
Discharging/Charging Voltage-Temperature Pattern Recognition for . . . 1

JPE 12-1-1 http://dx.doi.org/10.6113/JPE.2012.12.1.1

Discharging/Charging Voltage-Temperature Pattern
Recognition for Improved SOC/Capacity Estimation

and SOH Prediction at Various Temperatures
Jonghoon Kim†, Seongjun Lee∗, and Bohyung Cho∗∗

†∗∗Dept. of Electrical Eng., Seoul National University, Seoul, Korea
∗R&D Center, Samsung Techwin, Seongnam, Korea

Abstract

This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recogni-
tion for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The
averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures
are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network
is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any
temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied
to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter
measuremet.

Key Words: Dual extended Kalman filter (DEKF), Hamming network, Pattern recognition, State-of-charge (SOC), State-of-health
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I. INTRODUCTION

A battery management system (BMS) is critical for main-
taining cell performance [1], [2]. Specifically, in electric
vehicles (EV) and hybrid electric vehicles (HEV) applications,
it is important to have information about the cell’s state-of-
charge (SOC) [3], [4], capacity [5], [6], and state-of-health
(SOH) based on the pulse power analysis [7], [8]. Precise
SOC, capacity, and SOH information are critical in practical
applications where it is necessary to determine how long the
cell will last and, importantly, when to stop charging and
discharging, as over-charging and over-discharging may cause
permanent internal damage [9].

In recent years, much research has been devoted to de-
veloping improved methods for SOC/capacity estimation and
SOH prediction. Specifically, the dual extended Kalman filter
(DEKF), which makes use of two extended Kalman filters
(EKFs) running in parallel, is widely used for state and
parameter estimations [10]. The accuracy of the DEKF de-
pends largely on the predetermined parameter values used
in the equivalent circuit model shown in Fig. 1. It is im-
portant to accurately measure model parameters that include
open circuit voltage (OCV), series resistance (Ri), diffusion
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resistance (RDi f f ), and diffusion capacitance (CDi f f ) [11],
[12]. Because these parameters vary with temperature, the
accuracy of SOC/capacity estimation and SOH prediction
method will also vary. The error can be reduced by repeating
parameter measurement, but such an exercise would be very
time- consuming and inefficient. Thus, the existing DEKF
algorithm can only be applied to a single cell under controlled
experimental conditions [11], [12]. It should be considered
that the model parameters could be changed for correct SOC/
capacity estimation and SOH prediction.

This study proposes an application of the DEKF that
performs high accuracy SOC/capacity estimation and SOH
prediction based on pattern recognition at various tempera-
tures. In this study, the Hamming network [13], [14] gener-
ally used for binary pattern recognition is utilized to evalu-
ate several predetermined representative discharging/charging
voltage- temperature (DCVT) patterns, and determine which is
the closest to the input DCVT pattern by comparing the inner
product. Representative DCVT patterns are collected from
nine average discharging/charging voltages from ten Li-Ion
cells. Based on the temperature-checking process, the model
parameters determined from the representative DCVT pattern
are then applied to estimate SOC/capacity and predict SOH
of an arbitrary cell using the DEKF. This avoids the need for
repeated parameter measurement. Experimental studies were
conducted on Samsung 18650 Li-Ion cells with a total capacity
of 1.3Ah.
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Fig. 1. Lumped parameter cell model: open circuit voltage (OCV), series
resistance (Ri), diffusion resistance (RDi f f ), and diffusion capacitance (CDi f f ).

Fig. 2. Hamming network.

II. HAMMING NETWORK

The Hamming network [13], [14] is used for pattern
recognition, as shown in Fig. 2. It is one of the simplest
competitive networks and is designed explicitly to solve binary
pattern recognition issues. The Hamming network decides
which representative pattern is closest to the current pattern by
comparing the inner products. Its objective is to decide which
prototype vector is closest to the input vector. The Hamming
network consists of two layers: the feedforward layer and the
recurrent layer.

