164

Journal of Power Electronics, Vol. 12, No. 1, January 2012

| JPE 12-1-21 |

http://dx.doi.org/10.6113/JPE.2012.12.1.164

Scaling Factor Design Based Variable Step Size
Incremental Resistance Maximum Power Point
Tracking for PV Systems

Emad M. Ahmed’ and Masahito Shoyama*

T* Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

Abstract

Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak
array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and
steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to
determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum
power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model
of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The
theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations,
and experimentally using a fixed point digital signal processor (TMS320F2808).

Key Words: Incremental resistance (INR), Linearized model, Maximum power point (MPP), Maximum power point tracking
(MPPT), Scaling factor (N), Small signal stability, Variable step size
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NOMENCLATURE

Photovoltaic module output voltage (V)
Photovoltaic module output current (A)
Photovoltaic module output power (W)
Converter duty cycle at the MPP

Converter duty cycle variation around the MPP
Duty cycle scaling factor

PV module voltage at the MPP

PV module current at the MPP

PV module equivalent resistance at MPP
Steady state inductor current

Converter Input capacitor

Boost converter inductor

converter output capacitor

Load resistance

load terminal voltage (output voltage)
Sampling Time in second

Incremental Resistance actuating error around

MPP
Linearized error variation around MPP
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I. INTRODUCTION

The ever-increasing demand for low-cost energy and grow-
ing concerns about environmental issues has generated enor-
mous interest in the utilization of non-conventional energy
sources such as solar energy [1], [2].

A major challenge in the use of PV is due to its nonlinear
current-voltage (I-V) characteristics, which result in a unique
MPP on its power voltage curve (P-V). The matter is further
complicated by the dependence of these characteristics on
solar irradiation and temperature. Therefore, it is essential
to continuously track the MPP in order to maximize the
output power from a PV system. The subject of MPPT has
been studied in different ways in the literature. Examples of
fuzzy logic, extremum seeking, neural networks, and pilot
cells have been proposed in [3]-[5]. Moreover, the perturb and
observe (P&0), and the incremental conductance INC MPPT
techniques are widely used, due in large part to their lower cost
implementation when compared with other techniques [6].

The main shortcoming of the P&O technique is that, at the
steady state, the operating point oscillates around the MPP
resulting in the waste of some of the available energy. Several
improvements of the P&O algorithms have been proposed in
order to reduce the number of oscillations around the MPP
in the steady state. However, they slow down the response
of the algorithm to changes in atmospheric conditions and
they reduce the algorithm efficiency during rapidly changing
atmospheric conditions [6]. However the INC MPPT algorithm
was designed based on the incremental and the instantaneous
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Fig. 1. Schematic diagram of INC-MPPT equipped with DC-DC Boost
Converter.

conductance values of a PV array. The derivative of the PV
module power Ppy is positive before reaching the MPP, zero
at the MPP, and negative after passing the MPP, as shown in
Fig. 1. The main advantage of INC MPPT is its ability to
efficiently track the MPP without a tendency to deviate from
the MPP due to rapidly changing atmospheric conditions as is
the case with the P&O technique [7].

The INC MPPT algorithm usually uses a fixed step size
perturbation to track the maximum power point (MPP). Thus,
the tracking speed and accuracy are highly depending on the
fixed step size perturbation (AD). The power drawn from the
PV array with a lager step size contributes to faster dynamics
but also exhibits excessive steady state oscillations around the
MPP, resulting in a comparatively low efficiency. However, the
situation is reversed with a smaller step size [8]. Accordingly,
in order to overcome the aforementioned challenge, a variable
step size MPPT has to be adopted to address the tradeoff
between the dynamics and the steady state oscillations. In
the variable step size MPPT schemes, the automatic tuning
equation of the variable step size was proposed to be a function
of the PV power derivative with respect to the PV voltage, as
shown in Fig. 1. The updating variable step size equation has
been written as in the form (1) [8].

dppy

VPy
ppv (k) —ppy(k—1) M
vpv (k) —Vpy (k— 1)
where D(k), and D(k-1) are the converter duty cycles at instants
K, and k-1, respectively. As can be seen from (1), the scaling
factor N adjusts the input signal to a proper magnitude prior to
determining the subsequent step size. Therefore, it is crucial
to design the most appropriate value for the scaling factor N,
which ensures better dynamic and steady state performances.
A bad designing of the scaling factor might lead to undesired
performances such as steady state oscillations and a slower
dynamic response.

