
A Novel DC Bus Balancing of Cascaded H-Bridge Converters in …                      567 
 

http://dx.doi.org/10.6113/JPE.2012.12.4.567 
 
 

 

JPE 12-4-6 

A Novel DC Bus Voltage Balancing of Cascaded 
H-Bridge Converters in D-SSSC Application 

 

Mehdi Saradarzadeh*, Shahrokh Farhangi†, Jean-Luc Schanen**, David Frey**, and Pierre-Olivier Jeannin** 
 

†*Power Electronic Lab., School of Electrical and Computer Eng., University of Tehran, Tehran, Iran 
**

Abstract 

G2ELAB, CNRS UMR 5269, BP 46, 38402, Saint Martin d’Hères, France 
 

 

 
This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a 

Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control 
the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells 
DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM 
signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is 
independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation 
index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of 
phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is 
immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and 
experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.  
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I. INTRODUCTION 
 

In the conventional electrical distribution network, the 
feeders are arranged in the radial format to supply the 
customers. Nowadays, small power plants and Distributed 
Generations (DGs) are growing fast to avoid installing new 
bulk power plants. These DGs are directly connected to the 
medium voltage network. The configuration of conventional 
electrical distribution systems may limit the production rate of 
DGs and needs to change to the looped or even meshed grid 
topology, which utilizes a power electronic device to manage 
the power flow. A Distribution Static Synchronous Series 
Compensator (D-SSSC) is a series converter which is used to 
loop the radial configuration and is able to control the power 
flow between the connected feeders [1], [2]. By means of 
multilevel converter topologies, the D-SSSC can be connected 
directly to the medium voltage level, omitting the bulky and 

costly transformer [3].  
In recent years, the use of multilevel topologies is growing 

as a result of increasing the need to process power at the 
medium voltage levels. The most famous multilevel converters 
are diode clamp, flying capacitor and cascaded H-bridge 
converters [4]. Among them, the cascaded H-bridge converter 
is the best solution for certain type of application as a matter of 
its modularity, simple control and less elements. But its 
drawback is the necessity of isolated DC buses and keeping 
them balanced regardless of discrepancy in the components, 
losses or different loads connected to H-bridge cells. 
Fortunately in D-SSSC application the isolation transformer for 
supplying the DC buses can be avoided, and only the buses 
should be balanced. 

 Many methods to balance the DC bus voltages of cascaded 
H-bridge cells are proposed in the literatures, especially for the 
FACTS devices. In [5]-[9] the DC bus balancing of cascaded 
H-bridge as a STATCOM is discussed.  In [6] an observer is 
designed to keep the voltage balancing between the cells, 
whereas the control strategy seems to be hard to implement. By 
controlling the active and reactive power of each cell separately, 
the voltage balancing is achieved in [7], where the procedure 
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complexity increases because of calculating the active and 
reactive power of each cell. In [8] a swapping technique is used 
to establish DC balancing, where hierarchy of each H-bridge is 
swapped sequentially with the period of the fundamental 
frequency. This method is able to only compensate the 
unbalancing effect of its main control strategy. In [9] a 
feedback control strategy for balancing individual DC 
capacitor voltages, based on detailed small-signal model is 
presented, and the effect of the method is shown for three 
different mode of STATCOM operation. Expanding this 
method to different switching frequency and H-bridges with 
different number of cells is quite challenging. The references 
[10] and [11] propose a balancing method for other 
applications of cascaded H-bridge, where in [10] both the low 
frequency (stepped modulation) and high frequency 
[pulse-width modulation (PWM)] switching methods are 
utilized to provide DC balancing for a cascaded H-bridge 
rectifier. In [11] two modulation strategies are introduced to 
keep balancing between cells for an asymmetric cascaded 
H-bridge which the power drawn from all of the DC sources 
are balanced except for the DC source used in the first 
H-bridge by using a rotating switching function.     

