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Abstract 

 

This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted 
permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based 
controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque 
value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking 
controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is 
asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a 
better transient behavior and less sensitivity under model parameter variations than the conventional PI control method. 
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I. INTRODUCTION 
 

With the rapid growth of high-speed switching devices and 
digital signal processors (DSP), permanent magnet 
synchronous motors (PMSM) are increasingly employed in 
numerous industrial applications due to their many benefits 
such as fast dynamics, high efficiency, low inertia, high 
power density, robustness, etc [1]-[14]. However, it is not 
easy to achieve a fast transient response and robust 
performance with a PMSM due to their nonlinearities, 
unmodeled disturbances and motor parameter variations. 
Hence, it is generally well-known that linear control 
strategies such as PI control and LQ regulators cannot 
guarantee a sufficiently high performance throughout the 
entire operating range. Accordingly, nonlinear control 
schemes, e.g., the adaptive control method [4]-[6], the 
nonlinear feedback linearization control method [7]-[8], and 

the sliding-mode control method [9]-[11], have become an 
alternative solution to accurately control the position or speed 
of a PMSM. Lately, some papers have reported fuzzy control 
schemes [12]-[14] which take into consideration the 
nonlinearities or uncertainties of a PMSM. Even though some 
of the previous PMSM fuzzy control methods show good 
results, most of them use the heuristics-based fuzzy model. In 
addition, almost all of the previous methods lack systematic 
stability analysis and controller design. 

Based on the Takagi-Sugeno (T-S) fuzzy model, a fuzzy 
tracking controller and a fuzzy rotor angular acceleration 
observer have been proposed that can precisely track the 
desired trajectory of a PMSM. Unlike previous fuzzy 
methods [12]-[14], the control design method and stability 
analysis are systematically introduced. First, the LMI 
existence conditions are derived to obtain the gains for the 
fuzzy tracking controller and the fuzzy acceleration observer. 
It is then analytically proven that the observer-based fuzzy 
tracking control system is exponentially stable. To 
demonstrate the effectiveness of the proposed control 
algorithm, simulation and experimental results are presented 
under model parameter variations. 
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SPMSM model. In Section III, the design of a fuzzy controller 
and a fuzzy angular acceleration observer is addressed in 
detail. The stability of the observer-based fuzzy control 
system is analyzed in Section IV. Section V presents the 
simulation and experimental results. Finally, conclusions are 
given in Section VI. 

 
 

II. SPMSM MODEL 
 

The mechanical and electrical equations of a 
surface-mounted PMSM (SPMSM) in the rotor reference 
frame can be represented by: 
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where, TL denotes the load torque,  is the electrical rotor 
angular position, ω is the electrical rotor angular speed, iqs is 
the q-axis current, Vqs is the q-axis voltage, ids is the d-axis 
current, Vds is the d-axis voltage, p is the number of poles, Rs 
is the stator resistance, Ls is the stator inductance, J is the 
rotor inertia, B is the viscous friction coefficient, λm is the 
magnetic flux, and ki > 0, i = 1 - 6 are the parameter values 
given by: 
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The above model (2) does not need the load torque value 
but it does need the angular acceleration information. 
Unfortunately, accurate knowledge of rotor acceleration is 
usually not available in industrial applications since an 
accelerometer is expensive and the differentiated speed is 
sensitive to noise. Therefore, this study focuses on designing 
a state feedback control law and an acceleration observer for 
the system model (2). 
 
 

III. DESIGN OF THE FUZZY TRACKING 
CONTROLLER AND THE FUZZY 

ACCELERATION OBSERVER 

A. Fuzzy Tracking Controller Design 
The concept behind T-S fuzzy modeling is summarized as 

follows. First, a nonlinear system is divided into r simple 
local linear subsystem models with r operating points, and 
then the local linear model for each of the operating points is 
obtained by using a linearization technique [15]-[17]. 

