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This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor 

correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to 
overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide 
turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed 
converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and 
capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches 
are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, 
system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a 
laboratory prototype rated at 500W were presented to verify the effectiveness of the converter. 
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I. INTRODUCTION 
 
Recently high voltage step-up converters have been 

proposed for fuel-cell based DC converter [1]-[3], 
battery-discharged DC converter in UPS system [4]-[5], car 
auxiliary power supplies [6], automobile HID headlamps [7], 
[8], and medical equipment. The conventional boost 
converter cannot realize high voltage step-up due to the 
narrow allowed duty cycle. If the high duty cycle is used in 
the boost converter, the nonlinear voltage conversion 
characteristic due to the parasitic resistance is difficult to 
regulate output voltage. The conduction loss of power 
MOSFET also depends on the duty cycle. Cascade boost 
converters in [9]-[11] and the coupled-inductor converters in 
[12]-[16] have proposed for non-isolated circuit applications. 
Therefore, the drawback of the conventional boost converter 
can be overcome by these circuit topologies with high voltage 
step-up applications. In order to reduce the environmental 
power pollution and save energy waste, Environment 
Protection Agency (EPA) and Climate Saver Computing 

Initiative (CSCI) have been proposed to increase circuit 
efficiency for modern power supply units. Therefore, power 
factor correction (PFC) techniques [17]-[23] have been 
demanded for power converters with Po

This paper presents a new circuit topology to achieve high 
voltage step-up characteristic compared to the conventional 
boost converter and flyback converter. Since the adopted 
converter is operated in boundary conduction mode and 
interleaved pulse-width modulation (PWM), the input line 
current can be controlled to be a sinusoidal waveforms and 
the input ripple current can be partially cancelled each other. 
Therefore, input power factor can be controlled to be unity 
and total harmonic distortion of line current is reduced. The 
input inductance can also be reduced due to the interleaved 
PWM scheme. The boost and flyback converters with one 
MOSFET are connected in series at output side. The output 
voltage is the summation of these three voltages so that the 
converter has high output voltage. The advantages of the 
proposed converter are easy to be implemented with the 
commercial PWM IC such as UCC28061, high voltage 
step-up, less power switch count and wide duty cycle control. 
Experiments, taken from a laboratory prototype rated at 
500W, are presented to demonstrate the circuit performance 
and verify the feasibility of the converter. 

≥75W. Thus, the 
reactive power and line current harmonics are eliminated, and 
a sinusoidal line current is drawn from utility side. 
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Fig. 1. Circuit configurations, (a) Traditional boost converter. (b) 
cascade boost converter. (c) Cascade boost converter with single 
switch. 
 

II. CIRCUIT CONFIGURATION 
Fig. 1(a) gives the circuit configuration of the conventional 

boost converter. The boost converter can step-up the input 
voltage Vo/Vin=1/(1-δ), where δ is the duty cycle of switch S. 
Generally the high step-up voltage gain is required in many 
emerging applications. But the boost converter should be 
operated at high duty cycle to achieve high voltage gain. 
Therefore, power is delivered to output load during a short 
period. This will result in low circuit efficiency. Fig. 1(b) 
gives the circuit configuration of the cascade boost converter. 
The voltage conversion ratio of the cascade boost converter is 
Vo/Vin=1/(1-δ)2. The main disadvantages of the cascade boost 
converter are more circuit components and complex control 
scheme. In order to reduce power components and to simplify 
the control scheme, switches S1 and S2 in Fig. 1(b) can be 
reduced to only one switch as shown in Fig. 1(c). Therefore, 
the general PWM IC can be used to regulate the output 
voltage with high step-up gain. Fig. 2 shows the circuit 
configuration of the proposed converter with high step-up 
voltage conversion. There are two circuit modules in the 
proposed converter to achieve DC/DC power conversion, 
output voltage regulation and partially ripple current 
cancellation. In each module, the DC bus voltages of boost 
circuit, including L1, S1, D1 and C1, and flyback circuit, 
including T1, S1, D2 and C2, are connected in series to 
step-up output voltage. If the turns ratio of T1 and T2

 

 is unity, 

the total conversion ratio between DC bus voltage and input 
voltage is greater than or equal to (1+δ)/(1-δ) with DCM or 
CCM operation, respectively. This voltage conversion ratio is 
larger then the DC voltage conversion ratio of the 
conventional boost converter and flyback converter with 
unity turns ratio. Since the input inductor currents are 
interleaved by one-half of the switching period, the input 
ripple current is partially cancelled each other. Thus the input 
capacitance can be reduced. 