In this paper a novel method to balance the DC bus voltages 
in a cascaded H-bridge inverter is introduced. This method is 
based on applying slightly different modulation index for each 
cell, while keeping the output voltage almost unchanged. The 
method needs only the line current sign and is independent of 
the main control strategy. This method can be used for the 
cascaded H-bridge with any number of cells. According to the 
current sign and injected voltage reference, each cycle is 
divided in 4 quarters. The impact of modulation variation in the 
DC bus voltage of the H-bridge cell in D-SSSC application is 
determined and applied to it for balancing the DC bus voltages. 
As a result of controlling the total DC bus voltage 
independently from individual cells, the method can still keep 
balancing if one cell is bypassed or shorted. Simple 
implementation with low computational efforts, using 
conventional modulation strategy, expandability for cascaded 
H-bridge with different cell numbers and working in faulted 
condition are the major advantages of the proposed method. 

 
 

II. D-SSSC TOPOLOGY 
 

Fig. 1 shows the 7 level cascaded H-bridge which is used as 
D-SSSC and is in series with a line. The D-SSSC acts as a 
capacitive or inductive impedance to control power flow 
between two feeders from different substations. As 
demonstrated in Fig. 2 the injected voltage, VS, is composed of 
VS_q and VS_d which are respectively the components in 
quadrature and in phase with the line current. The in phase 

component can be used to maintain DC bus voltage and the 
quadrature component is used to resemble a capacitive or 
inductive impedance to control the power flow. 

The block diagram of the power flow control strategy for 
each phase is shown in Fig. 3. The reference value of active 
power (reactive power or line current) is compared with its 
actual value generating the active power (reactive power or 
current) error. The modulation index of the quadrature injected 
voltage, uq_max, is generated using a PI controller. 

The output of PI controller is used to identify the D-SSSC 
operation mode. The line current increases when the injected 
voltage decreases the line impedance by inserting a lower 
inductive impedance or higher capacitive impedance, and vice 
versa.  

A PLL is used to identify the line current phase. When the PI 
controller output is negative the injected voltage has +90o 
phase shift with respect to the line current (inductive mode), 
while it will be -90o

Another control loop is used to maintain the DC bus voltage 
at its reference value. The reference voltage is compared to the 
actual value (the sum of capacitor voltages) and, using a PI 
controller, the in phase component of injected voltage (u

 if the PI controller output becomes positive 
(capacitive mode). 

d_max
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Fig. 1. Seven level cascaded H-bridge as a D-SSSC. 
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Fig. 2. Injected voltage and line current phasor diagram. 
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amplitude within its proper range. The reference value for the 
PWM generator is developed by adding two output signals 
together. 

As demonstrated the total value of DC bus voltages is 
controlled by the main control strategy. The Modulation 
Management Unit (MMU) which is proposed in this paper 
provides cell switches command and DC bus balancing which 
is presented in the next section. 

 

III. MODULATION MANAGEMENT UNIT 
 

A. Modulation Strategy 
Modulation of any carrier based PWM strategy is quite 

challenging. The popular modulation strategies are Phase Shift 
Carrier PWM, Phase Disposition Carrier PWM and Phase 
Opposition Disposition Carrier PWM. Phase Shift Carrier 
PWM is more common because of its lower harmonic contents. 
The sinusoidal reference waveforms for the two legs of each 
cell are phase shifted by 180o while each cell carrier is phase 
shifted by 180o/N, where N is the number of H-bridges. This 
modulation strategy leads to cancellation of all carrier and 
associated sideband harmonics up to the 2Nth

 

 carrier group [12], 
[13]. To balance the DC bus voltages of a cascaded H-bridge, 
each cell reference voltage is derived separately in the 
proposed scheme.  

B. H-Bridge Capacitor Sizing 
The DC bus capacitor should be selected according to the 

required DC bus voltage ripple. Fig .4 shows a cell of a 
cascaded H-bridge converter where the output voltage can be 
+E, 0, -E regarding the switches states. 