A. Feedforward Layer

The feedforward layer performs a correlation or inner
product between each prototype pattern and a current pattern
in order to search a minimum Hamming distance (HD) from
calculation the difference between dimension m and HD. In
order to perform the inner product, weight matrix W1 is set
to prototype vectors and is transformed into the binary form,
in addition to bias vector, and is transformed into the binary
form, in addition to bias vector, b1, in (1) and (2).
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where each row of W1represents a prototype vector which it
is required to be recognize, and each element of b1, m/2 is the
threshold value and is set equal to the number of elements in
each input vector R, S is the number of neurons. As expressed
in (3), it is high desirable to have the ith (1≤ i≤ R) node in
this layer computem−HD(iw,p)for a given input vector p,

where HD(iw,p) is the Hamming distance between vectors
iw and p. Then, the net input of node is as in (4), namely, the
feedforward layer output. After all, these outputs are equal to
the inner products of the prototype vectors with the input, plus
R. In the feedforward layer, a linear transfer function (purelin)
[14] is used to implement these inner products in (5). The
neuron in this layer with the largest output corresponds to the
prototype pattern that is closest in Hamming distance to the
input pattern.

W1p = [m−HD(iw,p)]−HD(iw,p) (3)
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B. Recurrent Layer

The recurrent layer is known as the MAXNET [14] and a
competitive layer which performs the winner-take-all (WTA)
operation, whose purpose is to enhance the initial dominant
response of the ith node and suppress the others [14]. As
expressed in (6), the neurons and initialized with the outputs of
the feedforward layer, which indicate the correlation between
the prototype vectors and the input vector.

a2(0) = a1. (6)

As a result of recurrent processing, the ith node responds
positively while the responses of all remaining nodes decay
to zero. Namely, in order to determine a winner, which only
has a positive output, the neurons compete with each other.
Then, as expressed in (7), the recurrent layer output is updated
according to the following recurrence relation which uses a
positive transfer function [14].

a2(t+1) = poslin(W 2a2(t)). (7)

This processing requires self-feedback connections and neg-
ative lateral inhibition connections, in which the output of each
neuron has an inhibitory effect on all of the other neurons
[14]. The n×n weight matrix of the recurrent layer W2 is
taken in (8). The weights in this layer are set so that the
diagonal elements are 1, and the off-diagonal elements have
a small negative value, where 0 < ε < 1/(S− 1) is called
the lateral interaction coefficient. Thus, it can be substituted
weight values of 1 and -ε for the appropriate elements of W2

in (9), where 1≤ i≤ S and 1≤ j ≤ S.
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Fig. 3. Dual extended Kalman filter (DEKF).

Each neuron’s output decreases in proportion to the sum
of the other neuron’s outputs. The output of the neuron with
the largest initial condition decreases more slowly than the
outputs of the other neurons. Eventually, only one neuron has
a positive output. The index of the recurrent layer neuron with
a stable positive output is the index of the prototype vector that
best matched the input.

III. DUAL EXTENDED KALMAN FILTER (DEKF)

The DEKF is used to estimate the SOC/capacity of a Li-Ion
cell. This algorithm combines the two EKFs, one of which is
the state filter, which estimates the SOC, and the other is the
weight filter, which estimates the capacity. At every time step,
the state filter uses a priori value of the weight filter, while the
weight filter uses a priori value of the state filter. Therefore,
the two EKFs are calculated concurrently to estimate SOC/
capacity. The DEKF can be reviewed by drawing a block
diagram, as shown in Fig. 3.

