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In this paper, a digital control strategy based on equivalent fundamental and odd harmonic resonators is proposed for single-phase 

DVRs. By using a delay block, which can be equivalent to a bank of resonators, it rejects the fundamental and odd harmonic 
disturbances effectively. The structure of the single closed-loop control system consists of a delay block, a proportional gain and a 
set of zero phase notch filters. The principle of the controller design is discussed in detail to ensure the stability of the system. Both 
the supply voltage and the load current feedforwards are used to improve the response speed and the ability to eliminate disturbances. 
The proposed controller is simple in terms of its structure and implementation. It has good performances in harmonic compensation 
and dynamic response. Experimental results from a 2kW DVR prototype confirm the validity of the design procedure and the 
effectiveness of the control strategy. 
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I. INTRODUCTION 
 

 A dynamic voltage restorer (DVR) is one of the most 
effective methods to solve voltage sags and other voltage 
quality problems [1]. A control strategy is critical for the DVR 
system performance. In [2], the H∞ robust control strategy is 
used to enhance the system's ability to eliminate disturbances. 
However, better performance requires higher order controllers. 
Unfortunately, reducing the order of the system will also 
reduce the performance of the system. Proportional resonant 
(PR) control can obtain a high gain in the resonant frequency 
[3][4], but only selected harmonics are compensated. However, 
adding more resonators will increase the computational 
complexity of system. Moreover, a PR controller is very 
sensitive to discrete parameters [5], so it needs a specific 
method for implementation [4][6], which increases the 
implementation complexities. The traditional repetitive 

controller can improve the system steady-state performance 
and robustness, but its response is slow. As a result, it needs to 
be combined with instantaneous control methods [7][8]. 
Furthermore, the controller needs an additional second-order 
filter structure to ensure its stability [9]. 

In recent years, a delay block with feedback and feedforward 
has been used to compensate harmonics, which can be 
equivalent to a set of fundamental and odd harmonic resonators. 
It can also classified as repetitive controller [10]-[13]. This 
delay controller is used in active power filters (APF), static 
synchronous compensators (STATCOM) and other 
applications to obtain a strong harmonic suppression ability 
[10]-[13]. A controller used in the three-phase synchronous 
frame rejects the background harmonics while using a 
resonator in the stationary frame will increase the fundamental 
frequency resonator gain [13]. However, to ensure stability, a 
first order low-pass filter and a complex adaptive algorithm are 
involved. 

 

II. STRUCTURE OF SINGLE-PHASE DVR SYSTEMS 
 

The topology of a single-phase DVR is shown in Fig.1(a). In 
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this figure, Vs is the supply voltage, VL is the load voltage, Lf  
and Cf are the filter inductor and capacitor, respectively, and Rf 
is the equivalent resistor of the filter inductor and inverter. The 
time delay resulting from the sampling and switching 
frequency of the inverter in a digital system is Ts

1
( 1)sT s +

. For 
simplicity, this can be replaced by a first-order element 

 since the system switching frequency is much 

higher than that of the output. The inverter gain can be 
normalized to 1 in a digital control system. Therefore, 
considering the digital control delay and the equivalent 
resistance, the transfer function of the controlled object can be 
obtained by (1). A typical Bode plot is shown in Fig.1 (b). 
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III. CONTROL STRATEGY ANALYSIS 
A. Equivalent Fundamental and Odd Harmonic Resonators 
Controller 

One kind of the delay controller involving negative feedback 
and negative feedforward is presented in Fig.2 [10]. The 
transfer function of the controller can be obtained by: 
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Fig. 2. Structure of delay block with negative feedback and 
negative feedforward. 
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Fig. 3. Delay controller block after introduction of K1
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Where  (n=1,2,3…) is the delay time, and 

0 02 /T π ω=  is the fundamental period. From [14], (2) can be 

expressed as: 
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It can be seen in (3) that when n = 2, 0 / 2dT T= , then (4) 

can be obtained as: 
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+ −∑              (4) 

It is shown in (4) that by setting the delay time to 1/2 of a 
fundamental period, the delay controller can be regarded as a 
bank of resonators, which can compensate both the 
fundamental and odd harmonics. As the disturbances in a 
single-phase system contain mainly odd harmonics, the delay 
controller can be directly used to achieve compensation of the 
harmonics. 