III. OPERATION PRINCIPLE 
In order to simplify the circuit analysis, some assumptions 

are made. Capacitances of C1~C4
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Fig. 2. Circuit configuration of the proposed converter. 
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Fig. 3. Key waveforms of the proposed converter. 
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voltages VC1~VC4 are constant. Magnetizing inductances of 
T1 and T2 are identical L1=L2=Lm. The turns ratio of T1 and 
T2 is n=np/ns. All power semiconductors are ideal. The 
leakage inductances of T1 and T2 are identical. Based on the 
above assumptions, the proposed converter has six operation 
modes in a switching cycle. Fig. 3 shows the time sequence 
of key waveforms in the proposed converter. Before time t0, 
S1 is off and S2 is on. Diode currents iD2~iD4 are all zero. 
Mode 1 [t0≤t<t1]: At time t0, switch S1 is turned on. Thus 
diode D1 is reverse biased. The voltage across inductor L1 is 
equal to vin. Since both switches S1 and S2 are in the on-state. 
Inductor currents iL1 and iL2 increase with the slope rate of 
Vin/Lm. The secondary winding voltages of T1 and T2 are 
negative such that diodes D2 and D4 are reverse biased. Since 
diodes D2 and D4 are off, we can obtain iL1=iLm1 and iL2=iLm2. 
The switch currents iS1=iL1 and iS2=iL2. Output capacitors 
C1~C4 are discharged to supply load current. This mode ends 
at time t1 when switch S2

Mode 2 [t
 is turned off. 

1≤t<t2]: At time t1, switch S2 is turned off. The 
energy stored in inductor L2 is released to charge capacitances 
C3 and C4. Diodes D3 and D4 are conducting. The 
magnetizing inductance voltage vLm2=-nVC4. Thus, the 
magnetizing current iLm2
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      (1) 

where n is the turns ratio between the primary winding and the 
secondary winding of T1 and T2. The inductor current iL2

)()()( 1
34

122 tt
L

Vnvvtiti
lk

CCin
LL −

−+
+=

 also 
decreases. 

 (2) 

Thus, the diode current iD4

)]()([)( 224 titinti LLmD −=
 is given as: 

    (3) 
In time interval [t1≤t<t1’], diode current iD4 increases from 
zero ampere. After time t1’, the diode current iD4 decreases 
from its maximum value due to that iLm2 and iL2 are both 
decreasing. In converter cell 1, the inductor current iL1 
continuously increases in this mode. The time interval ends at 
time t2 when diode current iD4 is decreased to zero. Then, 
diode D4 is turned off at ZCS. There is no reverse recovery 
loss in diode D4. 
Mode 3 [t2≤t<t3]: At time t2, diode D4 is turned off at ZCS. 
Thus, the diode current iD3
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        (4) 

Since vin<VC3, diode current iD3 continuously decreases in 
this mode. In converter cell 1, the inductor current iL1 
continuously increases in this mode. This mode ends at time t3 
when diode current iD3 is decreasing to zero. Then switch S2

Mode 4 [t

 
is turned on at this instant to achieve ZCS turn-on.  

3≤t<t4]: This mode starts at time t3 when diode 
current iD3=0 and S2 is turned on. Thus, the circuit operation 
is the same as the circuit operation in mode 1. Both inductor 

currents iL1 and iL2 increase in this mode and diodes D1~D4 
are all reverse biased. This mode ends at time t4 when switch 
S1 is turned off. 
Mode 5 [t4≤t<t5]: At time t4, switch S1 is turned off. The 
energy stored in inductor L1 is released to charge capacitances 
C1 and C2. Diodes D1 and D2 are conducting. The 
magnetizing voltage vLm1=-nVC2. Thus, the magnetizing 
current iLm1 
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The inductor current iL1
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The diode current iD2
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 is given as: 

         (7) 
In time interval [t4≤t<t4’], diode current iD2 increases from 
zero ampere. After time t4’, the diode current iD2 decreases 
from its maximum value due to that iLm1 and iL1 are both 
decreasing. In converter cell 2, the inductor current iL2 
increases in this mode. At time t5, diode current iD2 is 
decreased to zero. Then diode D2 is turned off at ZCS. There 
is no reverse recovery loss in diode D2. 
Mode 6 [t5≤t<T+t0]: This mode starts at time t5 when diode 
current iD2=0. Then diode D2 is off at ZCS. The diode current 
iD1

)()()( 5
1

511 tt
LL

Vvtiti
mlk

Cin
DD −

+
−

+=

 is given as: 

       (8) 

Since vin<VC1, diode current iD1 is decreasing in this mode. 
The inductor current iL2 continuously increases in this mode. 
At time T+t0, diode current iD1 is decreased to zero. Then 
switch S1

IV. STEADY STATE ANALYSIS 

 is turned on at this instant to achieve ZCS turn-on. 
Then, the operation mode in this switching cycle is completed 
and the circuit goes to the next switching operation. 
 

In steady state analysis, transformers T1 and T2 are 
modeled as the magnetizing inductors L1 and L2 and leakage 
inductors Llk. Based on the voltage-second balance on the 
primary sides of T1 and T2, we can derive the average 
voltages VC1 and VC3

δ−
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131
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. 