The control inputs (Vqs, Vds) are defined as: 
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where, uq and ud are the linearizing control terms to 
compensate for the nonlinearities of a PMSM, and uqfb and 
udfb are the feedback control terms to stabilize the error 
dynamics. 

Next, let the position error (e), speed error (ωe) and 

acceleration error (e) be defined as: 
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In this paper, the following assumptions are used to design 

a fuzzy tracking controller and a fuzzy angular acceleration 
observer: 

By introducing a T-S fuzzy model, the PMSM model (2) 
can be approximated by a third-order r-rule fuzzy model. In 

this paper, the motor speed  is selected to be a scheduling 
variable. From (2) to (4), the ith rule of a T-S fuzzy model is 
represented by the following: 

 

A1: , iqs, ids are available. 

A2:  is unknown and  can be set as 0. LT LT  

System Rule i: IF ω is Fi, THEN A3: The desired trajectories are bounded.  ddddd   ,,, 
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(1) will be transformed to a model with the rotor angular 
acceleration as a state variable. The electrical angular 
acceleration is defined as   . Then the following model 

can be obtained from (1) and A2: 
 

dsqsdsds

qsdsqs

Vkiiki

Vkkikkkikkk

64

61151412






















        (2) 

 

where, Fi (i = 1 - r) denote the fuzzy sets that are 
characterized by the membership function mi(ω), r is the 
number of fuzzy rules, and Wi is the ith operating point. By 
using a standard fuzzy inference rule, the following global 
nonlinear model can be derived:  
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Fig. 1.  Block diagram of the proposed fuzzy tracking controller. 
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The global fuzzy model (6) can be rewritten in a 

state-space form as: 
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Assume that the local tracking controller is represented by 
the following controller. 
 

Controller Rule i: IF ω is Fi, THEN 
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where, Ki ∈ R2×4 denotes the controller gain matrices. Then, 

the final fuzzy tracking regulator can be expressed by the 
weighted average of each local controller as follows: 
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Fig. 1 shows a block diagram of the proposed fuzzy tracking 
controller and the closed-loop control system is given in the 

following equation: 
 

xBKAhx ii

r

i
i )()(

1




             (10) 

 

Next, to obtain the gain of the fuzzy tracking regulator, 
assume that the following LMI condition is feasible: 
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where, X ∈ R4×4 and Yi ∈ R2×4 are decision variables and   
0 is the minimum decay rate. Also, assume that the gain 
matrices Ki are calculated by the following equation: 
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If there is a solution (X, Yi) to satisfy (11), there also exists 
a matrix Qc > 0 such that: 
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where, Pc = X-1. If the Lyapunov function is defined as Vc(x) = 
xTPcx, its derivative with respect to time is given by: 
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Therefore, the fuzzy controller is exponentially stable 
because the state error converges to zero with a minimum 

decay rate . This means that the LMI condition (11) is 
feasible for (X,Yi), the gain matrices Ki are given by (12) [18]. 
Then, x converges exponentially to zero. 

 
B. Fuzzy Acceleration Observer Design 

The proposed fuzzy control system is very insensitive to 
load torque variations because the system model (2) does not 
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require the load torque value TL. However, the fuzzy 
controller shown in (9) requires the rotor angular acceleration 
β which is very difficult to obtain in real industrial 
applications. In this section, a fuzzy acceleration observer 
which can accurately estimate β will be described. Assume 
that the local acceleration observer is represented by the 
following linear observer: 

Fig. 2.  Block diagram of the proposed fuzzy acceleration 
observer. 

 
Observer Rule i: IF ω is Fi, THEN 
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Thus the final fuzzy observer can be written as the 
weighted average of each of the local observers below and 
Fig. 2 depicts a block diagram of the proposed fuzzy 
acceleration observer. 
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By using the fuzzy plant model (7) and the fuzzy observer 
model (16), the following error dynamics can be obtained: 
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where, z = xc – xo. 
 