The only method proposed in the literature for designing
the scaling factor is in [8]. Although this method can be
considered as a simple method for designing the scaling factor,
it requires a prior analysis of the system for fixed step size
operation. Therefore, this method had neither realized the

D(k)=D(k—1)£N x

=D(k—1)£N x
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Fig. 2. Schematic diagram of INR-MPPT equipped with DC-DC Boost
Converter.

effect of increasing or decreasing the scaling factor on the
system stability and the dynamic performance, nor formalized
a closed form or a straight forward approach for designing
its value. Furthermore, a bad design of the scaling factor will
change the system operation from variable step size mode to
fixed step size mode, which consequently reduces the system
efficiency.

In this paper, in order to design an appropriate value for
the scaling factor N and to study the overall system stability,
the INR MPPT scheme for a PV system has been introduced
in part II. System modeling and analysis, which contain the
converter small signal model, the INR MPPT error lineariza-
tion, and the complete small signal model of a PV system,
have been presented in part III. Part IV introduces MATLAB
simulation results for the proposed small signal strategy with
different values of the scaling factors. Moreover, part V
presents experimental results conducted in the laboratory with
a PV solar panel and a digital signal processor DSP. Finally,
part VI presents the overall conclusion of this study.

II. INR-MPPT SCHEME FOR PV SYSTEM

A schematic diagram of INR MPPT is shown in Fig. 2. The
primary rules for the INR MPPT algorithm can be deduced by
duality from the INC MPPT as follows: the power curve of the
PV module shows that the derivative of the PV module power
PPV is positive before reaching the MPP, zero at the MPP,
and negative after passing the MPP, as shown in Fig. 3. The
derivative of PPV is given in (2), and the resultant equation
for the actuating error e is given in (3).

dppy _ d(vpy xipy) _ dvpy

= = X i 2
dipy diny diny ipy +vpy ()
d
o= ZHV IV 3)
dipy  ipy

Therefore, tracking the maximum power point MPP requires
the updating rule as follow in (4).

1) D(k) =D(k—1)+N x |e(k)| e(k) >0
2) D(k) = D(k— 1) ek)=0 @
3) D(k) = D(k—1) =N x |e(k)] (k) <0

By examining (4), this equation can be implemented by
a simple digital integrator with the error signal e considered
as its input, and a scaling factor N as the integrator gain,
as shown in Fig. 2. The function of the scaling factor gain
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N is to adapt the error signal e to a proper range before the
integral compensator. Since the error signal e becomes smaller
as the operating point approaches the MPP, an adaptive and
smooth tracking can be achieved [9], [10]. In order to design
an appropriate scaling factor value N, which ensures a good
dynamic performance and stability, a small signal model has
to be developed for the overall linearized system around the
MPP.

III. SYSTEM MODELING AND ANALYSIS

A straight forward approach for designing an appropriate
scaling factor and for studying system stability is developing
a linearized model of the overall system around the MPP. The
linearization process for the overall system can be divided into
two main categories. The first one is developing a converter
small signal model with the PV model, and the second one
is linearizing the INR actuating error e around the MPP. Both
categories will be explained in the following subsections.

A. Converter Small Signal Model.

In order to derive a mall signal model of a boost converter
equipped with a PV module around the MPP, the PV module
has been replaced with an equivalent resistance R, [6]. The
state space averaging model of a boost converter equipped
with a PV module at the MPP can be deduced using Fig. 4(a)
and Fig. 4(b) [11].

The small signal transfer function between the output volt-
age (Avpy) as the controlling output and the converter duty
cycle (Ad) as the controlling input can be written as:

—(z1s+22)
Ad  pi153+ pas? 4 p3s+py

A
Goals) = ey

®)

where
21 = VoR Ry Cous

22 = LR Rypp(1—=D) +V,
P1 = RinppCinLR1Cour
P2 = RyppCinL + RLLC 1
p3 = (1= D)*RLRppCin
P4 =11 R Rypp(1—D)+V,
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Fig. 4. Converter equivalent circuit with the PV module during. (a) On state.
(b) Off state.
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Fig. 5. PSchematic diagram of the PV system equipped with Digital INR
MPPT.