As demonstrated in Table I the capacitor can be charged 
when the output voltage is +E and the current is positive or the 
output voltage is –E and the current is negative. Also the 
capacitor discharges when the output voltage is +E and the 
current is negative or the output voltage is –E and the current is 
positive. When the output is zero, the capacitor is not able to 
charge or discharge by the system current.  

1C
1S

2S

3S

4S

E
OV

I

 
Fig. 4. An H-bridge cell of a cascaded H-bridge multilevel 
converter. 

TABLE I 

H-BRIDGE SWITCHING STATE 

S S1 S2 S3 
Output 
Voltage 4 

Line Current 
Sign 

Capacitor 
State 

1 0 0 1 +E 
+ Charging 
- Discharging 

0 1 0 1 0 
+ Constant 
- Constant 

0 1 1 0 -E 
+ Discharging 
- Charging 

1 0 1 0 0 
+ Constant 
- Constant 

 
So these features of an H-bridge can be used to change its 

DC bus voltage by modifying the modulation index which is 
introduced as follow: 

 Fig. 5(a) shows the line current and first harmonic of the 
injected voltage of an H-bridge cell where there is +90o degree 
phase shift between them. The DC bus voltage during this 
injection is shown in Fig. 5(b) where it consists of a dc part, 
Vdc and a 2ω peak-to-peak ripple, VR. The voltage ripple can 
be calculated using the energy equivalence assumption. The 
DC bus capacitor CT has a total energy, EC(t), composing a DC 
component Edc and ac component Eac

The ac energy of capacitor can be determined via net ac 
power flowing into and out of the capacitor as mentioned in 

(t). 
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Fig. 3. Block diagram of D-SSSC control strategy 
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(1). 

( )( ) ( ) ( )ac i oE t p t p t dt= −∫             (1) 

As there is no external source to charge the capacitor the 
pi

( ) sin( ) sin( )
2o m mP t V t I t πω ω= ±

(t) is equal to zero. The injected voltage of converter is 
always in quadrature to the line current. So the output power 
can be derived as (2) and the capacitor ac energy is equal to 
(3): 

           (2) 

( ) sin(2 )
4 2
m m

ac
V IE t t πω
ω

= ±              (3) 

The peak-to-peak ripple in the capacitor voltage, VR is 
related to the ΔEC

 

 which is indicated in (4): 

2 21 ( ) ( )
2 2 2 2

m mR R
C T dc dc

V IV VE C V V
ω

 ∆ = + − − =  
   (4) 

So the peak-to-peak ripple in the capacitor is derived as (5): 

2
m m

R
dc

V IV
CVω

=                  (5) 

By replacing the peak voltage according to the modulation 
index, Vm=MVdc

2
m

R
MIV

Cω
=

 , the peak-to-peak ripple becomes as (6): 

                   (6) 

Where the capacitor can be sized from (6) to have proper 
peak-to-peak voltage ripple. 
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Fig. 5. (a) injected voltage and line current, (b) DC bus voltage without using balancing procedure, (c) DC bus voltage with balancing 
in one quarter of line period, (d) DC bus voltage with balancing in all the quarters of line period. 
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C. Balancing Procedure 
As demonstrated in Fig. 5(c) if the modulation index is 

changed to (M+ΔM) only for a quarter of cycle, where the 
current and voltage are positive,  the peak-to-peak voltage 
ripple for that quarter will be changed to V'

R1

'
1

( )
2

m
R

M M IV
Cω

+ ∆
=

, where: 

              (7) 
 

The time expression of new capacitor voltage is given in (8):  
'
1( ) cos(2 )

2
R

C dc R R
VV t V V V tω= − + +         (8) 

The DC bus voltage of the capacitor is derived as (9): 

'
1 1

0

1 ( )
T

DC C dc R RV V t dt V V V
T

= = − +∫         (9) 

Substituting the VR and V'
R1

1 2
m

DC dc
MIV V

Cω
∆

= +

 in (9) from (6) and (7), the new 
DC bus voltage is obtained as (10). 