The state-space representation with difference equations of
the DEKF is described in (10)-(12).

xk+1 = fx(xk, uk, θk)+wx
k wx

k ∼ N(0, Qx
k) (10)

θk+1 = θk +wθ
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The symbols wx
k and wθ

k represent the process noise of
the state filter and weight filter, respectively, are measured to
be independent, zero-mean, Gaussian noise with covariance
matrices Qx

k and Qθ
k . The measurement noise υk is assumed to

be independent, zero-mean, Gaussian noise with a covariance
matrix Rk. Then the equations that decide the Kalman gain Kx

k
and Kθ

k of the state filter and weight filter are as follows:
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where the error covariance is Pk and the measurement sensi-
tivity matrix is Hk.

The state-space equation of the cell model is derived as Eqs.
(15)-(17), from the equivalent circuit shown in Fig. 1 and ∆t
is time between step k and k+1.
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Fig. 4. Current profile for obtaining the DCVT pattern.

Fig. 5. Average DCVT patterns for ten fresh Li-Ion cells at various tempera-
tures: 10–50◦C with a 5◦C temperature interval.
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Vk = OCV(SOCk,Cn,k)−VDiff ,k−Riik. (17)

The OCV is the measurement equation is implemented
by the relationship of the OCV-SOC data. The measure-
ment matrix derived from Eqs. (18)-(21). From Eq. (20),
the measurement matrix of the capacity Cn requires the total
differential because the OCV is a function of the SOC. In
this case, the first term of the right-hand side of Eq. (20)
is irrelevant to the capacity. The measurement matrix of the
series resistance Ri can be obtained from Eq. (21).
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IV. PROPOSED APPROACH

A. Discharging/charging Voltage-temperature (DCVT) Pattern

After fully charging (SOC 100%) at a constant current of
4A, followed by a rest period, each cell was discharged to
SOC 80%. Using a scaled-down discharging/charging current
profile of a HEV, shown in Fig. 4, ten DCVT patterns were
collected. The DCVT pattern is recorded for ten fresh Li-Ion
cells at various temperatures: 10-50◦C with a 5◦C temperature
interval. For pattern recognition, each average DCVT for ten
fresh Li-Ion cells at various temperatures are obtained and
shown in Fig. 5.
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Fig. 6. Two patterns separated from the DCVT pattern. (a) Discharging-voltage temperature (DVT) pattern. (b) Charging-voltage temperature (CVT) pattern.

Fig. 7. Unfixed average discharging and charging voltages.

B. Initial Starting Voltage Points (ISVP) Fixation

For recognition of the DCVT pattern with the Hamming
network, statistical analysis is necessary. First, all DCVT
patterns are separated into two patterns according to current
i: discharging voltage-temperature (DVT; i≥0) patterns and
charging voltage-temperature (CVT; i <0) patterns, as shown
in Fig. 6. Second, the initial starting points of each DVT
and CVT should be fixed. As shown in Fig. 7, the initial
starting voltage points (ISVP) of the nine representative DCVT
patterns are not fixed due to their various electrochemical
characteristics at different temperatures. Hence, the averages
and standard deviations of the collected discharging/charging
voltages cannot be compared, and it is required to set a
standard ISVP, as shown in Fig. 8. For example, consider
three cells (A-C) with different ISVPs (VA1I-VC1I). It is
required to choose one as the standard cell, B (VB1I=VB2I),
and the other two voltages of A and C are up and down,
respectively (VA1IVA2I, VC1IVC2I). Therefore, three ISVPs
are fixed at one point. Based on this rule, the average and
standard deviation for the voltage of A can be expressed in
(22) and (23), respectively.

BatteryAVE
A =

∑
n
i=1 VA2i

n
(n = 1,2, · · · ,F) (22)
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A =

√
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n
i=1
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(n = 1,2, · · · ,F)

(23)
In addition, for a given discharging condition, the average

(AVE) and standard deviation (STD) of the three cells can be
compared in (24) and (25), respectively.

BatteryAVE
A > BatteryAVE

B > BatteryAVE
C (24)

BatterySTD
A < BatterySTD

B < BatterySTD
C (25)

The fixed discharging/charging voltages are given in Fig.
9. All averages and standard deviations for the collected dis-
charging/charging voltages can be compared through statistical
analysis.

