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Abstract

This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor
correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to
overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide
turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed
converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and
capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches
are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation,
system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a
laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.
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I.  INTRODUCTION

Recently high voltage step-up converters have been
proposed for fuel-cell based DC converter [1]-[3],
battery-discharged DC converter in UPS system [4]-[5], car
auxiliary power supplies [6], automobile HID headlamps [7],
[8], and medical equipment. The conventional boost
converter cannot realize high voltage step-up due to the
narrow allowed duty cycle. If the high duty cycle is used in
the boost converter, the nonlinear voltage conversion
characteristic due to the parasitic resistance is difficult to
regulate output voltage. The conduction loss of power
MOSFET also depends on the duty cycle. Cascade boost
converters in [9]-[11] and the coupled-inductor converters in
[12]-[16] have proposed for non-isolated circuit applications.
Therefore, the drawback of the conventional boost converter
can be overcome by these circuit topologies with high voltage
step-up applications. In order to reduce the environmental
power pollution and save energy waste, Environment
Protection Agency (EPA) and Climate Saver Computing
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Initiative (CSCI) have been proposed to increase circuit
efficiency for modern power supply units. Therefore, power
factor correction (PFC) techniques [17]-[23] have been
demanded for power converters with P,>75W. Thus, the
reactive power and line current harmonics are eliminated, and
a sinusoidal line current is drawn from utility side.

This paper presents a new circuit topology to achieve high
voltage step-up characteristic compared to the conventional
boost converter and flyback converter. Since the adopted
converter is operated in boundary conduction mode and
interleaved pulse-width modulation (PWM), the input line
current can be controlled to be a sinusoidal waveforms and
the input ripple current can be partially cancelled each other.
Therefore, input power factor can be controlled to be unity
and total harmonic distortion of line current is reduced. The
input inductance can also be reduced due to the interleaved
PWM scheme. The boost and flyback converters with one
MOSFET are connected in series at output side. The output
voltage is the summation of these three voltages so that the
converter has high output voltage. The advantages of the
proposed converter are easy to be implemented with the
commercial PWM IC such as UCC28061, high voltage
step-up, less power switch count and wide duty cycle control.
Experiments, taken from a laboratory prototype rated at
500W, are presented to demonstrate the circuit performance
and verify the feasibility of the converter.
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Fig. 1. Circuit configurations, (a) Traditional boost converter. (b)
cascade boost converter. (c) Cascade boost converter with single
switch.

II. CIRCUIT CONFIGURATION

Fig. 1(a) gives the circuit configuration of the conventional
boost converter. The boost converter can step-up the input
voltage V,/V;,=1/(1-95), where & is the duty cycle of switch S.
Generally the high step-up voltage gain is required in many
emerging applications. But the boost converter should be
operated at high duty cycle to achieve high voltage gain.
Therefore, power is delivered to output load during a short
period. This will result in low circuit efficiency. Fig. 1(b)
gives the circuit configuration of the cascade boost converter.
The voltage conversion ratio of the cascade boost converter is
V,o/Vin=1/(1-8)°. The main disadvantages of the cascade boost
converter are more circuit components and complex control
scheme. In order to reduce power components and to simplify
the control scheme, switches S; and S, in Fig. 1(b) can be
reduced to only one switch as shown in Fig. 1(c). Therefore,
the general PWM IC can be used to regulate the output
voltage with high step-up gain. Fig. 2 shows the circuit
configuration of the proposed converter with high step-up
voltage conversion. There are two circuit modules in the
proposed converter to achieve DC/DC power conversion,
output voltage regulation and partially ripple current
cancellation. In each module, the DC bus voltages of boost
circuit, including Ly, S;, D; and C,, and flyback circuit,
including T,, S;, D, and C,, are connected in series to
step-up output voltage. If the turns ratio of T, and T, is unity,
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Fig. 2. Circuit configuration of the proposed converter.
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Fig. 3. Key waveforms of the proposed converter.

the total conversion ratio between DC bus voltage and input
voltage is greater than or equal to (1+0)/(1-6) with DCM or
CCM operation, respectively. This voltage conversion ratio is
larger then the DC voltage conversion ratio of the
conventional boost converter and flyback converter with
unity turns ratio. Since the input inductor currents are
interleaved by one-half of the switching period, the input
ripple current is partially cancelled each other. Thus the input
capacitance can be reduced.