Next, to obtain the gain of the fuzzy acceleration observer, 
assume that the following LMI condition is feasible: 
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where, Po ∈ R3×3 and Zi ∈ R3×2 are the decision variables 

and   0 is the minimum decay rate. Also assume that the 
observer gain matrices Li are given by the following equation: 
 

ioi ZPL 1                    (19) 

If there is a solution (Po, Zi) to satisfy (18), there also exists 
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If the Lyapunov function is defined as Vo(z) = zTPoz, its 
time derivative along the error dynamics (17) is given by: 
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Consequently, the fuzzy observer is asymptotically stable 
because the estimation error exponentially converges to zero 

with a minimum decay rate . This means that the LMI 
condition (18) is feasible for (Po, Zi), and the gain matrices Li 
are calculated by (19) [18]. Then, z converges exponentially 
to zero. 

IV. STABILITY ANALYSIS OF THE 
OBSERVER-BASED FUZZY CONTROL 

SYSTEM 
 

In this section, the stability of the augmented control 
system, including the fuzzy tracking controller and the fuzzy 
angular acceleration observer, is analyzed. Assume that the 
observer-based control system is exponentially stable. 
Furthermore, if the fuzzy controller and the fuzzy observer 
can be independently designed, the following theorem is 
obtained. 

 
Theorem 1: Assume that the LMI conditions (11) and (18) 
are feasible, and that the following observer-based control 
law is used instead of (9): 
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where, and  is the rotor 

acceleration error estimated by the fuzzy observer (16). Thus 
x and z exponentially converge to zero. 
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TABLE I 

SPMSM PARAMETERS 

Number of poles (p) 12 
Rated power (Prated) 750 [W] 

Rated phase current (Irated) 3.94 [A] 
Rated torque (Trated) 3.87 [Nm] 
Stator resistance (Rs) 0.99 [Ω] 
Stator inductance (Ls) 5.82 [mH] 

Magnetic flux (λm) 7.9210-2 [Vsec/rad]
Equivalent inertia (J) 1.2110-3 [kg  m2] 

Viscous friction coefficient (B) 0.310-3 [N msec/rad]
Load torque (TL) 1 [Nm] 

 
which guarantees that the LMI (18) is always feasible and a 
solution is given by P=P0, Zi= P0Li. Similarly, it can be easily 
shown that the LMI (11) is always feasible. 

Define the Lyapunov function as V(x, z) = xTPcx + zTPoz 
where, ζ is a sufficiently large scalar, and Pc and Po satisfy 
the LMIs (11) and (18). Its time derivative is expressed as: 

  

 

zxzQxQ

zQEzBKPhx

xBKAPhx

zCLAPhzxBKPhx

xAPhxzPzxPxzxV

oc

o

r

i
ici

T

r

i
iici

T

icio

r

i
i

T
r

i
eici

T

r

i
ici

T
o

T
c

T





































2)()(

)()(2

)()(2

][)(2)(2

)(222,

2
min

2
min

2
min

1

1

11

1



(23) 

V. VERIFICATIONS 
 

To evaluate the performance of the proposed control 
scheme, simulation and experimental results are presented. 
Table I shows the nominal parameter values for a prototype 
PMSM. From the parameters the following dynamic 
equations can be obtained: 
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 In this paper, a fuzzy controller and a fuzzy angular 

acceleration observer that guarantee the minimum decay rate 
α = 500 will be designed. The PMSM model (27) is 
approximated by using the following two-rule fuzzy model: 

Remark 1: It should be noted that the LMIs (11) and (18) are 
always feasible and thus the problem of designing Ki and Li is 
always feasible. If Li is set as: 
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Fig. 3.  Normalized membership functions (h1(ω) and h2(ω)). 
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functions are chosen based on knowledge and experience. 
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Fig. 4.  Overall block diagram of the proposed control system. 

 
where, W1 = −W2 = WR = 1000 and μ = 1/WR

2. Fig. 3 shows 
the normalized membership functions used in this paper. By 
solving the LMI condition (18), the following solution (Po, 
Zi) can be obtained. 
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As a result, the acceleration observer gains can be 

calculated by (19). 
 