 
B. Design of the Delay Block Attenuation Factor K

The resonant gain of the resonators at frequency 
1 

0(2 1)k ω− , 
shown in (4), is infinite which is difficult to achieve. Therefore, 
an attenuation factor K1 (K1<1) should be multiplied by the 
delay block shown in Fig.2 [10]. With K1 included, both the 
bandwidth and the robustness are improved greatly. A 
controller block diagram of this is presented in Fig. 3. 

K1 1
dTK e σ−= can be written in the exponential form as ，

where 0 / 2dT T= . Thus from (4), the following equation can 
be obtained: 
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(a) Topology. 

 

 
(b) Frequency response of Ginv(s). 

Fig. 1. A single-phase DVR system. 
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It can be seen from (5) that as K1

2 sσ

 is added into the delay 
block, the denominator of controller transfer function has an 
additional first-order  element, which is equivalent to the 
addition of damping to an ideal resonator. Thus the design of 
K1

0 2 2
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2
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+ +

r cut

cut h

K sg s
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 is analogous to the design method of a quasi-resonance. 
From [15], a quasi-resonator has an expression as: 

     (6) 

where, rK  is the gain of the quasi-resonators, cutω is the 

cutoff frequency and hω is the resonant frequency. By 
comparing equations (5) and (6), it can be seen that the purpose 
of the first-order term 2 sσ  in (5) is the same as that of 
2 cut sω  in (6), which is to increase the damping of the 

controller. The role of σ  is similar to that of cutω . For (5), 
σ  in the numerator just affects the amplitude of the 
equivalent resonators at each resonant frequency. Because of 
the tiny effect of the numerator of (5), σ  can be ignored. The 

influence of 2σ  on the resonant frequencies 2
0[(2 1) ]k ω−  

is less than 410 /rad s−  in the denominator, which can also be 
neglected. Therefore, the introduction of σ  in (5) only 
influences the damping of the controller while its influence on 
the resonant frequencies can be ignored, thus (5) can be 
approximated by: 
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Therefore, σ  in (7) is similar to cutω  in (6). It also affects 

the resonator gain and bandwidth. Let s jω= ，substitute in 
(7), and it can be obtained by: 
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where 02
hK ω

πσ
= , the bandwidth of the equivalent resonator is 

then defined as: 

( )
2

ω = h
r

KG j             (9) 

Let 2 2 2
0[(2 1) ] (2 ) 1k jω ω σω− − = , then the 

relationship between σ  and the bandwidth (BW) can be 
obtained by /(2 )BW σ π= Hz. 
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(b) Relationship between K1 
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(c) Influence of K1 on the resonator frequency response. 

Fig. 4. Influence of K1 

Generally, the frequency deviation in the limit of ± 0.2Hz is 
allowable in a normal power system. When the system power 
is small, the limit can be extended to ± 0.5Hz. To obtain good 
robustness, the bandwidth of the resonant controller should at 
least be greater than 0.5Hz, that is 

on the resonator performance. 
 

σ π> . According to the 
relationship between K1 σ and , K1 should be less than 0.97. 
On the other hand, K1 affects the controller gain at the resonant 
peak. For different values of K1

( )ReG s

, the corresponding resonator 
gain, the bandwidth, and the frequency characteristics of the 
resonators  are shown in Fig.4(a),(b),(c), respectively. 
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From Fig.4 (a), to get the resonator gain as high as possible 
and to fulfill the bandwidth requirement, K1

σ
 is designed as 0.96, 

which means that = 4. Then the equivalent resonator gain in 

equation (8) is 02 2 100 50
4hK ω π

πσ π
×

= = =
×

, which is 34dB. 

The expression of the delay controller shown in Fig.3 is 
0
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+
, where the z-domain form of 

0 / 2sTe−  is / 2Nz− . In this paper, the sampling switching 
frequency is 15 kHz (see Table I) and N equals 300. Therefore, 
the form of the controller used in this paper can be expressed 
as: 
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It can be written in the differential form as: 
( ) ( ) 0.96 ( 150) 0.96 ( 150)= − − − −y k e k e k y k    (11) 

 

IV. CLOSED-LOOP CONTROL SYSTEM AND 
PARAMETERS DESIGN 

As mentioned above, the delay controller in (2) is equivalent 
to a series of resonant controllers at both the fundamental 
frequency and the odd harmonics. This controller can obtain a 
proper band width and resonant gain as the attenuation factor 
K1

Re ( )G z

 is well designed. Additionally, it is easy to realize in digital 
systems as mentioned in (11). Therefore, considering that a 
single-phase system mainly contains odd harmonics, a control 
strategy based on the delay controller for a single-phase DVR 
is proposed in this paper, as shown in Fig. 5. Where, is 
the equivalent fundamental and the odd harmonic resonator. 
The proportional gain K2

( )F z
 and the zero phase notch filters 

 are designed to ensure system stability. Since the 

expression of ( )F z  contains the time advance unit, the 

implementation needs to introduce a one cycle delay Nz− . In 
addition, the time advance element dz  for the phase delay 
compensation of ( )invG s  is based on Nz− . Meanwhile, the 
supply voltage and the load current feedforwards are added to 
reject the disturbances and to increase the response speed. 

