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Abstract

This paper presents an effective robust predictive control scheme for the active power filter (APF) using a smith-predictor
based current regulator, which show superior features when compared to proportional-integral (PI) controllers in terms of an
enhanced closed-loop bandwidth and an improved current tracking accuracy. A moving average filter (MAF) is implemented
using a field programmable gate array (FPGA) for signal pre-processing to eliminate the switching ripple contamination. An
adaptive linear neural network (ADALINE) is used for individual harmonic estimation to achieve selective compensation purpose.
The effectiveness and validity of the devised control algorithm are confirmed by extensive simulation and experimental results.
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I. INTRODUCTION

Recently, electrical distribution systems have started to
suffer from significant amounts of harmonic contamination due
to the proliferation of power-electronic devices, which draw
non-sinusoidal currents from distribution networks, causing
interference to the sensitive loads connected at the point of
common coupling (PCC) [1], [2]. Active power filters (APFs)
are considered to be the most effective solution to these power
quality problems, and they have been extensively studied in
recent literatures [3], [4]. This paper aims to present a robust
predictive control algorithm for APFs using a smith-predictor,
which has better properties when compared to proportional-
integral (PI) current regulators in terms of improvements in
the closed-loop bandwidth and better steady-state precision.
An adaptive linear neural network (ADALINE) is utilized for
individual harmonic estimation, and selective compensation is
achieved by using the devised algorithm [5], [6].

This paper is organized as follows. The system description
and signal preprocessing technique are presented in Section
II. The reference current generation (RCG) scheme using an
ADALINE algorithm is presented in Section III. The current
loop controller design and stability analysis are discussed
in Section IV. The simulation and experimental results are
presented in Section V and VI. Conclusions are given in
Section VII.
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II. DESCRIPTION OF THE ACTIVE POWER FILTER SYSTEM
AND SIGNAL PREPROCESSING

Fig. 1 shows a circuit diagram of the shunt APF with
LCL-type coupling impedance. To derive the mathematical
model of the APF, the following assumptions are considered:
(1). The equivalent resistance of the inductors Lg and Lc are
neglected; (2). The grid is represented using a Thevenin’s
equivalent circuit, i.e., the ideal voltage source in series with
the effective resistance Rs and inductance Ls; (3). The pulse-
width modulation process is within its linear region [5], [6].

The power converter operates at a frequency of 10 kHz,
generating remarkable switching ripples and high frequency
noises, which degrade the current tracking and cause instability
of the whole system. In this paper, a moving average filter
(MAF) is implemented in a field programmable gate array
(FPGA) for noise rejection and switching ripple elimination.
The following discrete transfer function is used for the mod-
eling of the moving average filter (MAF):

HMAF(z) =
1
n
· 1− z−n

1− z−1 (1)

where n denotes the number of sampling data used for deriving
the average quantities. Fig.2 shows the amplitude frequency
property of the MAF under different values of n. It shows that
the best attenuation for the switching components and their
sideband harmonics can be achieved when n=8. Notably, the
FPGA is sampling at a constant sampling rate of 80 kHz, the
MAF is used to get the average quantity of eight consecutive
data using the block by block manipulation scheme, hence the
output of the MAF results in a sampling rate of 10kHz when
n=8. Hence, the DSP board adopts the data with a sampling
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Fig. 1. Circuit diagram of the shunt APF with LCL output filter.

Fig. 2. The amplitude-frequency characteristics of the moving average filter
(MAF) with different number of samples ‘n’.

rate of 10 kHz, which is the same as the PWM control cycle
of the power converters.

III. REFERENCE CURRENT GENERATION USING AN
ADAPTIVE LINEAR NEURAL NETWORK

This section presents the adaptive signal decomposition
scheme using an adaptive linear neural network (ADALINE)
[6]. An arbitrary nonlinear load current Y(tk) can be expressed
by the Fourier series expansion as:

Y (tk) =
N

∑
n=0,1,2,3,···

An sin(nω0tk +ϕn)+n(tk)

=
N

∑
n=0,1,2,3,···

(an sin2πn f0tk +bn cos2πn f0tk)+n(tk)
(2)

where An and ϕn are correspondingly the amplitude and
the phase angle of the nth order harmonic component, and
n(tk) represents higher order components and random noise.
Following the definition in [6], the pattern vector Xk and the
weight vector Wk of ADALINE can be defined as:

X̃k = [1,sinω0tk ,cosω0tk, · · · ,sinNω0tk,cosNω0tk ]T (3)

Fig. 3. Principle of the adaptive linear neural network.

