the PI controllers
prove two controlling aims with a 0.001[rpm] error for speed
and a 0.6 [A] error for armature current. In this test, the gains
of the speed controller are KP = 15 & KI = 3 and the gains
of armature current are KP = 0.1 & KI = 4. For an analysis of
effects flexible coupling on modeling, the designed controller
for the first test should be used in a real system or with a
simulation, replace the equivalent of a real system.

For this reason in the second test the previous controller for
a model system including flexible coupling is used. Fig. 25
shows the errors of the speed adjustment and the errors of the
dividing armature current of the two motors, respectively. It
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Fig. 21. ∆θ of the two sides of belt and pulley and two sides of the flexible
coupling for main motor of 183kw and helper motor of 117kw at balance
state for 0.5s.

Fig. 22. ∆θ of the two sides of belt -pulley and two sides of the flexible
coupling for main motor of 183kw and helper motor of 117k.

Fig. 23. ∆θ of the two sides of belt - pulley and two sides of the flexible
coupling for main motor of 183kw and helper motor of 117kw at balance
state for 0.5s.

Fig. 24. Error of speed adjustment and error of armature current of motors in
first test.

is observed that after achieving the steady state the error of
the speed adjustment is 1.5[rpm] and the error of the armature
current is 5 [A]. It can be concluded that if in the simulations
the flexible coupling is neglected and the controller is adjusted
effectively, this controller in a real test where there are flexible
couplings does not work effectively. This means that the speed
is not adjusted effectively and the load power is not divided
suitable between the two motors. That results in non-optimal
usage or over loading of one of the motors. In the third test,
the proposed approach of this paper is presented. In this test
the modeling of flexible coupling is considered and then the
design of the controller is done according this consideration.
Figure 26 shows the errors of the speed adjustment and the
errors of the dividing armature current of the two motors,
respectively. We observed that after achieving the steady state
the error of the speed adjustment is 0.01[rpm] and the error
of the armature current is 1.25[A]. It means that the speed
is adjusted effectively and the division of the load power has
a lower error and is improved when compared to the second
test. In this test the gains of the speed controllers are KP = 15
& KI = 3 and the gains of the armature current are KP = 3 &
KI = 1.

It should be noted that conventional PI controllers are used
in this paper since the aim is not the design of a controller.
In the second test of these controllers trial and error was used
to adjust the controllers to reach a better response. However,
in a real system for improving response, advanced controllers
are used. Since they have more parameters, if these controllers
are adjusted in the same way as the first test, in a real system
that is like the second test we cannot tune the controllers with
the trial and error method. Inevitably a complete model and
the third test is used.

VII. CONCLUSIONS

If intermediate flexible connections such as couplings and
belt-pulleys in systems simulation modes are not modeled,
some real behaviors of the system including speed fluctuations
will be ignored. With an increase in the number of connections
and drive factors, these non-modeled modes become more
important. In a coupling system of two electric motors the
non-modeled fluctuation modes caused by flexible connections
can disturb controller operation and cause undesired vibrations
in a submarine body. Motor dimensions and coupling rubber
stiffness can have an effect on the amplitude and frequency
of fluctuations. The modeling presented in this paper can be
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Fig. 25. Error of speed adjustment and error of armature current of motors in
second test.

Fig. 26. Error of speed adjustment and error of armature current of motors in
third test.

used for examining the existance or lack of fluctuations and
the relevant modifications in order to make the results of
real operations and simulations similar and to take necessary
measurements for eliminating or reducing these fluctuations
before making the required facilities for creating a system.

ACKNOWLEDGMENT

This project has been carried out in Malek-ashtar Univer-
sity of Technology laboratory facilities and financed by this
university.

REFERENCES

[1] M. Jafarboland and J. Faiz, “Modeling and designing controller of two
different mechanical coupled motors for enhancement of underwater
vehicles efficiency,” IET Electric Power Applications, Vol. 4, No. 7,
pp. 525-538, Aug. 2010.