4=d
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2=d
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0=d

 
Fig. 6. Bode plot of ( )inv

dG z z with different d. 

 
For the stability of the system, where the resonant frequency 

fω  of the LC filters is seen as the cutoff point, the frequency 

response characteristic is divided into two parts for discussion. 
When fω ω> , setting the zero phase notch filter 

appropriately makes the gain of the whole system under 0dB 
to ensure system stability. When fω ω< , by using another 

zero phase notch filter to eliminate the resonant peak of the 
LC filters, shown in Fig.1(b), so that the 
magnitude-frequency characteristic of the controlled object in 
the low frequency band is approximately in a line with 0dB. 
In addition, a time advance unit dz  is used to compensate 
for the controlled object phase delay. The phase 
characteristics of ( ) d

invG z z with different values of d are 
shown in Fig. 6. 

From Fig.6, it can be seen that when d=2, the 
phase-frequency characteristic of the controlled object is 
approximate 0° in the low frequency band. Although the 
compensated phase still has a small delay near the vicinity of 

fω , the zero phase notch filter magnitude-frequency 

characteristic will have a higher attenuation near fω  (a 

detailed discussion of this can be found in section 4.2), thus the 
impact of a small phase delay to the system can be ignored. 
Therefore, the frequency response characteristic of the 
controlled object ( ) d

invG z z can be approximated as the 
magnitude of 0dB and the phase of 0° in the low frequency 
band. Thus the impact of its frequency response characteristic 
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Fig. 5. Proposed controller based on the equivalent fundamental and odd harmonic resonators for a single-phase DVR. 
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on the system stability is negligible. 
 
A. Design of the Proportional Gain K

The frequency response curves of the delay controller shown 
in (10) are similar to the one in Fig. 4 (c). The phase always 
changes periodically with a frequency of -90 ° ~ 90 °. As the 
influence of the controlled object on the system can be 
essentially ignored at lower frequencies, the phase-frequency 
curve of the open-loop transfer function of the whole system 
before the LC filter resonant frequency will not cross -180°, 
which means that the system is always stable. 

2 

However, to eliminate the resonance peak and to compensate 
the phase delay of the controlled object, this paper uses zero 
phase notch filters ( )F z  (for details refer to the next section) 

and a time advance unit dz . Though the zero phase notch 
filters will not bring an excess phase variation to the system, 
their expression also has a unit of time advance. Thus the 
realization needs to introduce a cycle delay Nz− . 

The delay element 0sTe−  will affect the phase of the 
resonator banks, and its frequency domain will be in the form: 

0
0 0 01ω ω ω ω− = ∠ = − + −j Te (- T ) co s( T ) j sin ( T )  (12) 

The relationship between its phase α  and frequency can be 
derived as follows: 

0
0

2T πωα ω
ω

= − = −              (13) 

Defining that: 

0 Re( ) ( ) −= N
CG z G z z           (14) 

The phase-frequency curve will pass through –π, –3π,  
–5 π …. Its frequency domain is expressed as  

0
0 Re( ) ( ) j T

CG j G j e ωω ω −= . Take the equivalent fundamental 

component resonator for example. It can be calculated that 
when 0 ( ) 0CG j dBω = , the corresponding phase angle of 

0 ( )CG jω  is less than -180°. As a result, the phase margin is 
less than 0 and the system will be unstable. This indicates that a 

one cycle delay 0sTe−  brings another stability problem. 
Therefore, this paper presents a proportional element in 

series to ensure the stability of the controller. The proportional 
gain is assumed as K2

2 Re( ) ( ) N
CG z K G z z−=

. The form of the controller after 
introduction of the proportional element is as follows: 

          (15) 
As mentioned above, the controlled object, after using the 

notch filter and phase compensation, does not affect the low- 
frequency characteristics of the system. Thus the stability of 
the system only depends on the stability of the controller CG . 