W̃k = [bk
0, ak

1, bk
1, ak

2, bk
2, ...,a

k
N ,b

k
N ]

T . (4)

However, when the ADALINE algorithm is applied for
nonlinear load current decomposition, it can be observed from
equations (2)-(4) that the fundamental frequency active and
reactive components cannot be directly estimated. In order to
cope with this shortcoming of the conventional ADALINE [6],
the fundamental frequency component of Y(tk) is rewritten as:

Y1(tk) = A1 sin(ω0tk +ϕ1)
= A1 sin(ω0tk +ϕPLL +ϕ1−ϕPLL)
= A1 sin(ω0tk +ϕPLL)cos(ϕ1−ϕPLL)
+A1 cos(ω0tk +ϕPLL)sin(ϕ1−ϕPLL)

(5)

where ϕPLL represents the initial phase angle of the fundamen-
tal frequency grid voltage, and ω0tk+ϕPLL represents the phase
angle of the fundamental frequency grid voltage, which are
obtained from the phase-locked-loop (PLL) [5], [6]. Referring
to equation (5), the weight vector can be redefined for the
fundamental component load current Y1(tk), as follows:

ak
1 = A1 cos(ϕ1−ϕPLL) (6)

bk
1 = A1 sin(ϕ1−ϕPLL) (7)

Therefore, equations (3)-(4) can be rewritten as:

Xk = [1,sin(ω0tk +ϕPLL) ,cos(ω0tk +ϕPLL),
· · · ,sinNω0tk,cosNω0tk ]T

(8)

Wk = [bk
0, ak

1, bk
1, ak

2, bk
2, ...,a

k
N ,b

k
N ]

T . (9)

The fundamental grid voltage is denoted by
v1=V1sin(ω0tk+ϕPLL), and its phase angle is extracted by the
PLL and utilized as the input vector for the ADALINE, as
indicated by equation (8). The aforementioned ADALINE
algorithm is utilized for reference current generation for the
current-loop controller of the APF.

IV. CURRENT-LOOP CONTROLLER DESIGN AND
STABILITY ANALYSIS

Fig. 4 shows a simplified circuit diagram of the LCL-type
APF. The voltage source inverter (VSI) is denoted by the
controlled voltage source U0, the nonlinear load is connected
at the point of common coupling, represented by the current
disturbance. The grid inductance is denoted by Ls, and the
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(a)

(b)

Fig. 4. The simplified circuit diagram of the APF. (a) Circuit diagram. (b)
Block diagram.

transfer function from the inverter output U0 to Ig is derived
as:

Ig(s)
U0(s)

=
sRC+1

Lc(Lg +Ls)C f · s · [s2 +2ξrωr +ω2
r ]

(10)

where

ωr =

√
Lc +Lg +Ls

Lc(Lg +Ls)C f
ξr =

1
2

R f

√
(Lc +Lg +Ls)C f

Lc(Lg +Ls)
.

To analyze the performance of the current controller, a
discrete domain model of the plant is derived, where the
effect of the grid inductance Ls is neglected for the sake of
brevity. From the circuit diagram, the transfer function from
the inverter output to the output current can be derived as:

Gp(s) =
ZRC

ZLc

(
ZLg +ZRC

)
+ZLgZRC

(11)

where the equivalent impedance of the RC brunch is denoted
as:

ZRC = R f +
1

sC f
(12)

and the impedance of Lc and Lg are denoted by:

ZLc = sLc (13)

ZLg = sLg (14)

Substituting Eqs.(12)-(14) into Eq.(11), results in:

Gp(s) =
1+R fC f s

LgLcC f s3 +(Lg +Lc)R fC f s2 +(Lg +Lc)s
. (15)

Neglecting the effect of the damping resistance, yields:

Gp(s) =
1

LgLcC f s3 +(Lg +Lc)s
. (16)

Since the control algorithms are implemented using DSP
and FPGA platforms, the plant model of the APF should be
converted into a discrete form, as shown in Fig.5. It consists of
three blocks: (1) the digital/analog converter, i.e., the holder,
denoted as H(s), (2) the plant model Gp(s) and (3) the control
delay Td . Notably, the delay time Td is associated with the
hardware, which includes the sampling delay and the delay
effect of the master/slave DSP communication. Generally,

(a)

(b)

Fig. 5. The z-domain model of the continuous model Gp(s) with equivalent
control delay Td .