   (9) 

where δ is the duty cycle of switches S1 and S2. In the same 
manner, the average voltages VC2 and VC4 can be obtained 
due to the voltage-second balance on the secondary sides of 
T1 and T2
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where lkm LLk /= , (δ1T) is the turn-on time of diodes D2 

and D4 and (δ2T) is the turn-on time of diodes D1 and D3. 



Interleaved Boost-Flyback Converter with Boundary Conduction Mode for …                   711 

 

Thus the DC voltage conversion ratio of the proposed 
converter is derived as: 
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If we assumed that the leakage inductance is neglected and 
the turn-on time is δ1
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T=T-δT, then the DC voltage 
conversion ratio in (11) can be further expressed as: 

    (12) 

Fig. 4 shows the theoretical voltage conversion ratio of boost 
converter, flyback converter and the proposed converter. It is 
clear that the proposed converter has higher voltage step-up 
gain. In time interval [t0-t4], S1 
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following equations can be derived: 
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In mode 5 [t4-t5], D1 and D2
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 are conducting. Thus, the 
leakage inductor voltage can be derived as: 

   (14) 
The inductor current iL1
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The magnetizing current of T1
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The diode current iD2
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 is expressed as: 

  (17) 
The voltage stresses of diodes are given as: 
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The voltage stress of switches S1 and S2
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V. EXPERIMENTAL RESULTS 
The proposed converter with BCM operation for high 

step-up voltage conversion was built and tested to achieve 
unity power factor, line current harmonics reduction and 
partially ripple current cancellation at input and output sides. 
Experimental results based on a laboratory 500W prototype 
are provided to verify the effectiveness of the proposed 
converter. Fig. 5 gives the circuit configuration of the 
prototype circuit. An interleaved BCM mode control IC 
UCC28061 is adopted to generate two PWM signals and 
regulate output voltage. The design procedure of the boost 
PFC with BCM scheme can be found in the application notes 
from Texas Instruments website. Since the adopted converter 
is operated at BCM mode, an input capacitor Cin is added 
after the diode rectifier to filter high frequency harmonic 
current. Fig. 6 shows the measured line voltage vs and line 
current is at 30% and 100% load conditions. It is clear that 
line current is a sinusoidal waveform. The measured power 
factor is 0.98 and total harmonic distortion of line current is 
18.9%. Fig. 7 gives the measured results of vS1,gs, iin, iL1 and 
iL2 at 30% and 100% load conditions. The input current iin 
has twice switching frequency compared to the frequency of 
iL1 and iL2. Thus, the boost inductances L1 and L2 can be 
reduced. Fig. 8 gives the measured results of vS1,gs, vS2,gs, iS1 
and iS2 at 30% and 100% load conditions. Fig. 9 shows the 
measured results of vS1,gs, vS2,gs, iD1 and iD3 at 30% and 100% 
load conditions. Fig. 10 gives the measured waveforms of 
vS1,gs, vS2,gs, iD2 and iD4
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From Figs. 7-10, we can see that the inductor currents and 
diode currents are interleaved each other. Thus input and 
output ripple currents are reduced such that the input and 

 
Fig. 4. Comparisons of the voltage conversion ratios of the 
proposed converter, boost converter and flyback converter with 
unity turns ratio. 
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Fig. 5. Circuit configuration and specifications of the prototype 
circuit. 
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output capacitances can be reduced. Since BCM operation is 
adopted in the proposed converter, all diodes are turned off at 
ZCS. Thus, there is no reverse recovery loss on each diode. 
Two power switches are turned on at ZVS. The measured 
circuit efficiencies of the proposed converter are shown in 
Fig. 11. The proposed converter has better circuit efficiency 
compared with the conventional interleaved boost converter 
with BCM scheme. 
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Fig. 7. Measured results of vS1,gs, iin, iL1 and iL2
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Fig. 8. Measured results of vS1,gs, vS2,gs, iS1 and iS2 at (a) 30% 
load (b) full load. 
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Fig. 9. Measured results of vS1,gs, vS2,gs, iD1 and iD3
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Fig. 10. Measured results of vS1,gs, vS2,gs, iD2 and iD4
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Fig. 11/ Measured circuit efficiencies of the proposed converter 
and interleaved boost converter with BCM operation. 
 

VI. CONCLUSION 
An interleaved boost-flyback converter operated in BCM 

mode is presented to achieve nearly unity power factor, low 
total harmonic distortion and high voltage step-up features. 
All diodes are turned off at ZCS and switches are turned on 
at ZCS. There is no reverse recovery loss on the rectifier 
diodes and the low cost fast recovery diodes can be used in 
the adopted circuit. The adopted converter can be used in 
fuel cell system, PV cell system, battery discharge system 
for DC-AC converter with high voltage step-up function. 
The adopted converter can also be used for high output 
voltage application with utility mains input and high input 
power factor demanded. The circuit configuration, operation 
principle and steady state analysis are demonstrated as well. 
Finally the performance of the proposed converter is verified 
from the experiments based on a laboratory prototype. 
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