From Fig. 4(c) and the analysis above, it can be seen that 

ReG  has a phase jump at each resonant frequency. It can also 

be seen that the phase-frequency characteristic of ReG  is close 

to π/2 before the phase jump，and after that it is close to -π/2. 

Therefore, let the phase angle of ReG  before and after the 

phase jump be / 2π β−  and / 2π β− +  respectively, 

where β  is a small positive angle. From (13) it can be seen 

that when 0ω ω= , the phase delay is 2α π= − . For the 
equivalent fundamental resonator, the stability condition of 

( )CG jω  is that when the phase frequency curve crosses –π 

and –3π, the gain of ( )CG jω should be less than zero, that 

is: ( ) 0CG j dBω < . This means that the angular frequency 

should satisfy the following equations: 

02 / / 2πω ω π β π− + − = −            (16) 

02 / / 2 3πω ω π β π− − + = −           (17) 
If / 2 / 2π β π− ≈  and / 2 / 2π β π− + ≈ − , then the 

designed proportional gain K2

( ) 0CG j dBω <
 after this approximation will 

surely meet the condition  with a certain 

margin. Then the angular frequencies relationships are 
approximated by: 

02 / / 2πω ω π π− + = −              (18) 

02 / / 2 3πω ω π π− − = −             (19) 
By solving the equations above, results can be obtained as 

03 / 4ω ω=  and 05 / 4ω ω= , when the phase frequency 

curve of ( )CG jω  crosses the points of -π and -3π , 

respectively. Combined with the condition ( ) 0CG j dBω < , 

the range of the proportional gain K2 can be obtained as 
0<K2

Extended to the 
<0.415. 

0(2 1)k ω−  harmonic resonators, the same 
range of K2

( )CG jω
 can be obtained. In fact, the magnitude-frequency 

characteristic curve of the controller  is symmetrical 
to each resonant frequency and it is independent of the number 
of the resonant frequency 2k-1. 

In addition, through a further analysis, the relationship 
between the proportional gain K2 and the attenuation 
coefficient K1 σ can be obtained when the value of  is small. 
Equation (8) can be re-written as: 
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                                           (20) 
The magnitude-frequency characteristic curve of ( )CG jω  

is symmetrical to each resonant frequency, and it is 
independent of the number of resonators. Therefore, the 
fundamental component resonator is taken as an example, 
which means that k equals 1. Also, from equation (7), the 
approximation ( ) ( )Re rG s G s≈  can be obtained, thus the 
following equation can be obtained by: 
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For (21), the magnitude-frequency characteristic is 
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phase-frequency characteristic is 
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2
T

ω ω
ϕ ω

σω
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= ∠ − . According to the stability 

conditions of the system, that is, when ϕ π= − , 

( ) 0CG j dBω < . Then, the following equation can be obtained 

when the system is stable: 
2 2

2 2 20
2

0

( ) 1[ ] 8387
2 200

ω ωπ σ σ
ω ω

−
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From (22), it can be seen that when the value of K1

σ
 is near to 

1,  is very small so that its impact on the K2 is negligible. 
That means, the design of K2 will not be influenced much by 
K1. In addition, as K1 directly effects the resonant gain of the 
equivalent resonators, it can be seen that the design of K2

σ
 is 

irrelevant to the resonator gain when  is small. 
The gain margin and phase margin of ( )CG jω under 

different values of K2 are shown in Fig.7. In general, the phase 
margin of the control system should be larger than 30°, and the 
gain margin should be larger than 6dB. In this paper, K2 is 
chosen to be 0.22. Then the gain of the equivalent resonator 
banks is K2Kh

( )CG jω
 = 11, that is 20.8dB. In this case, the frequency 

response of  is shown in Fig. 8. 

B. Design of the Zero Phase Notch Filter 
The peak resonance of Ginv(s), shown in Fig. 1(b), will affect 

the stability of the system. Generally, voltage or current state 
feedback is adopted to increase the damping to get a stable 
system [8]. For the use of equivalent resonators banks, 
[10]-[12] is based on an adaptive algorithm which can adjust 
the parameters automatically within a certain range to ensure 
system stability. In this paper, to simplify the structure of the 
control, zero phase shift notch filters, F1 and F2

0
0

0

( )
2

−+ +
=

+

m mz a zF z
a

, are used. 
A zero phase notch filter will bring almost no additional 

phase shift to the system[16], and its structure is shown as: 

            (23) 

where 0a  and m are constants, whose values are related to 

the location and shape of the notch filter. 
The relationship between the discrete domain and the 

frequency domain is sj T jz e eω θ= = . Combined with (23), 
the equation can be obtained as follow: 

K2  
(a) Gain margin. 