             (10) 

So by applying a change of ΔM in the modulation index 
only for a quarter of cycle a new DC bus voltage is obtained. 
Considering (10), a positive ΔM will increase the DC bus 
voltage and negative one decrease the DC bus voltage. Note 
that if the same variation in modulation index has been applied 
to all quarters of a cycle the DC part of capacitor voltage would 
stay constant and only its ripple would change.  

Fig. 5(d) shows the same modulation changing procedure for 
all four quarter of cycle where for the first and third quarter 
(where the capacitor is charging) the modulation index is 
changed to (M+ΔM) while for the second and fourth quarter 
(where the capacitor is discharging) is changed to (M-ΔM). 
The peak-to-peak voltage ripples will be derived as 

'
1

( )
2

m
R

M M IV
Cω

+ ∆
=  and '

2
( )

2
m

R
M M IV

Cω
− ∆

= . 

The time expression of capacitor voltage becomes as (11). 
' '
1 2( ) 2 2 cos(2 )

2
R

C dc R R
VV t V V V tω= + − +       (11) 

The DC bus voltage of the capacitor in this case is denoted 
as VDC4

4
0

' '
1 2

1 ( )

2 .2 2

T

DC C

m
dc R R dc

V V t dt
T

M IV V V V
Cω

= =

∆
+ − = +

∫

 and is derived as (12). 

     (12) 

As it is clear the effect of modulation changing becomes 4 
times of the changing in one quarter. The same procedure can 
be done for applying this technique in 2 or 3 quarters which 
will result to the DC bus voltages of (13) and (14), 
respectively. 

2
m

DC dc
MIV V

Cω
∆

= +               (13) 

3
3

2
m

DC dc
MIV V

Cω
∆

= +              (14) 
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Fig. 6. Balancing method block diagram. 

 
TABLE II 

STATES OF CELLS DC BUS VOLTAGE 

States Conditions 
ST1 VCell1≤VCell2≤VCell3 
ST2 VCell1≤VCell3≤VCell2 
ST3 VCell2≤VCell1≤VCell3 
ST4 VCell2≤VCell3≤VCell1 
ST5 VCell3≤VCell1≤VCell2 
ST6 VCell3≤VCell2≤VCell1 

 
This procedure of changing the DC bus voltage by 

modifying the modulation index can be applied for balancing 
the DC bus voltages of a cascaded H-bridge. The total DC bus 
(the sum of all cells DC bus) is controlled by the main control 
unit, where applying the proper ud_max guarantees that the DC 
bus voltage be equal to its reference. So by independently 
changing the modulation index of each cell according to the 
proposed method, the balancing can be achieved. The 
modulation changing procedure depends on the cells DC bus 
voltages difference. Where the cell with higher DC bus voltage 
is assigned with a modulation index to decrease it, and vice 
versa. Note that the ΔM is chosen as small value and can be 
added or subtracted from the modulation index M to fulfill the 
balancing requirements. In the implementation, it can be 
selected as the smallest step of modulation index changing. The 
proposed balancing method block diagram is shown in Fig. 6. 

First, the cells are arranged according to their DC bus 
voltages. For example for 7-level cascaded H-bridge which is 
consisted of 3 cells, the numbers of states are 6 as 
demonstrated in Table II. 