TABLE I
SEVEN CHARACTERISTICS PARAMETERS

DCVT pattern C1 Standard deviation DCVT
DVT pattern C2 Standard deviation DVT
CVT pattern C3 Standard deviation CVT

DVT pattern C4 Average DVT (f)
C5 Standard deviation DVT (f)

CVT pattern C6 Average CVT (f)
C7 Standard deviation CVT (f)

Standard : 25◦C (discharging/charging) (f) : fixation

C. Characteristic Parameters of the DCVT Pattern

As indicated in Table I, characteristic parameters C1 to C7
are learned by the Hamming network using the average and
standard deviations based on DCVT, DVT, and CVT patterns.

Each value of the seven characteristic parameters corre-
sponding to the nine representative DCVT patterns is trans-
formed into 1 and -1 element array with four levels, as shown
in Fig. 10. If these patterns are not transformed into this
binary form, then the pattern recognition performance can be
distorted by a large real-valued parameter. In Fig. 10, avg is the
average and std is the standard deviation of each characteristic
parameter. The levels of each parameters are decided by three
standard, viz., avg-(α×std), m, and avg+(α×std). The levels
are decided according to the parameter values, as shown in
Fig. 11. For example, if the value is larger than avg-(α×std)
and smaller than avg, the level is L3, and if the value is larger
than avg and smaller than avg+(α×std), the level is L2. α is
a tuning value and is chosen as 0.5 to make the characteristic
difference of nine representative patterns.

D. Pattern Recognition with the Hamming Network

As shown in Fig. 12, the feedforward layer calculates the
inner product between each representative pattern and the cur-
rent pattern. The seven characteristic parameters corresponding
to nine representative DCVT patterns are transformed into
the binary form and stored in the weight matrix W1. The
nine neurons storing the results of the inner product in the
feedforward layer compete with each other to determine a
winner. After this process, only one neuron will have a non-
zero output, and this neuron indicates the representative pattern
closest to the current pattern.

E. Temperature-checking Process

The representative DCVT pattern closest to an arbitrary
DCVT pattern is selected. The outputs for the two layers of
the Hamming network for three unknown DCVT patterns are
shown in Figs. 13, 17, and 18. As shown in Fig. 13(b), the
selected DCVT pattern closest to an arbitrary DCVT pattern
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Fig. 8. Initial starting voltage points (ISVP) fixation.

Fig. 9. Fixed average discharging and charging voltages.

Fig. 10. Four levels as to three standards.

Fig. 11. Characteristics of nine representative patterns.

Fig. 12. Hamming network in this study.

(a)

(b)

Fig. 13. Outputs of two neural network layers (arbitrary 1, selected pattern
30◦C). (a) Feedforward layer. (b) Recurrent layer.

Fig. 14. Temperature-checking process.

1 is the DCVT pattern of 30◦C as the closest match. The
second- closest match is the DCVT pattern of 35◦C. As
aforementioned, one neuron that has a non-zero output is
only selected as the first winner, or best fit, or the winner-
take-all (WTA) operation. Then, two neurons with similar
characteristics compete before the end of the selection of the
first winner. Large differences in characteristics between two
neurons lead to fast convergence to zero for the second winner.
Conversely, small characteristic differences in characteristics
between two neurons lead to slow convergence to zero. Based
on this rule of the Hamming network, it is possible to check the
approximate experimental temperature without a temperature
sensor. The procedure of the temperature-checking process
based on the Hamming network is shown in Fig. 14. When an
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(a)

(b)

Fig. 15. Two plots for discharging/charging voltage-temperature (DCVT)
pattern at an unknown temperature. (a) Current profile. (b) Voltage data.