 

Fig. 5.  Simulation results of the proposed method with nominal 
parameters. 
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By solving the LMI condition (11), the following solution 

(X, Yi) can be obtained: 
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 The following controller gains can be obtained by using 

(12). 
Based on the controller and observer gains given above, 

simulations and experiments are executed to verify the 
proposed control algorithm. Fig. 4 shows an overall block 
diagram of the proposed control system. As can be seen in 
Fig. 4, it is composed of a PMSM, an encoder, a brake, a 
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Fig. 6.  Simulation results of the proposed method with 150% 
variations of some parameters (Rs and Ls). 

  

Fig. 9.  Simulation results of the conventional PI method with 
150% variations of some parameters (Rs and Ls). 

  

Fig. 7.  Simulation results of the proposed method with 150% 
variations of some parameters (Rs and Ls) when the load torque 
suddenly changes. 

  
 

Fig. 10.  Simulation results of the conventional PI method with 
150% variations of some parameters (Rs and Ls) when the load 
torque suddenly changes. 

three-phase PWM inverter, and a TMS320F28335 DSP. In 
this paper, the space vector PWM (SVPWM) technique is 
employed due to its well-known benefits, and the PWM 
frequency is chosen as 5 [kHz].  

The proposed control method has been simulated using 

Matlab/Simulink. Figs. 5 and 6 show the simulation results 
(ωd, ω, Vqs, Vds, iqs, ids, Van, ia) for the speed transient 
responses under the nominal parameters and 150% variations 
of some parameters (Rs and Ls). Fig. 7 shows the simulation 
results for the torque response under 150% variations of some 
parameters (Rs and Ls). It should be noted that Figs. 6 and 7 
are given to show the robustness of the proposed control 
scheme. Fig. 6 shows the speed transient behavior with 150% 
variations of some parameters (Rs and Ls) when the desired 
speed (ωd) suddenly changes and the load torque (TL) is 

constant, i.e., ωd = 125.67 [rad/sec]  251.33 [rad/sec]  

125.67 [rad/sec] and TL = 1 [Nm]. Fig. 7 shows the torque 
transient response with 150% variations of some parameters 
(Rs and Ls) when the desired speed (ωd) is constant and the 
load torque (TL) changes with a step, i.e., ωd = 251.33 

[rad/sec] and TL = 1 [Nm]  2 [Nm]  1 [Nm]. In Figs. 6 
and 7, the proposed observer-based fuzzy controller shows 
very good control performance under model parameter and 
load torque variations. 

 

Fig. 8.  Simulation results of the conventional PI method with 
nominal parameters. 



            T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with …         301 

 

 
(a) Desired speed (d), measured speed () and speed error (e) 

 

 
(b) Control voltage inputs (Vqs, Vds) 

 

 
(c) q-axis current (iqs) and d-axis current (ids) 

 

 
(d) Phase a voltage (Van) and phase a current (ia) 

Fig. 11.  Experimental results with the proposed method under 
nominal parameters. 

 
(a) Desired speed (d), measured speed () and speed error (e) 

 

 
(b) Control voltage inputs (Vqs, Vds) 

 

 
(c) q-axis current (iqs) and d-axis current (ids) 

 

 
(d) Phase a voltage (Van) and phase a current (ia) 

 

Fig. 12.  Experimental results with the proposed method under 
150% variations of some parameters (Rs and Ls). 
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(a) Desired speed (d), measured speed () and speed error (e) 

 

 
(b) Control voltage inputs (Vqs, Vds) 

 

 
(c) q-axis current (iqs) and d-axis current (ids) 

 

 
(d) Phase a voltage (Van) and phase a current (ia) 

Fig. 13.  Experimental results with the conventional PI method 
under nominal parameters. 