Td=(1˜2)Ts, to simplify the derivations, it is assumed that
Td=mTs (1<m<2). Assuming that g(t) is the impulse response
of the plant Gp(s), after a sampling g(t) with an interval Ts,
Z{Gp(s)}, i.e., Z{L−1[Gp(s)](kTs)} is obtained, where L−1

denotes the inverse Laplace transformation. Hence, the discrete
model of the continuous system in Fig.5(a) is denoted by:

Z





H(s)Gp(s)︸ ︷︷ ︸
GT (s)

e−smTs





=
∞

∑
k=0

z−kgT (kTs−Td) = Zm {GT (s)}= GT (z,m)

(17)

where gT represents the impulse response of GT (s), and GT (z,
m) represents the discrete transfer function from the discrete
input V0(z) to the discrete output Ig(z) [see Fig.5(b)]. And H(s)
is assumed to be a zero-order-hold (ZOH) denoted as:

H(s) =
1− e−sTs

s
(18)

Substituting Eq.(18) into Eq.(17), results in:

GT (z,m) = Z





1− e−sTs

s︸ ︷︷ ︸
H(s)

Gp(s)e−smTs





= z−1
z Z

{
Gp(s)

s e−smTs
}
= z−1

z Zm

{
Gp(s)

s

}
(19)

Moreover, if H(s) is a first-order hold (FOH), then the output
can be represented as a piece-wise function:

v∗o(t) =
vo(k+1)− vo(k)

Ts
. (20)

The output v∗o(t)is assumed to be constant during one
sampling interval Ts. Therefore, Ig(z) can be rewritten as:

Ig(z) = Z





1− e−sTs

s︸ ︷︷ ︸
H(s)

Gp(s)
s e−smTs





V ∗0 (z)

=
(z−1)2

zTs
Zm

{
Gp(s)

s2

}

︸ ︷︷ ︸
ZT (z,m)

Vo(z).

(21)

To simplify the analysis, a FOH is adopted herein, thus the
discrete model can be derived as:

GT (z,m) =
1

Lg +Lc

{
1

z−1
− 1

ωr
· (z−1)sin(ωrTs)

z2−2zcos(ωrTs)+1

}
z−m

(22)
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Fig. 6. The closed-loop block diagram of the current loop in the discrete
domain.

whereωr =
√
(Lg +Lc)

/
(LgLcC f ).

From this equation, the effects of the controller structure
and the control delay on the closed-loop bandwidth and the
dynamic property of the current loop can be analyzed in the
forthcoming sections.

Fig. 6 shows a closed-loop block diagram of the current
loop controller in the discrete domain, which is based on the
kth control cycle. The input signal is the reference signal of
the APF at the kth control cycle, which is derived from the
ADALINE identification algorithm. ig(k) denotes the sampling
current at the present control cycle, and C(z) denotes the
current controller. The output of the current controller is added
to the grid voltage vpcc(k) to synthesize the inverter output
voltage, which is applied to the plant model GT (z, m) to
synthesize the inverter output current.

Next, the effects of a proportional-integral (PI) controller
on the current loop performance is investigated. To enhance
both the high frequency characteristics and the bandwidth of
the current loop, a smith-predictor based predictive controller
is proposed.

A. Proportional-Integral (PI) Controller

The discrete transfer function of the proportional-integral
(PI) controller C(z) is denoted as:

C(z) = kp +
kiTs

z−1
(23)

where kp and ki denote the proportional and integral gains,
respectively. The open loop transfer function of the current
tracking controller is derived as:

Hopen(z) =C(z)GT (z,m)

= (kp +
kiTs
z−1 )

1
Lg+Lc

{
1

z−1 − 1
ωr
· (z−1)sin(ωrTs)

z2−2zcos(ωrTs)+1

}
z−m.

(24)

A tradeoff between the bandwidth and the tracking precision
is achieved when selecting kp=1 and ki=20. Fig.7 shows
the closed-loop root locus of the current controller using a
proportional-integral (PI) regulator. A gain margin of 8.61 dB
and a phase margin of 61.1 degrees are obtained, with a closed-
loop bandwidth of 1.34 kHz. It shows that the P controller and
the PI controller are similar in terms of performance.