(a)

(b)

Fig. 16. Two separated voltages from the DCVT pattern at an unknown
temperature. (a) Discharging voltage-temperature (DVT) pattern. (b) Charging
voltage-temperature (CVT) pattern.

arbitrary DCVT patterns is applied as the input pattern, one
DCVT pattern of 30◦C is selected as the closest representative
to the arbitrary DCVT pattern. Due to the 5◦C temperature
interval under experimental conditions, it is well known that
the experimental temperature is in the range of 27.5◦C to
32.5◦C. In addition, as shown in Fig. 13(b), the other DCVT
pattern of 35◦C for the second winner is determined according
to the competition result. Therefore, the experimental temper-
ature can be expected in the range of 30.5◦C to 32.5◦C. For
reference, if the other DCVT pattern of 25◦C was the second
winner, the expected range would be 27.5◦C to 30.0◦C. To
accurately check the experimental temperature, the number
of iterations when the recurrent layer output for the second
winner is zero, after the competition, is required. As shown
in Fig. 13(b), intercept of the recurrent layer output on the
iteration-axis (0-200) for the second winner indicates the num-
ber of iterations. According to the expected temperature range
of 2.5◦C, the difference in elevated or reduced temperatures
per one unit on the iteration-axis is 0.0125◦C (2.5◦C/200).

(a)

(b)

Fig. 17. Outputs of two neural network layers (arbitrary 2, selected pattern
15◦C). (a) Feedforward layer. (b) Recurrent layer.

(a)

(b)

Fig. 18. Outputs of two neural network layers (arbitrary 3, selected pattern
40◦C). (a) Feedforward layer. (b) Recurrent layer.

The starting-temperature point can be determined based on
the selected DCVT pattern for the first winner. With the
number of iterations, the difference in elevated or reduced
temperatures can be obtained. In Fig. 13, the number of
iterations to convergence to zero on the iteration-axis is 90.
Given the first winner of the DCVT (30◦C), the elevated
temperature is 1.12◦C (0.012590). Therefore, the estimated
temperature result using the temperature-checking process
for SOC/capacity estimation and SOH prediction using the
DEKF is 31.12◦C. This shows little difference when compared
to the real temperature of 31◦C. The measured empirical
parameters measured in advance are modified and used as
model parameters [15].

V. VERIFICATION

A. SOC/Capacity Estimation

In this section, SOC/capacity estimation results based on
pattern recognition combined with empirical parameters are
shown in detail. To verify the proposed approach, SOC/
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TABLE II
NUMBERS OF ITERATION, TEMPERATURE ESTIMATED AND DIRECTLY

MEASURED

Number of iteration 90 148 69
First/Second winners 30◦C/25◦C 15◦C/20◦C 40◦C/35◦C

Temperature estimated [◦C] 31.12◦C 16.85◦C 39.14◦C
Temperature measured [◦C] 31◦C 17◦C 39◦C

TABLE III
RESULTS OF ESTIMATED CAPACITY IN DEKF AND EXPERIMENTAL

CAPACITIES DIRECTLY MEASURED

Cell Arbitrary 1
(31.12◦C)

Arbitrary 2
(16.85◦C)

Arbitrary 3
(39.14◦C)

Capacity estimated [Ah] 1.3184 1.1733 1.2874
Capacity measured [Ah] 1.3173 1.1751 1.2861

capacity estimation are performed at three experimental tem-
peratures determined by the temperature-checking process.

Fig. 15(a) shows another scaled-down HEV automotive
current profile was applied to the cell. The collected DCVT
pattern shown in Fig. 15(b) was separated into the discharging
and charging voltages, as shown in Fig. 16. Next, for the
three unknown temperatures, based on the Hamming net-
work, including the temperature-checking process, the suitable
experimental temperature is determined. According to these
temperatures, the pattern changes due to model parameter
variation are implemented at an unknown temperature and
compared with those at room temperature of 25◦C, and used to
implement a few simple techniques [15]. Finally, the obtained
model parameters are used for SOC/capacity estimation. Three
determined temperature results based on temperature-checking
process are shown in Figs. 13(b), 17(b), and 18(b). For the
results, the number of iterations for convergence to zero on
the iteration-axis is 90, 148, and 69, respectively.