K2  
(b) Phase margin. 

Fig. 7. Stability margin of ( )CG jω with different K2

180α = − 

. 

 

 
Fig. 8. Frequency response of ( )ωCG j . 
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     (24) 

 
When 0 2a = and 0 ( ) 0F θ = , 0 ( )F z has the largest 

attenuation. Under this condition, θ  should fulfill the 
equation: 2cos 2 0mθ + = , which is the same as 

(2 1)m kθ π= − , (k = 1, 2 ...). It is easy to see that the zero 
phase notch filter has more than one notch frequency, and that 
the first one (k=1) is mainly considered for the ( )F z  design. 

First, the notch filter F1 is used to eliminate the peak 
resonance, as shown in Figure 1(b). Therefore, the first notch 
frequency of F1

1 1/f f fL Cω ω= =

 is set to equal the resonant frequency of the 

LC filters, that is . Combined with 

(24) and the relation sTθ ω= , it can be seen that: 
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Fig. 9. Bode diagram of controlled object by adding notch filters. 
 

No load
Half load
Full Load

 
Fig. 10. Frequency responses with different loads of the 
controlled object by adding notch filters. 
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From the parameters shown in Table I, m1 can be obtained 
as: m1=8.16, rounded to m1=8. Therefore, the expression of F1

8 8

1
2( )
4

z zF z
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=

 
can be given as follows: 

            (26) 

The notch filter has more than one notch frequency. These 
frequencies are at (2 1) fk ω− , (k = 1,2, ...). A Bode plot of the 

controlled object ( ) d
invG z z with F1

1( ) d
invG z z F

 added is presented as 
curve A in Fig. 9. It can be seen that the peak resonance of the 
LC filter is completely suppressed. In addition to , 
the open-loop frequency characteristic of the system contains 
the controller ( )CG jω . Since the magnitude-frequency 

characteristic of ( )CG jω  is like a bank of infinite resonators 

with the gain 2 20.8hK K dB= , when the frequency is not 

much higher than fω , the attenuation of the LC filters is 

insufficient. As a result, in the open-loop system, there are still 
some frequencies whose gains are larger than 0dB 
when fω ω> . At the same time, when compared with the 

condition where fω ω< , it can be seen from curve A, in Fig.9, 

that there is a much greater phase delay when fω ω> , which 

brings new instability factors. However, if the 
magnitude-frequency characteristic can be declined under 0dB, 
the problem will be solved. For this purposes, another zero 
phase notch filter F2 is necessary. 

It is easy to see that the gain of F1 fω, between and 3 fω , is 

close to 0dB, which will result in insufficient attenuation at the 
resonant frequencies of the equivalent resonators. Therefore, 
the notch frequency of F2

2 ( 3 ) / 2 2f f fω ω ω ω= + =
 should be selected near 

. According to (25), m2 can be 

obtained as 4.08. Since the attenuation of the LC filter 
increases along with the frequency, the notch frequency of F2 

should be set at a lower value, which means that a larger value 
should be chosen for m2. Therefore, m2 is designed as 5, and 
the expression of F2

5 5

2
2( )
4

z zF z
−+ +

=

 can be derived as: 
 

             (27) 

After adding the group of notch filters 1 2( ) ( ) ( )F z F z F z= , 

the frequency response of ( ) ( ) d
invF z G z z is shown as the 

curve B, in Fig.9. It can be seen that when fω ω> , the 

magnitude-frequency characteristic curve of ( ) ( ) d
invF z G z z  

is always below 2hK K−  with a small gain margin. This means 

 
(a) Bode plot. 

 

 
(b) Nyquist plot. 

Fig. 11. Open-loop frequency response of the system with 
no-load connected. 
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that when fω ω> , although the phase-frequency 

characteristic will cross through ( 2 1) 180 , ( 1,2,...)k k− − ⋅ = , 
the open-loop gain is invariably less than 0dB, which ensures 
the stability of the system. Combined with the analysis when 

fω ω< , the stability of the whole system is guaranteed. 

As ( )F z  is added, the frequency responses of the 
controlled object with different load conditions (including no 
load, half load and full load conditions), are described in Fig.10. 
Under the full load condition, the resistance is 22Ω. Fig.10 
proves that under different load conditions, the system has 
sufficient attenuation at high frequencies without unwanted 
resonance peaks. 