B. Deadbeat Controller with Smith Prediction

From Eq.(22) and by neglecting the control delay, the
closed-loop transfer function can be derived as:

H(z) =
C(z)GT (z,0)

1+C(z)GT (z,0)
. (25)

Let GT (z,0)=G(z) along with a control delay of m cycles.
Then the plant model is derived as GT (z, m)=G(z)z−m. The

Fig. 7. The closed-loop root locus of the current loop using PI controller.

Fig. 8. The smith-predictor based current controller for the plant with control
delay.

purpose of the smith predictor is to satisfy the following
equation:

H(z) = H(z)z−m (26)

where H(z) denotes the plant model with an m beat control
delay. Assuming that the transfer function of the current
controller with the smith predictor is denoted by C(z), the
closed-loop transfer function H(z) can be derived as:

H(z) =
C(z)G(z)z−m

1+C(z)G(z)z−m
(27)

From Eqs.(25)-(27), the following is obtained:

C(z)G(z)z−m

1+C(z)G(z)z−m
=

C(z)G(z)
1+C(z)G(z)

· z−m (28)

After the manipulation of Eq.(28), the following is obtained:

C(z) =
C(z)

1+G(z)C(z)(1− z−m)
. (29)

It can be seen from Eq.(29) that the new controller is
composed of the previous controller C(z) with a feedback loop
G(z)(1-z−m). Hence, the diagram of the current loop with the
smith predictor is derived, as shown in Fig.8.

Since the order of the plant model G(z) is high, the one-
step-ahead prediction using G(z)(1-z−m) results in a heavy
computational load. Hence, the model G(z) is replaced using
a lower order equivalent model:

G̃(s) =
1

Leq0s+Req0
,Leq0 = Lg0 +Lc0 (30)
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Fig. 9. The smith-predictor based controller with one beat prediction for the
plant.

where Lg0 and Lc0 denote the nominal parameters of the
inductance, and the actual inductances are Lg=Lg0+∆Lg and
Lc=Lc0+∆Lc. Furthermore, ∆Lg and ∆Lc denote the parameter
deviations and Req0 denotes the equivalent series resistance.
The discrete model is derived by using the zero-order-hold
(ZOH):

G̃(z) = (1− z−1)Z
[

G̃(s)
s

]

= 1
Req0

(1− z−1)( z
z−1 − z

z−e
−Req0Ts

/
Leq0

)
(31)

The exponential term is approximated as:

e−Req0Ts
/

Leq0 ≈ 1−Req0Ts
/

Leq0 (32)

Substituting Eq.(32) into Eq.(31), yields:

G̃(z) =
Ts
/

Leq0

z− (1−Req0Ts
/

Leq0)
. (33)

From Eq.(29) and Eq.(33), the equivalent diagram can be
derived, as shown in Fig.9. Only one step-ahead prediction is
considered in the devised smith-predictor. The derived signal,
after the approximated model, is denoted as sp(k+1) and the
predicted current is denoted as ismith(k+1). From Fig.9, the
predicted signal sp(k+1) can be derived as:

sp(k+1) = v∗cm(k)
Ts
/

Leq0

z− (1−Req0Ts
/

Leq0)
(34)

Hence, the relation between sp(k+1) and sp(k) is derived as:

sp(k+1) = (1− Req0Ts

Leq0
)sp(k)+

Ts

Leq0
v∗cm(k−1) (35)

Therefore, the output of the smith-predictor is derived as:

ismith(k+1) = (1− z−1)sp(k+1)

=−Req0Ts

Leq0
sp(k)+

Ts

Leq0
v∗cm(k−1) (36)

Thus, the transfer function of the current loop is derived as:

C(z) =
C(z)

1+(1− z−1)G̃(z)C(z)
(37)

where C(z) denotes the deadbeat controller. Substituting
Eq.(33) into Eq.(37), results in:

C(z) =
kp

1+ kp(1− z−1)
Ts
/

Leq0
z−(1−Req0Ts

/
Leq0)

(38)

Hence, the open-loop transfer function can be derived as:

Hopen(z) =C(z)GT (z,m)

=
kpz2−kp(1−Req0Ts

/
Leq0)z

z2+(kpTs
/

Leq0+Req0Ts
/

Leq0−1)z−kpTs
/

Leq0

× 1
Leq

{
1

z−1 − 1
ωr
· (z−1)sin(ωrTs)

z2−2zcos(ωrTs)+1

}
z−m.

(39)

Fig. 10. The frequency-domain characteristic of the PI controller and the smith
controller.

Fig. 11. The closed-loop root locus of current loop using smith-predictor based
controller.