[2] M. Jafarboland and A. Sadoughi, “Modeling and controller designing
to mechanical coupling of two different electric motors to increase
power and to enhance the performance of submarine’s motion system,”
Modares Journal of Sciences and Technology, Vol. 39, No. 1, pp. 57-
81, 2010.

[3] M. Jafarboland and M. ZadehBagheri, “Presenting alignment of new
single propeller submarine drive force through feeding two different
motors,” 10th Iranian Conference on Marine Industries, Vol. 10, pp.
1-10, Nov. 2008.

[4] M. Jafarboland, “Separating control system dependent on two different
coshafted electric motors with using phase controller for submarine drive
system improvement,” 4th Iranian National Conference on Underwater
Science and Technology, Vol. 4, pp. 1-9, May 2007.

[5] M. Jafarboland and J. Faiz, “Optimal controller designing for a mechan-
ical coupling of two different electric motors,” International Review of
Electrical Engineering (IREE), Vol. 5, No 3, pp. 992-1003, Jun. 2010.

[6] M. Jafarboland, “Power ratio optimal control of two different electrical
motors with mechanical coupling for increase the submarine range,”
17th Iranian Conference on Electrical Engineering, Vol. 17, pp. 1-6,
May 2009.

[7] M. Jafarboland and M. ZadehBagheri, “Optimization of the consumed
energy of two coupled electric motors on the basis of genetic algorithm,”
Journal of Electrical Power and Electronics (JEPE), Vol. 1, No. 3, pp.
3-9, 2009.

[8] M. Vonnet and N. Ait-Ahmed, “Marine propeller dynamics modeling
using a frequency domain approach,” 5th IEEE International Multi-
Conference on Systems, Signals and Devices, pp. 1-6, Jul. 2008.

[9] C. Jianxin, G. Wei, and C. Xiayoa, “Study On adaptive control of the
propelling and turning maneuver of an autonomous water vehicle for
ocean observation,” MTS/Oceans ’80, Quebec, pp. 1-4, 15-18 Sep. 2008.

[10] A. Khatkhate, S. Gupta, A. Ray, and R. Patankar, “Anomaly detection
in flexible mechanical couplings via symbolic time series analysis,”
Elsevier, Journal of Sound and Vibration, Vol. 311, No. 3-5, pp. 608-622,
Apr. 2008.

[11] A. T. Tadeo, and K. L. Cavalca, “A comparison of flexible coupling
models for updating in rotating machinery response,” Journal of the
Brazilian Society of Mechanical Sciences and Engineering, Vol. 25, No
3, pp. 235-246, Jul./Sep. 2003.

[12] G. Cepon, M. Boltezar, “Dynamics of a belt-drive system using a
linear complementarily problem for the belt-pulley contact description,”
Elsevier, Journal of Sound and Vibration, Vol. 319, No.3-5, pp. 1019-
1035, 23 Jan. 2009.

Mehrdad Jafarboland was born in Isfahan, Iran in
1964. He received his B.S. and M.S. in Electrical
Engineering from the Science and Industrial University
in 1979 and the Tarbiat Modares University in 1982,
respectively. He received his Ph.D. in Electrical En-
gineering from the Science and Research unit of the
Islamic Azad University. After graduating, he became
an Assistant Professor in the Department of Electrical
Engineering, Malek-ashtar University of Technology.

He has been working in the Marine Research Center since 1987, the Aerospace
Research Center since 1995, and at Islamic Azad University, Najaf Abad
Branch since 1994, respectively. His research interests include the control
of large-scale systems, nonlinear systems control, electric machines, power
electronics and the electric equipment of submarines and satellites.

Mahmoud Zadehbagheri was born in Yasouj, Iran in
October 1979. In 2003 he received his B.S. in Electrical
Engineering from Kashan University and in 2009 he
received his M.S. in Electrical Engineering from the
Islamic Azad University, Najafabad Branch. He is with
the faculty of the Electrical Engineering Department,
Islamic Azad University. His research interests includes
the fields of electrical machines, drives and controls.