The number of iterations and determined temperature using
the first winner pattern are shown in Table II. The estimated
temperature is determined from the first winners of each
recurrent layer and the number of iterations. The SOC and
capacity estimate based on the DEKF for three unknown
cells are compared with those of ampere-hour counting and
measured capacity. Measurements are shown in Fig. 19, and
results are summarized in Table III. At any temperature, the
SOC and capacity estimation results of the DEKF satisfy the
specification within ±5%.

B. SOH Prediction

The direct current internal resistance (DCIR) [16] is defined
as the magnitude of the lumped parameter, namely Ri+RDi f f ,
is used to obtain the SOH based on the pulse power analysis
[7], [8]. Therefore, in order to overcome erroneous SOH
prediction, it is important to know the DCIR variance at
various temperatures. The DCIR experiments were carried
out for DCIR measurement at various temperatures using
10 fresh Li-Ion cells previously used to obtain the DCVT
pattern. The average constant DCIRs of 10 fresh Li-Ion cells
at SOC 60% are shown in Fig. 20. The DCIR increased with
a decrease of temperature. Specifically, the marked difference
in DCIR among the cells is shown below room temperature
and more increased at reduced temperatures of 10-20◦C. The
pattern changes of the DCIR at a specified temperature when
compared with that at room temperature are used to implement

TABLE IV
Maxd Coef, Mind Coef, AND Temp Coef VALUES AT VARIOUS

TEMPERATURES

Temperatures 10◦C 15◦C 20◦C 25◦C 30◦C
Maxd Coef 0.9086 0.9096 0.9105 0.9357 0.9520
Mind Coef 1.0713 1.0654 1.0595 1.0554 1.0307
Temp Coef 0.10 0.15 0.15 0.20 0.15

Temperatures 35◦C 40◦C 45◦C 50◦C
Maxd Coef 0.9662 0.9805 0.9813 0.9822
Mind Coef 1.0291 1.0275 1.0241 1.0208
Temp Coef 0.10 0.05 0.05 0.05

TABLE V
DCIRS OF FULLY FRESH AND AGED CELLS AT VARIOUS TEMPERATURES

Temperature Fully fresh cell DCIR [Ω] Fully aged cell DCIR [Ω]
10◦C 0.12896 0.19724
20◦C 0.07921 0.12617
25◦C 0.05896 0.09875
30◦C 0.05586 0.08719
40◦C 0.04229 0.06824
50◦C 0.03832 0.06221

the DCIR-temperature relation for SOH prediction. First of all,
given average, maximum, and minimum DCIRs among 10 Li-
Ion cells at various temperatures, Maxd Coef and Mind Coef
can be expressed in Eqs. (26) and (27), respectively.

Maxd Coef=
Average DCIR

Maximum DCIR
< 1 (26)

Mind Coef=
Average DCIR

Minimum DCIR
> 1 (27)

Nine coefficients corresponding to experimental temperature
range are each determined at various experimental tempera-
tures (10-50◦C with a 5◦C temperature interval), shown in
Fig. 21 and Table IV. Considering a weighted coefficient
Temp Coef at experimental temperature range of 10-50◦C,
the Maxd(mod) and Mind(mod) can be computed from the
sum of the multiplication between Maxd Coef (Mind Coef )
and Temp Coef in Eqs. (28) and (29), respectively.

Maxd(mod) = Maxd Coef× Temp Coef = 1.0481
(10∼ 50◦C;5◦C interval)

(28)
Mind(mod) = Mind Coef× Temp Coef = 0.9376
(10∼ 50◦C;5◦C interval) (29)

As expressed in (30), the SOH of an arbitrary cell can be
predicted using the selected cell pattern’s DCIR, DCIRselected .