Neglecting the resistance Req, and letting ρ=Ts/Leq0, the
open-loop transfer function with a one beat control delay can
be derived as:

Hopen(z) =
kp

(z+ρkp)Leq

{
1

z−1
− 1

ωr
· (z−1)sin(ωrTs)

z2−2zcos(ωrTs)+1

}

(40)
Moreover, the closed-loop transfer function is derived as:

Hclose(z) =
C(z)GT (z,m)

1+C(z)GT (z,m)
. (41)

Fig. 10 shows the frequency-domain characteristic of the
PI controller (kp=1.2, ki=100) and the smith controller. It
shows that the PI controller reduces to a proportional controller
at higher frequencies and that the smith controller shows a
leading phase at higher frequencies. The leading phase of the
smith controller is helpful for compensating the phase delay
of the plant model at higher frequencies, thus enhancing the
stability of the system.

Fig. 11 shows the closed-loop root locus of the current
loop using the smith-predictor based controller. The dominant
poles are shifted toward the center of the unit circle, thus the
dynamic performance of the system is enhanced. A bandwidth
of 2.6 kHz is obtained, with a gain margin of 6.57 dB and a
phase margin of 60.4 degrees. The improved bandwidth is
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Fig. 12. The open-loop bode diagram of the dc voltage loop.

Fig. 13. The complete control diagram of the whole system.

crucial to improving the compensation performance of the
LCL-APF at higher harmonic frequencies.

V. DC-LINK CONTROLLER DESIGN

The dc voltage controller is used to regulate the active power
balance between the APF and the grid. As discussed in [1], the
open loop transfer function of the dc-link voltage controller
is:

Gopen,dc(z) = Gc,dc(z) ·Gplant,dc(z) ·GPWM,dc(z) (42)

where Gc,dc(z) denotes the controller, Gplant,dc(z) denotes the
discrete domain model of the inverter dc-link, and GPWM,dc(z)
denotes the transfer function of the PWM process, normally
approximated by a one cycle delay z−1. The transfer functions
Gc,dc(z) and Gplant,dc(z) are denoted as [1], [5], [6]:

Gc,dc(z) = kp,dc(1+
1

τdc
· Ts

z−1
) (43)

Gplant,dc(z) =
Ts

Cdc
· 1

z−1
(44)

Hence, the open-loop transfer function is derived as:

Gopen,dc(z) =
kp,dc ·Ts

Cdc
· z− (1−Ts/τdc)

(z−1)2z
. (45)

To avoid interaction between the dc-link controller and the
current loop controller, the bandwidth of the voltage loop must
be much less than that of the current loop. The bandwidth is
designed to be less than 50Hz and the overshoot less than
10%, as shown in Fig. 12. A gain margin of 40 dB and a
phase margin of 83.4 degrees is obtained when kp,dc=2 and
τdc=1.

Fig. 13 shows a complete diagram of the whole system and
the signal flow is also depicted. Notably, the sampling signals

Fig. 14. Steady state performance of the LCL-APF based on the devised
smith-predictor based control algorithm.

are preprocessed by the MAF using the FPGA to filter out both
the sampling noise and the random noise. These signals are
sent to the main DSP for the main routine, which includes
the ADALINE algorithm for harmonic decomposition, the
reference signal generation, the smith-predictor based current
controller and the dc-link voltage controller. The obtained
modulation signals are sent to the bottom FPGA controller
to synthesize the IGBT gating signals for the power converter
[see Fig. 13].

VI. SIMULATION RESULTS

To verify the effectiveness of the devised control algorithm,
the single-phase APF is simulated using Matlab/Simulink. A
thyristor rectifier load is used as harmonic source, the grid
voltage is vPCC=220V, the grid impedance Rs=50mΩ, the grid
inductance Ls=20µH, and Lg=50µH, Lc=250µH, R f =0.5Ω,
and C f =20µF. The firing angle of the thyristor is α=110◦,
and the dc-side resistance of the rectifier load is 2.2Ω, with a
sudden increase of 2.2Ω to test the transient response of the
system.

Fig. 14 shows the waveforms of the gird voltage vpcc, the
grid side current after compensation is, the APF compensating
current iAPF , the converter side current iC, the load current
iL and the dc-link voltage vdc. The FFT spectrum of the grid
current is, the APF compensating current iAPF , the load current
iL and their total harmonic distortion (THD) are also shown.
Fig. 14 shows that the THD of load current is 81.6% and a
sinusoidal waveform is obtained from the grid current, with a
THD of 4.2%.