An open-loop Bode plot of the system under no-load is 
shown in Fig.11(a). Using MATLAB, the smallest stability 
margin can be obtained near the fundamental frequency. The 
plot shows that the minimum gain margin is 6.02dB and that 
the minimum phase margin is 47°. An open-loop Nyquist plot 
of the system under no-load is shown in Fig.11(b). Fig.11(b) 
indicates that the curve does not surround the point (-1,0j). At 
the same time, ( )cG z , ( )F z , and ( )invG z  have no 
open-loop right poles, which proves that the DVR control 
system is stable. 
 

V. EXPERIMENTAL VERIFICATION 
In a single-phase 2kVA DVR prototype, the effectiveness 

and practicality of the proposed control strategy are verified. 
The topology is shown in Fig. 1. The processor for the digital 
system is a DSP TMS320F2812, and the main experimental 
parameters are listed in Table I. 
  Fig. 12 presents the waveforms under the conditions of 
voltage sags and fluctuations with a resistive load, where CH1 
is the supply voltage Vs, CH2 is the load voltage VL and CH3 
is the load current IL

Fig. 13 presents the performances of the harmonic 
compensation under a linear load. In Fig. 13(a), the supply 
voltage is 200V with 5

. Fig. 12(a) shows the compensation 
results for the voltage sag compensation. When the supply 

voltage dips from 220V down to 180V, the load voltage is 
maintained in the range of 219 ~ 221V, the steady-state error is 
less than 1%, and the THD is less than 1%. Fig. 12(b) describes 
that when the supply voltage fluctuates from 180V to 220V, 
the load voltage is almost maintained at 220V with a THD of 
less than 1%. 

th and 7th order harmonics, and a 
THD=20.8%. After compensation the value of load voltage is 
221V, and the THD declines to 1.2%. In the condition of Fig. 
13(b), the supply voltage is 200V with 3rd, 5th, and 9th order 
harmonics, and a THD=10.5%. After compensation, the load 
voltage is 220.8V with a THD=1.1%. These results confirm 
that the proposed controller has a good odd harmonic 
compensation performance. 
  In Fig.14, the transient response to a load change under a 
180V sag condition is presented. During the process of load 
change, the load voltage remains stable at the value of 220V, 
indicating that the control method has a strong ability to reject 
load disturbances. 

TABLE I 

MAIN PARAMETERS 

Rated output Voltage 220 [V] 

Supply voltage frequency 220 [V] 

Filter inductor 1.5 [mH] 

Filter capacitor 20 [μF] 

Equivalent filter resistance 0.6 [Ω] 

Linear load 22 [Ω] 

Dc link capacitor 4700 [μF] 

Sampling frequency 15000 [Hz] 
 

Vs

VL

IL

 
(a) Voltage sag (20ms/div). 

 

Vs

VL

IL

 
(b) Voltage fluctuation(2s/div). 

Fig. 12. Compensation waveforms under voltage sag and 
fluctuation（CH1: supply voltage Vs, 250V/div; CH2: load 
voltage VL, 250V/div;CH3: load current IL, 25A/div. 
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Fig.15 shows the compensation waveforms when supply 
voltage sags occurs at 180V under a non-linear load. The 
results demonstrate that the system can effectively eliminate 
non-linear load disturbances. The value of the load voltage is 
between 219 ~ 221V, and the THD is 1%. 

 

VI. CONCLUSIONS 
In this paper, a new control strategy based on equivalent 

fundamental and odd harmonic resonator banks is proposed for 
single-phase DVRs. The analysis and design of the parameters 
in the controller are discussed in detail in this paper. By 
properly setting the attenuation coefficient and the proportional 
gain along with a group of zero phase notch filters, closed loop 
system stability and steady-state accuracy can be obtained. The 
transient response and the ability to reject disturbances can be 
increased by using supply voltage and load current 
feedforwards. This control scheme is just a single loop with 
double feedforwards. Thus it is very easy to implement. The 
proposed control scheme can solve the problems of the 
limitations of multiple harmonics compensation and the digital 
implementation of a general resonant controller. Moreover, the 
limitations caused by the complexity of the adaptive algorithm 
will be avoided. Experimental verification of the controller is 
carried out on a 2kW DVR prototype, and the experimental 
results show that the proposed controller has a high 
compensation precision, strong harmonic suppression, a faster 
dynamic response, and simple realization, thus it has good 
engineering practicality. 
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