Then using the line current and injected voltage reference 
sign, the quarters of cycle are identified and demonstrated in 
Table III. 
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TABLE III 

CONVERTER OPERATION MODE 

Voltage sign Current sign Mode 
Positive Positive M1=Charging 
Positive Negative M2=Discharging 
Negative Positive M3=Discharging 
Negative Negative M4=Charging 

 
TABLE IV 

 MODULATION ASSIGNMENT 

 

TABLE V 

MODULATION INDEX CHANGING FOR THE CASCADED 
H-BRIDGE WITH DIFFERENT CELL NUMBERS 

number 
of cells 

number 
of levels 

modulation changing 

2 5 +ΔM , -ΔM 

3 7 +ΔM , 0 , -ΔM  

4 9 +2ΔM , +ΔM , -ΔM , -2ΔM  

5 11 +2ΔM , +ΔM , 0 , -ΔM , -2ΔM  
 
Then by choosing a small value for ΔM the appropriate 

modulation index is chosen for each cell. For example if the 
state is ST1 and the voltage mode is charging positive, a +ΔM 
is chosen for the first cell modulation index and a -ΔM is 
chosen for the third cell while the second cell modulation index 
is kept unchanged. Table IV shows the modulation variation 
for each cell in different modes and states where the increment, 
decrement and unchanged modulation index are denoted by 
+ΔM, -ΔM and 0, respectively. 

Actually the balancing procedure can be applied for each 
switching intervals and also for one, two, three or four quarters. 
Where for example changing the modulation index by ΔM in 
all the quarters, produces the same DC bus voltage variation as 
applying the modulation index alteration by 4ΔM for one 
quarter. 

 
D. Establishing The Method For Cascaded H-Bridge With 
Different Cell Number 

For balancing the DC bus voltages of a cascaded H-bridge 
with the other cell numbers, the same procedure can be 
established. Table V shows the modulation index variation for 
the cascaded H-bridge with 2 to 5 cells. 

For example for a nine level cascaded H-bridge which is in 
its first state (VCell1≤VCell2≤VCell3≤VCell4

IV. SIMULATION RESULTS 

) and the converter 
mode is M1, the modulation changes can be +2ΔM, +ΔM, -ΔM, 
-2ΔM for cell1 to cell4, respectively. 

Also the combination between the modulation index 
variation and applying the procedure for some quarters of cycle 
can be used for balancing procedure.  For the above example 
the other possibility is to apply +ΔM in four quarters for cell1 
and two quarters for cell2, and -ΔM in two quarter for cell3 and 
four quarters for cell4. 

It should be noted that the balancing procedure in four 
quarters with smaller modulation changing is more desirable to 
the bigger modulation index variation in part of quarters. 

 

 

A part of Tehran electrical distribution network is chosen for 
simulation studies where a seven level cascaded H-bridge acts 
as D-SSSC to connect two separate feeders from different 
substations together. Each phase of converter consists of three 
cells with isolated DC bus. The total DC bus voltage is 
controlled as 1000V by the main controller to fulfill the 
requirement of system. So each cell capacitor voltage should be 
controlled at 333V to have balanced DC bus voltages. In the 
simulation studies for making the cells intentionally 
unbalanced, a parallel resistor is added to the second cell DC 
bus as demonstrated in Fig. 7. 

The effect of applying the DC bus balancing procedure is 
shown in Fig. 8, where the difference between the DC bus 
voltages reaches to 60V before applying the balancing 
procedure at t=3s. Figs. 8(a) to (d) are for applying the 
balancing method with ΔM=0.01 in one quarter to all quarters, 
respectively. As it is clear by increasing the applied quarters in 
each cycle, the balancing method becomes more effective. 
Where for applying balancing procedure in one quarter it takes 
3 seconds to have a balanced DC bus voltages while for two, 
three and four quarters it takes 1, 0.5 and 0.3 second, 
respectively. It should be noted the applied resistor introduces a 
severe unbalancing in the DC bus voltages, where the proposed 
method shows its ability to handle this unbalancing. 

The effect of balancing procedure on the D-SSSC output 
voltage with and without balancing procedure are shown in 
Figs. 9(a) and (b), respectively, which results to less distorted 
output voltage.  