I1l.  OPERATION PRINCIPLE

In order to simplify the circuit analysis, some assumptions
are made. Capacitances of C,;~C, are large enough such that
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voltages V¢~Ve, are constant. Magnetizing inductances of
T, and T, are identical L;=L,=L,,. The turns ratio of T, and
T, is n=ny/n,. All power semiconductors are ideal. The
leakage inductances of T, and T, are identical. Based on the
above assumptions, the proposed converter has six operation
modes in a switching cycle. Fig. 3 shows the time sequence
of key waveforms in the proposed converter. Before time t,,
S, is off and S, is on. Diode currents ip,~ip4 are all zero.
Mode 1 [to<¢t<t,]: At time t,, switch S; is turned on. Thus
diode D, is reverse biased. The voltage across inductor L; is
equal to v;,. Since both switches S; and S, are in the on-state.
Inductor currents i, and i_, increase with the slope rate of
Vin/Ly. The secondary winding voltages of T, and T, are
negative such that diodes D, and D, are reverse biased. Since
diodes D, and D, are off, we can obtain i ;=i y; and i =i ms.
The switch currents ig =i, and is,=i,,. Output capacitors
C,~C, are discharged to supply load current. This mode ends
at time t; when switch S, is turned off.

Mode 2 [t;<r<t,]: At time t;, switch S, is turned off. The
energy stored in inductor L, is released to charge capacitances
C; and C,. Diodes D; and D, are conducting. The

magnetizing inductance voltage Vv n,=-nV¢es. Thus, the
magnetizing current i, decreases as following.
. . nv
iLm2 (1) = Tima (t) ——S% (- t) 1)
m

where n is the turns ratio between the primary winding and the
secondary winding of T, and T,. The inductor current i , also
decreases.

. ) Vi 4NV,
i (1) =i, () +- =

Yag-y @
Ik
Thus, the diode current ip, is given as:
ipa(t) = nlima (1) =i, ()] 3)
In time interval [t;<¢<t;.], diode current ip, increases from
zero ampere. After time t;., the diode current ip, decreases
from its maximum value due to that i, and i, are both
decreasing. In converter cell 1, the inductor current i,
continuously increases in this mode. The time interval ends at
time t, when diode current ip, is decreased to zero. Then,
diode D, is turned off at ZCS. There is no reverse recovery
loss in diode D,.
Mode 3 [t,<t<t;]: At time t,, diode D, is turned off at ZCS.
Thus, the diode current ip; is given as:

. . =V,
'Ds(t)='03(t2)+\|/_':(T|:’(t—t3) 4)

Since v;,<Vs, diode current ip; continuously decreases in
this mode. In converter cell 1, the inductor current i
continuously increases in this mode. This mode ends at time t;
when diode current ips is decreasing to zero. Then switch S,
is turned on at this instant to achieve ZCS turn-on.

Mode 4 [ty<¢<t,]: This mode starts at time t; when diode
current ip;=0 and S, is turned on. Thus, the circuit operation
is the same as the circuit operation in mode 1. Both inductor

currents i ; and i, increase in this mode and diodes D;~D,
are all reverse biased. This mode ends at time t, when switch
S, is turned off.

Mode 5 [t;<t<ts]: At time t,, switch S; is turned off. The
energy stored in inductor L, is released to charge capacitances
C, and C,. Diodes D; and D, are conducting. The
magnetizing voltage v m=-nVc,. Thus, the magnetizing
current i, decreases as following.

. . nv,
i (8) = i (tg) ——S2

(t-t,) ®)

m
The inductor current i ; also decreases.

g (1) =i (ty) + Yin * e, ~Vey (t-t,) (6)
1k
The diode current ip, is given as:
ipa (t) = nlipm (t) =i (V)] (7
In time interval [t;<¢<t,], diode current ip, increases from
zero ampere. After time t,, the diode current ip, decreases
from its maximum value due to that i, and i; are both
decreasing. In converter cell 2, the inductor current i,
increases in this mode. At time ts, diode current ip, is
decreased to zero. Then diode D, is turned off at ZCS. There
is no reverse recovery loss in diode D,.
Mode 6 [ts<t<T+ty]: This mode starts at time t5 when diode
current ip,=0. Then diode D, is off at ZCS. The diode current
ipy IS given as:
iDl(t):iDl(ts)Jrvin—VCl(t—ts) (8)
Ly + Ly
Since vi,<V1, diode current ip, is decreasing in this mode.
The inductor current i, continuously increases in this mode.
At time T+t,, diode current ip; is decreased to zero. Then
switch S, is turned on at this instant to achieve ZCS turn-on.
Then, the operation mode in this switching cycle is completed
and the circuit goes to the next switching operation.

IV. STEADY STATE ANALYSIS

In steady state analysis, transformers T, and T, are
modeled as the magnetizing inductors L, and L, and leakage
inductors L. Based on the voltage-second balance on the
primary sides of T, and T,, we can derive the average
voltages V¢, and Vs.

Vin
-5 9)
where §is the duty cycle of switches S; and S,. In the same
manner, the average voltages V¢, and V¢, can be obtained
due to the voltage-second balance on the secondary sides of
T,and T,.

Ve1=Ves =

Ve, Vg, = Mn=8) VeyA-0-8)]
no,(1+k)
where k=L, /Ly, (&T) is the turn-on time of diodes D,

and D, and (5,T) is the turn-on time of diodes D; and D,.
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Fig. 4. Comparisons of the voltage conversion ratios of the
proposed converter, boost converter and flyback converter with
unity turns ratio.