Thus the boost converter equipped with the PV module is
modeled around the MPP with a third order system containing
the effects of the PV parameters (R,,,,) and the converter
parameters (Cj,, Cou, L, Rr), as shown in (5).

B. Incremental Resistance error Linearization.

A schematic block diagram of a PV system equipped
with the digital INR MPPT is shown in Fig. 5. The feed
forward loop contains the small signal model of the boost
converter G,;(s) and the discrete controller, which consists of
the discrete integrator and the zero order holder blocks.

Obviously, the dynamic performance and the system stabil-
ity are highly depend on the feedback loop which consists of
the discrete controller G(z) and the converter transfer function
G,q (s). The loop gain can be written as in (6).

—1

Loop gain(s) = G(s) X Gyy(s) x (6)
mpp

where G(s) represent the continuous transfer function of the

discrete controller G(z).

In order to drive the continuous transfer function G(s), the
error signal e should be linearized around the MPP. Therefore,
a straight line has been drawn tangentially to the IV curve. This
line pass through (Vyupp, Inpp). and has a slop of (-Rymp), as
can be seen in Fig. 6. Thus, the straight line equation can be
written here as (7).
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Fig. 6. PV Module Linearization around the MPP.

vpy = vapp —ipy X Rmpp (7N

Using (7), the actuating error e has been linearized by
adapting the Taylor series expansion and retaining only the
linear terms as in appendix (A). Therefore, the linearized
actuating error variation around the MPP is rewritten like (A6)
as:

2R,
= Ae=— (””) Aipy (8)
mpp

Therefore by using (8), the transfer function between Aipy
and Ad can be written in the discrete form, as shown in Fig.

5, as:
_ {ZRmpp] " N ©)
Inpp z—1

Ad(z)
Aipy (z)
Finally, the continuous time expression of the discrete
controller is derived by substituting z = ¢*7 into (9), and then
multiplying (1—e~T)/sTto represent the effect of zero order
holder (ZOH) [9]. The final expression is:
Ad(s) 2Rppp | N x e5T
Aipv (S) N sT
Since the sampling time (7) is very small, the time delay
term e~*7 can be approximated using the Taylor series expan-
sion as (/-sT) and neglecting the higher order terms. Therefore
(10) can be re-written as:
Ad(s) 2Rupp | N x (1—sT)
Aipv (S) o sT
The overall small signal model of the linearized INR MPPT
can be drawn as in Fig. 7. Using the automatic control theory,
the characteristic equation of this system can be derived as:
2N X Ryupp 5 (1—=sT) x (z15+22)
ST X (p1s3 + p2s* + p3s+ p4)
(12)

(10)
Inpp

(1)

Lnpp

Cheq=1+
Inpp

where Cheq represents the system characteristic equation. As
can be seen from (12), the system dynamic stability is highly
dependent upon the scaling factor N and the sampling time
T. Decreasing the sampling time 7 tends to increase the
system loop gain, which leads to duty cycle overcompensation
and hence decreases in system stability. However increasing
the sampling time 7 decreases the system loop gain, which
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Fig. 8. Root-Locus sketch of the overall system model at MPP with scaling
factor (N) variation from O to o (P: pole, Z: zero).

decelerates the tracker performance. However, the effect of
the scaling factor N has not been studied in the literature.

A root-locus plot of the overall system presented by (12),
with the system parameters defined in table 1, is shown in Fig.
8. As can be seen from this plot, increasing the scaling factor N
increases the dc loop gain, which reduces the system stability.
In order to ensure stable operation, the scaling factor should
be designed within the specified limits (0 < N < 0.038).

IV. DIGITAL SIMULATION RESULTS

To validate the above analysis, a MATLAB SIMULINK
model was established for a PV module equipped with a DC-
DC boost converter and a resistive load, as shown in Fig.
2. A small signal model has been established for the PV
system under the standard conditions (1000 W/m?2, 25°C). The
sampling time 7 has been selected to be 0.01s [6]. All of
the system parameters are shown in table 1 [12]. By drawing
the root-locus of this system with the defined parameters, the
boundary values of the scaling factor N are determined as (0
< N < 0.038).