Fig. 15 shows the dynamic response of the APF using the
devised control algorithm. The weights updating process of the
ADALINE are also provided, where the parameters a1, b1 and
a3, b3 denotes the coefficients of the fundamental component
and the third harmonic component, and ierror denotes the
estimation error of the ADALINE. It shows that the ADALINE
algorithm is a tradeoff between the estimation accuracy and
the dynamic response. The deficiency of the conventional
low-pass-filter based approach is avoided. The transient APF
current and the inverter dc-link voltage are also minimized by
using the ADALINE algorithm [1], [6].

VII. EXPERIMENTAL RESULTS

To validate the devised control algorithm for the APF,
a prototype system was built in the laboratory using three
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Fig. 15. Transient response of the LCL-APF based on the devised smith-
predictor based control algorithm.

Fig. 16. The photo of the LCL-APF experimental setup.

single-phase VSI topologies. Fig. 16 shows a photo of the
experimental setup. Fig. 17 shows the architecture of the main
controller platform. Three digital signal processors (DSPs)
from Texas Instrument (TMS3202812) are used. The main
controller is responsible for the main program, the soft-start
routine, and the protection routine. The second DSP is used for
the ADALINE based harmonic estimation algorithm. The third
DSP is used for the man/machine interface, i.e., the parameter
display and touch board. A field programmable gate array
(FPGA) from Altera (EP1C6Q240C8) is used to receive the
gating signals from the main controller and to generate PWM
signals for the IGBTs.

The three single-phase thyristor rectifier loads are utilized
as a harmonic source, and the parameters of the experimental
set up are consistent with the simulation. Fig. 18(a) shows the
test results of the load currents and the neutral wire current,
the grid voltage and the dc-link voltage in phase ‘a’. Fig. 18(b)
shows the FFT spectrum of the load currents in phases ‘a’ and
‘b’. The THD of the load current in phase ‘a’ is about 135%
when the firing angle of the thyristor load is 110 degree, which
is dominated by the odd order harmonics.

Fig. 19 shows the results of the grid currents, the grid
voltage and the dc-link voltage in phase ‘a’. The odd order
harmonic components up to 19th order are estimated using the
ADALINE algorithm, and the 3rd , 5th, 7th, 11th and 13th order
components are selected to be compensated by the APF. The
thyristor rectifier results in a high di/dt ratio at the conduction
instant, which causes a significant voltage distortion due to the
high grid impedance in the laboratory environment. It shows
that sinusoidal waveforms are obtained from the grid side, with

Fig. 17. The architecture of the main controller platform.

Fig. 18. Experimental results of the load currents and the FFT spectrum. (a)
The load currents iLa, iLb, iLc, iLN (ch-1 to ch-4: 80A/div), and vPCC,A (ch-5:
40V/div). (b) FFT spectrum of iLa, iLb.

a total harmonic distortion of about 4.8% and that the neural
wire current is also minimized.

Fig. 20 shows the waveforms of the system dynamic re-
sponse. In Fig. 20(a), the APF first works in the reactive
compensation mode, and the thyristor load is abruptly turned
on. Fig. 20(b) shows the case when the APF is suddenly turned
off. It can be observed in Fig. 20 that the system is always
stable during these dynamic disturbances, which verifies the
effectiveness of the proposed control algorithms.

VIII. CONCLUSIONS

This paper proposes a robust control algorithm for active
power filters using a smith-predictor based current regulator,
which has a higher bandwidth when compared with propor-
tional integral controllers. An adaptive linear neural network
is used for individual harmonic estimation, and selective
harmonic compensation is achieved. The simulation results
are presented, and a perfect dynamic response is achieved
owing to the ADALINE estimation algorithm. A laboratory
prototype system is also built for verification. By selecting
the four dominant harmonics to be compensated, the sinusoidal
waveforms in the grid currents are achieved, which verifies the
effectiveness of the devised control algorithm. By selecting the
higher order harmonics to be compensated, the grid distortion
can be further reduced, but as a tradeoff the computational
load in the DSP controller is increased.
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Fig. 19. Experimental results of the grid currents and the FFT spectrum. (a)
The grid currents isa, isb, isc, isN (ch-1 to ch-4: 80A/div), and vPCC,A (ch-5:
40V/div). (b) FFT spectrum of isa, isb.

Fig. 20. The dynamic response of the APF.(a) The thyristor load is turned on
abruptly. (b) The APF is suddenly turned off.
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