 
(a) Desired speed (d), measured speed () and speed error (e) 

 

 
(b) Control voltage inputs (Vqs, Vds) 

 

 
(c) q-axis current (iqs) and d-axis current (ids) 

 

 
(d) Phase a voltage (Van) and phase a current (ia) 

Fig. 14.  Experimental results with the conventional PI method 
under 150% variations of some parameters (Rs and Ls). 
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For a comparison of the proposed control methodology, the 
conventional PI control method has also been implemented 
using Matlab/Simulink under the same conditions as the 
proposed control method. The conventional PI-PI controller 
used in this paper contains two PI loops; the PI speed 
controller in an outer loop and the PI current controller in an 
inner loop. Also, the PI gains of the speed controller and the 
current controller are determined based on the general tuning 
rule [19]-[21]. Figs. 8 to 10 show the simulation results of the 
conventional PI-PI controller under the same conditions as in 
Figs. 5 through 7. Figs. 8 and 9 show the transient response 
when the desired speed (ωd) varies. In these figures, the speed 
response has a larger overshoot (6.57% and 7.32%, 
respectively) and a longer settling time (0.06 s and 0.07 s, 
respectively). Fig. 10 shows the transient response when the 
load torque (TL) suddenly changes. In this figure, the motor 
speed (ω) is shown to be more unstable during transients than 
the proposed control method. 
In real PMSM drives, the motor parameters always change 

according to operation conditions even though they are given 
to be constant in simulation studies. Moreover, it is very 
difficult to directly change the motor parameters in 
experiment even if they can easily be changed in simulations. 
As an alternative to motor parameter variations in a real 
PMSM, the parameters can be simply changed in the 
proposed control scheme. Therefore, in this paper, the system 
parameters are changed in the controller instead of changing 
the real system parameters of the motor in order to 
experimentally verify the performance of the controller under 
150% variations of some motor parameters (Rs and Ls). Figs. 
11 to 12 show the experimental results of the proposed 
control method under the same conditions as in Figs. 5 and 6, 
respectively. Meanwhile, Figs. 13 to 14 show the 
experimental results of the conventional PI control method 
under the same conditions as in Figs. 8 and 9, respectively. 
Figs. 11 (a) to 14 (a) show the desired speed (ωd), the 
measured speed (ω) and the speed error (ωe). Figs. 11 (b) to 
14 (b) show the control voltage inputs (Vqs, Vds). Figs. 11 (c) 
to 14 (c) show the measured q-axis current (iqs) and the d-axis 
current (ids). Figs. 11 (d) to 14 (d) show the phase a voltage 
(Van) and the phase a current (ia). 

Simulation and experimental results demonstrate that the 
proposed fuzzy control algorithm can accomplish good speed 
control performance such as no overshoot, zero steady-state 
errors, and a fast transient response in comparison with the 
conventional PI control scheme. Therefore, it can precisely 
and quickly track the reference trajectory of a SPMSM under 
motor parameter and load torque variations. 

 

VI. CONCLUSIONS 
 

A fuzzy tracking controller as well as a fuzzy rotor 
acceleration observer are proposed in order to accurately 

follow the desired speed of a PMSM. The proposed 
observer-based fuzzy tracking control system is insensitive to 
load torque variations since it does not require the load torque 
value. The LMI sufficient conditions were derived to obtain 
the gains for both the fuzzy controller and the fuzzy observer. 
The stability of the observer-based fuzzy tracking controller 
was analytically proven. Simulation and experiment results 
validate that the proposed control scheme can precisely track 
the desired trajectory of a PMSM in spite of model parameter 
and load torque variations. The final remarks should be made. 
A similar method was proposed in [22] but it cannot be 
directly applied to a trajectory tracking problem. Also, the 
feasibility of the design problem was not shown in [22]. 
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