In order to investigate the correctness of the proposed small
signal model for INR MPPT, the performance of a PV system
has been checked with different values of the scaling factor
N. The simulations are configured under exactly the same
conditions. Since selecting a scaling factor N outside the stable
boundary will lead to undesirable conditions, a limiter has
been added to limit the divergence in the duty cycle variation
(Ad). The upper and lower values of this limiter have been
selected as £Ad==%0.05, as shown in Fig. 9.
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TABLE I
PV SYSTEM PARAMETERS (1000 W/M2, 25°C)
Voc (open circuit voltage) 212V
Vimpp (voltage at max power) 17V
Isc (Short circuit current) 325 A
Inpp (current at max power 3.01A
Pypp( maximum power) 51'W
Ci, (input capacitor) 47uF
L (Inductor) 1 mH
Cour (Output capacitor) 47uF
F ( switching frequency) 30 kHz
R (load resistance) 40 Q
I 0.05
Ad =] / —>Ad

limited

Fig. 9. Duty cycle variation limiter.

Three scaling factors have been selected. Two of the values
are in the stability zone (N= 0.004, N= 0.0]) and the other is
in the marginal or instability zone (N= 0.04).

Fig. 10(a) shows the PV module output power when there is
a sudden change in the irradiation density from 1000 W/m’to
600 W/m? at instant 1 sec and then a change back again from
600 W/m? to 1000 W/m? at instant 2 sec. The corresponding
converter duty cycle is shown in Fig. 10(b). It can be seen
from this figure that the steady state response is free from
any oscillation around the MPP and that it has a fast dynamic
response (~ 0.1 sec). Fig. 10(b) shows the converter duty cycle
while tracking the peak power. On the other hand, Fig. 10(c)
and Fig. 10(e) show the dynamic response of the PV system
at N equals 0.01 and 0.04, respectively.

As can be seen from Fig. 10(c), as the scaling factor
increases and gets very close to the boundary values, the
dynamic response of the PV module starts to exhibit steady
state oscillations around the MPP. As a result, a small amount
of the available power is wasted. However, the dynamic
response does not have a large change from the previous state
(at N= 0.004). This can also be noticed in the converter duty
cycle in Fig. 10d. As the scaling factor increases and goes
outside the stability zone, the dynamic response changes to
work as a fixed step size operation which is characterized
by a lower efficiency than the variable step size. Thus, the
variation in the duty cycle changes to have a fixed step size
(0.05). These can be seen in Fig. 10(e) and Fig. 10(f).

By inspecting the previous simulation results, it can be
concluded that selecting a scaling factor outside the stability
zone (N > 0.038), leads to overcompensation in the duty cycle.

Thus, the duty cycle variations deviate from the stability
zone. As a result, the added limiter becomes necessary for
limiting this deviation and changing the operation to fixed step
size. As a consequent, the dynamic operation changes into a
fixed step size operation with a step size equal to the limited
value. However, selecting a scaling factor in the stability zone
ensures a good dynamic response as well as a good steady
state response. Therefore, these simulation results ensure the
feasibility and the validity of the proposed stability analysis
in determining the boundary values of the variable step size
scaling factor.

Journal of Power Electronics, Vol. 12, No. 1, January 2012

V. EXPERIMENTAL RESULTS

The investigation of the proposed small signal stability
analysis has been also evaluated by experiment. A PV power
simulator (Agilent E4360) is used as the PV module. The
PV simulator is programmed to simulate a PV curve for the
simulated model, which is shown in table 1. This was done
by entering the corresponding values Voc, Viupp, Impp, and Is..
The INR MPPT algorithm was configured on a fixed point
12 bit digital signal processor (DSP TMS320F2808) using
the MATLAB SIMULINK toolboxes. The main program was
developed in the MATLAB SIMULINK environment.

The target is programmed using code composer 3.3. A duty
cycle variation limiter with +AD,,,,,==0.05 is introduced. The
start waveforms of the output power are shown in Fig. 11.
Figure 11 shows the dynamic response of the PV system
employed by the INR MPPT with different scaling factors. The
dynamic response of the fixed step size INR MPPT is shown
in Fig. 11(a). Although the tracker has a fast transient response
(10 cycles — 0.1s), the tracker cannot pick up the maximum
power (P,,.x= 51 W) due to its operation with a fixed step size.
The average amount of power extracted is equal to 44.6 W. Fig.
11(b), Fig. 11(c), and Fig. 11(d) show the dynamic response of
the PV module with different the scaling factors 0.002, 0.01,
and 0.04, respectively. As can be seen, a lower scaling factor
ensures a better steady state performance without exhibiting
any steady state oscillations around the MPP, as shown in
Fig. 11(b). However, a lower scaling factor slows down the
transient response to 29 cycles (0.29 s).