Also as mentioned before, the proposed balancing method 
can still handle the balancing between cells even if one or more 
cells are bypassed due to any fault. Fig. 10(a) shows the total 
and each cells DC bus voltages, when at t=2s the cell3 
becomes a short circuit. 

Cell # 
 

Cell #1 
Command 

Cell #2 
Command 

Cell #3 
Command 

Mode 
M1 
or 

M3 

M2 
or 

M4 

M1 
or 

M3 

M2 
or 

M4 

M1 
or 

M3 

M2 
or 

M4 
ST1 +ΔM -ΔM 0 0 -ΔM +ΔM 

ST2 +ΔM -ΔM -ΔM +ΔM 0 0 

ST3 0 0 +ΔM -ΔM -ΔM +ΔM 

ST4 -ΔM +ΔM +ΔM -ΔM 0 0 

ST5 0 0 -ΔM +ΔM +ΔM -ΔM 

ST6 -ΔM +ΔM 0 0 +ΔM -ΔM 
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Fig. 7. Unbalanced seven level cascaded H-bridge by placing a 
resistor on second cell DC bus. 
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(d) 

Fig. 8. DC bus voltages of cells: (a) balancing procedure in one 
quarter, (b) two quarters, (c) three quarters, (d) all the quarters. 
 

 
(a) 

 
(b) 

Fig. 9. Output voltage: (a) with balancing method (b) without 
balancing method. 
 

As it is clear the main controller can handle the total DC bus 
voltage at its reference value but the DC bus voltage of cell1 
and cell2 diverge from each other. Fig. 11(b) shows the same 
voltages when the proposed balancing method is applied to the 
system which the DC bus voltages of cell1 and cell2 changes 
from 333V to 500Vand remain balanced even the cell3 reaches 
to zero.  

 

V. IMPLEMENTATION 
 

The simple scaled down model of the system is implemented 
by using a single phase cascaded H-bridge converter which 
consists of 3 H-bridge cells to produce seven level output 
voltage. The parameters of the experimental setup are given in 
Table VI, and Fig. 11 shows its major parts. The voltages and 

5.97 5.972 5.974 5.976 5.978 5.98 5.982 5.984 5.986 5.988 5.99

-1000

-500

0

500

1000

Time (S)

O
ut

pu
t V

ol
ta

ge
s 

(V
)

 

 
 

2.97 2.972 2.974 2.976 2.978 2.98 2.982 2.984 2.986 2.988 2.99

-1000

-500

0

500

1000

Time (S)

O
ut

pu
t V

ol
ta

ge
s 

(V
)

 

 
 



574                        Journal of Power Electronics, Vol. 12, No. 4, July 2012 
 

 

currents in the experimental setup are 1/10 and 1/100 of the 
case study quantities, respectively. So in the experimental setup, 
the impedances will be 10 times of the real network. In the case 
study the line inductance and resistance, including the 
transformers leakage inductances and series resistances, are 
11mH and 3.3Ω, respectively. Which lead to 110mH 
inductance and 33Ω inductance in Table VI. A TMS320F2812 
DSP controller is used as the main processor to control the 
procedure and generate the PWM signals for each cell. A 
resistor is paralleled to one of the cells to increase the 
unbalancing between cells in the implemented setup. 
 
A. Applying Balancing Procedure for Different Quarters of 
a Cycle 

 
Fig. 11. Experimental setup. 
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Fig. 12. DC bus voltages of Cells for: (a) one quarter, (b) two 
quarter, (c) three quarter, (d) four quarter. 

 
Fig. 12(a) to (d), show the cells DC bus voltages when the 

balancing procedure is applied to unbalanced system for one, 
two, three and four quarters of cycle, respectively. ΔM is 
chosen as a smallest step of modulation index, which is 1/256.  

By applying the balancing procedure the DC bus voltages 
are balanced to 33V. Where before applying the balancing 
procedure the DC bus voltage has a difference up to ±25% of 
their nominal value. As discussed before, increasing the 
applied quarter of balancing procedure leads to more effective 
balancing. 