Thus the DC voltage conversion ratio of the proposed
converter is derived as:

M _Vo Ve +Veo
Vin Vin (11)
_ 1 + K[A—6,) —Ver (-6 —-61) iy
1-6 ns; (1+k)

If we assumed that the leakage inductance is neglected and
the turn-on time is O, T=T-0T, then the DC voltage
conversion ratio in (11) can be further expressed as:
:V_O: 1 N 1) _ n+o (12)
vi, 1-6 n@@-8) n(@l-9)
Fig. 4 shows the theoretical voltage conversion ratio of boost
converter, flyback converter and the proposed converter. It is
clear that the proposed converter has higher voltage step-up
gain. In time interval [to-t4], S; is in the on-state. The
following equations can be derived:

i (ty) =im(ty) =

in

Vv, OT
Ly, + Ly
In mode 5 [t4-ts], D, and D, are conducting. Thus, the
leakage inductor voltage can be derived as:

Vi =Vip +NVey =V <0 (14)
The inductor current i ; in mode 5 is given as:

. . Vi, + NV, =V
i) =i(t,) +w(t -1)
Ik

(13)

(15)
_ VindT + Vin +NVep =Veu (t—t,)
Ly + L Lik
The magnetizing current of T, in mode 5 is given as:
. . nv
i () = i (t) ——S2 (t—t,)
N (16)
VinoT Ve,
= —n% Y2 (1 -t,)
L, + L Ly
The diode current ip, is expressed as:
ipa (t) = nim (t) =i (H)] 17)
The voltage stresses of diodes are given as:
V.
V1, stress = VD3, stress =Ver = ﬁ (18)
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Fig. 5. Circuit configuration and specifications of the prototype
circuit.

VD2 stress = VD4, stress = Vin In+Ve, (19)
The voltage stress of switches S; and S, is given as:
Vin
v =V =— 20
S1,stress S2,stress 1-8 ( )

V. EXPERIMENTAL RESULTS

The proposed converter with BCM operation for high
step-up voltage conversion was built and tested to achieve
unity power factor, line current harmonics reduction and
partially ripple current cancellation at input and output sides.
Experimental results based on a laboratory 500W prototype
are provided to verify the effectiveness of the proposed
converter. Fig. 5 gives the circuit configuration of the
prototype circuit. An interleaved BCM mode control IC
UCC28061 is adopted to generate two PWM signals and
regulate output voltage. The design procedure of the boost
PFC with BCM scheme can be found in the application notes
from Texas Instruments website. Since the adopted converter
is operated at BCM mode, an input capacitor C;, is added
after the diode rectifier to filter high frequency harmonic
current. Fig. 6 shows the measured line voltage v and line
current iy at 30% and 100% load conditions. It is clear that
line current is a sinusoidal waveform. The measured power
factor is 0.98 and total harmonic distortion of line current is
18.9%. Fig. 7 gives the measured results of vs; g, iin, i1 and
i, at 30% and 100% load conditions. The input current i;,
has twice switching frequency compared to the frequency of
i,y and i,. Thus, the boost inductances L, and L, can be
reduced. Fig. 8 gives the measured results of Vg 4, Vsogs, ist
and i, at 30% and 100% load conditions. Fig. 9 shows the
measured results of Vg g, Vso 6, ip1 @nd ips at 30% and 100%
load conditions. Fig. 10 gives the measured waveforms of
Vsigs: Vs ip2 @nd ips at 30% and 100% load conditions.
From Figs. 7-10, we can see that the inductor currents and
diode currents are interleaved each other. Thus input and
output ripple currents are reduced such that the input and
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output capacitances can be reduced. Since BCM operation is
adopted in the proposed converter, all diodes are turned off at
ZCS. Thus, there is no reverse recovery loss on each diode.
Two power switches are turned on at ZVS. The measured
circuit efficiencies of the proposed converter are shown in
Fig. 11. The proposed converter has better circuit efficiency
compared with the conventional interleaved boost converter
with BCM scheme.
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Fig. 9. Measured results of vg; g, Vso s, ip1 and ipg
load (b) full load.
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Fig. 10. Measured results of Vg g, Vso s, ip2 and ipy at (a) 30%
load (b) full load.
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Fig. 11/ Measured circuit efficiencies of the proposed converter
and interleaved boost converter with BCM operation.

VI. CONCLUSION

An interleaved boost-flyback converter operated in BCM
mode is presented to achieve nearly unity power factor, low
total harmonic distortion and high voltage step-up features.
All diodes are turned off at ZCS and switches are turned on
at ZCS. There is no reverse recovery loss on the rectifier
diodes and the low cost fast recovery diodes can be used in
the adopted circuit. The adopted converter can be used in
fuel cell system, PV cell system, battery discharge system
for DC-AC converter with high voltage step-up function.
The adopted converter can also be used for high output
voltage application with utility mains input and high input
power factor demanded. The circuit configuration, operation
principle and steady state analysis are demonstrated as well.
Finally the performance of the proposed converter is verified
from the experiments based on a laboratory prototype.
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