Furthermore, by increasing the value of the scaling factor,
the transient response starts to have a fast dynamic response
(10 cycles- 0.1s) and a higher efficiency than the fixed step
size operation, as shown in Fig, 1lc, and Fig. 11(d). On
the other hand, the steady state performance starts to exhibit
steady state oscillations around the MPP, which reduces the
average amount of extracted power. Moreover, it is obvious,
that increasing the scaling factor beyond the stability zone, in-
dicated in Fig. 8, will lead to variable step overcompensation.
Therefore, the variable step size operation has the tendency to
operate as a fixed step size, as can be seen in Fig. 11(d).

To investigate the performance of the variable step size with
different irradiation conditions, a scaling factor (N= 0.002) has
been selected. Fig, 12(a) shows the dynamic response of the
PV module with fixed step size INR MPPT. The dynamic
performance of the PV system exhibits large oscillations
around the MPP. While the variable step size introduces a
better dynamic performance than the fixed step size, these
appear with the higher power generated: at 1000 W/m? the
generated power with a variable step size is 48.8 W and with
a fixed step size it is 44.6 W. Also, at 600 W/m?2, the generated
power with a variable step size is 28.8 W and with a fixed step
size it is 27.6 W.

It is clear from the experimental results, that the dynamic
performance is highly affected by the scaling factor. A bad
design of the scaling factor leads to a worse dynamic response.
However, selecting an appropriate scaling factor ensures high
efficiency tracking and acceptable transient and steady state
performances.
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Fig. 10. PV array output power and the corresponding duty cycle due to irradiation step change with (a),(b) N = 0.004 << 0.038. (c),(d) N =0.01 < 0.038.

(e),(f) N =0.04 > 0.038.

VI. CONCLUSION

A new stability analysis for INR MPPT has been presented
in this paper. The proposed analysis depends on developing
an overall small signal model of the PV system around the
MPP. The small signal model of the PV system consists of
the PV module, the boost converter, and the discrete INR
MPPT. Using the root locus technique, or any other stabil-
ity analysis technique, an appropriate value for the scaling
factor, which ensures a good dynamic performance, can be
designed. The feasibility of the suggested stability analysis has
been verified by simulations with the MATLAB SIMULINK
toolbox and experimentally using a digital signal processor
(DSP TMS320F2808). As a future work this method will be
investigated for its applicability to PV grid connected storage

systems.

APPENDIX
The error signal (driving signal) is rewritten here as:
__dvpy | vpy
e -—
Lpy

= Al

Linearizing e around (Vyupp, Impp) using the Taylor series
expansion and neglecting the higher order terms leads to:

. d(vey,ipry)
e = e(vpv,lpv)\(vm,,p,z,,,,,,,) W S (vev = Viupp)
mpp-tmpp
d(vpy,i
+ M (iPV - Impp)
dipy

(le’l’ ‘Iml’ﬁ )

(A2)
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Thus, by using (Al), the linearized equation becomes:
dv % 1
€= (d.PV + PV) + — (VPV _Vmpp)+
tpy tpy (Vinpp Impp) tpv (Vinpp Impp)
—Vpv .
2 (ipv — Impp)
PV (Vmp[u[mpp) (A3)
Substituting in (A3) and using (7) leads to:
1
e= (—Rmpp +Rmpp) + Ii(VPV - Vmpp)
—V, nep (A4)
+Tpp (iPV - Impp)
mpp

Substituting vpy from (7), and using the fact that Ry, =

Vmpp/Impp
. *Vmpp .
= e = ——(2Vupp — irvRupp — Viupp) + —5— (irvy —
Impp ImPI’
Inpp)
1 . _Vmpp .
== e= Ii(vmpp —ipyRupp) + j2 (ipv — Impp)
mpp mpp
R V,
e=2Rypp— mpp # ipy
Impp Impp

For further compression:

2R .
= e :2’Rmpp— ( ; mPP) ipy
mpp

Thus, the linearized actuating error variation around the
MPP is written as:

(A5)

(A6)
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