Fig. 12(a) is for applying the balancing procedure for one 
quarter which it takes 4.5s to balance the DC bus voltages 
while this time interval decrease to 1s, when the proposed 
method is applied for all the quarters as demonstrated in Fig. 
12(d). Also for two and three quarters, this time interval is 2s 
and 1.5s, respectively. 

 
B. Balancing Procedure For Different Line Current 
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Fig. 10. DC bus voltage during fault: (a) without balancing 
method, (b) with balancing method. 
 

TABLE VI 

 IMPLEMENTED SYSTEM PARAMETERS 

Source voltage (rms) 100 V 

Output Frequency 50 Hz 

Converter Power (single phase) 1 KVA 

Switching frequency 1 KHz 

Line inductance 110 mH 

Line resistance 33 Ω 
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Fig. 13. Output voltage, two cells DC bus voltage and line current 
in inductive impedance injection mode: (a) ILine_rms=0.7A with 
balancing procedure, (b) ILine_rms=0.7A without balancing 
procedure, (c) ILine_rms=1.2A with balancing procedure, (d) 
ILine_rms

C. Balancing Procedure During Short Circuit Of One Cell 

=1.2A without balancing procedure.    
 
According to (10), (12) to (14), the DC bus voltage depends 

on the line current. In order to show the effectiveness of the 
procedure to balance the DC bus voltages for different line 
current the following experimental tests are arranged. 

Figs. 13 and 14 show the output voltage and cells DC bus 
voltages without and with balancing procedure when the SSSC 
acts as inductive and capacitive impedance, respectively. The 
balancing procedure is able to keep balancing between the cells 
DC bus voltage for different power flow. The current changes 
from 0.7A to 1.8A by injecting highest inductive impedance in 
Figs. 13(a) and 13(b) to highest capacitive impedance in Figs. 
14(c) and 14(d). 

The bigger 100Hz ripple in the DC bus voltage for higher 
power injection are noticeable in Figs. 13(a),(b) and 14(c),(d). 

 

Fig. 15 shows the ability of proposed method to balance the 
DC bus voltages during a short circuit of one cell. To avoid 
damaging the H-bridges, two lower switches in each leg are 
turned on, to simulate a short circuit in the cell. The cell with 
paralleled resistor to its DC bus capacitor is selected to be 
shorted. In Fig. 15(a) the balancing procedure is available. 
After short circuiting of one cell, the other DC bus voltages 
keep their balancing and reaching to 50V from 33V.  Fig. 
15(b) shows the same procedure while the balancing procedure 
is stopped when one cell is shorted. The remained cells are not 
able to keep balancing between each other and the whole DC 
bus voltage should be tolerated by cell1. 
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Fig. 14. Output voltage and cells DC bus voltage in capacitive 
impedance injection mode: (a) ILine_rms=1.5A with balancing 
procedure, (b) ILine_rms=1.5A without balancing procedure, (c) 
ILine_rms=1.8A with balancing procedure, (d) ILine_rms
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=1.8A 
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Fig. 15. DC bus voltages during short circuiting of cell1: (a) with 
balancing procedure (b) without balancing procedure. 
 

VI. CONCLUSIONS 
 

In this paper a method for balancing the DC bus voltages of 
a cascaded H-bridge in D-SSSC application has been presented. 
The method is based on the slightly modifying the modulation 
index of each H-bridge independently to keep balancing 
between them. The proposed method has no restriction on 
cascaded cell number and can handle the balancing in faulty 
mode when one or more cells become short circuit. The 
analytical calculation is done to show the effect of modifying 
the modulation index in each quarter of line voltage on DC bus 
voltage for an H-bridge and then it is extended to provide 
balancing for a cascaded H-bridge converter. The feasibility of 
balancing method was shown by different simulation studies 
and experimental results on an implemented seven level 
cascaded H-bridge. 
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