SOH
arbitrary

=

∣∣∣∣DCIRselected−DCIRaged

DCIR f resh−DCIRaged

∣∣∣∣ (30)

where DCIR f resh and DCIRaged are each DCIRs of fully fresh
and aged cells among the 1.3Ah group. Under the identical
experimental condition of Fig. 20, each DCIR of fully fresh
and aged cells are listed in Table V.

Using the determined temperature (31.12◦C) based on the
temperature-checking process, the SOH of an arbitrary cell
can be obtained. The procedure is shown in Table VI.

VI. CONCLUSIONS

Precise SOC/capacity estimation and SOH prediction are
critical for practical applications and to prevent over-charging
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(a) (b) (c)

(d) (e) (f)

Fig. 19. SOC/capacity estimation based on DEKF in comparison with ampere-hour counting and measured capacity. (a)(b) SOC (Initial SOC 0), Capacity
(Initial capacity 1.3889Ah);Unknown cell 1, Arbitrary temperature 31◦C, selected pattern 30◦C. (c)(d) SOC (Initial SOC 0.793), Capacity (Initial capacity
1.1111Ah);Unknown cell 2, Arbitrary temperature 17◦C, selected pattern 15◦C. (e)(f) SOC (Initial SOC 0.5), Capacity (Initial capacity 1.3194Ah);Unknown
cell 3, Arbitrary temperature 39◦C, selected pattern 40◦C.

Fig. 20. Average values of the DCIR at SOC 60% (temperatures: 10-50◦C
with a 10◦C temperature interval.

Fig. 21. DCIR-temperature relation for SOH prediction.

TABLE VI
PROCEDURE FOR OBTAINING THE SOH OF AN UNKNOWN CELL 1 AFTER

THE TEMPERATURE-CHECKING PROCESS (31.12◦C, SOC 27%)

Direct current internal resistance (DCIR)
DCIR f resh/DCIRaged at 30◦C, 40◦C: 0.0559Ω, 0.0423Ω / 0.0872Ω, 0.0682Ω

(X-axis : temperature, Y-axis : DCIR)

y =
(0.0423−0.0559)Ω

(40−30)◦C
(x−40◦C)+0.0423Ω

DCIR f resh at 31.12◦C: 0.0544Ω

y =
(0.0682−0.0872)Ω

(40−30)◦C
(x−40◦C)+0.0682Ω

DCIRaged at 31.12◦C: 0.0851Ω

Average DCIR at 30◦C, 40◦C: 0.0635Ω, 0.0503Ω (Arbitrary cell)

y =
(0.0503−0.0635)Ω

(40−30)◦C
(x−40◦C)+0.0503Ω

Average DCIR at 31.12◦C: 0.0621Ω

Maxd(mod)= 0.9376, Mind(mod)= 1.0481
0.0621/Maxd(mod)=0.0662, 0.0621/Mind(mod)=0.0592
DCIR range of 31.12◦C : 0.0592(DCIRmin) ∼ 0.0662Ω(DCIRmax)

SOH
arbitrary max

=

∣∣∣∣DCIRselected −DCIRaged

DCIR f resh−DCIRaged

∣∣∣∣= ∣∣∣∣ 0.0592−0.0851
0.0544−0.0851

∣∣∣∣≈ 0.8436

SOH
arbitrary min

=

∣∣∣∣DCIRselected −DCIRaged

DCIR f resh−DCIRaged

∣∣∣∣= ∣∣∣∣ 0.0662−0.0851
0.0544−0.0851

∣∣∣∣≈ 0.6156

Predicted SOH range of an arbitrary cell at 31.12◦C : 0.6156∼0.8436

and over-discharging, which may cause permanent internal
damage. This study presents an application of the Hamming
network-DEKF based on pattern recognition for improved
SOC/capacity estimation and SOH prediction at various tem-
peratures. This method avoids the need for repeated measure-
ment of cell parameters before SOC/capacity estimation and
SOH prediction process.
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