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In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck 

converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant 
buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode 
controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the 
transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. 
Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient 
performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding 
mode control method. 
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I. INTRODUCTION 
 

 Nowadays, nonlinear control methods are widely used to 
improve the dynamic performance of dynamical systems. An 
effective nonlinear robust control method is the sliding mode 
control (SMC) technique proposed for variable structure 
systems [1]. It is a popular control approach for systems with 
uncertainties or unknown disturbances. This control system is 
stable and robust. In sliding mode control systems, an input 
control with a high switching frequency is employed as a 
function of the instantaneous state values to see to it that the 
system trajectory stays on a selected switching surface. 
Moreover, a suitable input control keeps the system trajectory 
near the sliding surface until it reaches the equilibrium point 
[2], [3]. The switching surface plays an important role in the 
design of sliding mode controllers. Fast dynamic response 
and good transient performance of systems can be created by 
an appropriate choice of the switching function.  

In addition, tracking errors can be eliminated or reduced to 
satisfactory values for practical applications in sliding mode 

controllers [4]. In most literature, the switching surface is 
selected as a linear function of state variables for simplicity 
[5], [6]. Therefore, with low dynamic performance in systems 
like the elimination of steady state errors, the switching 
surface function is improved by adding single or double PI 
controllers [7]. However, a PI controller is a lag 
compensation and it reduces the bandwidth of a closed-loop 
system. Like SMC systems, conditional stability occurs when 
a system has saturation in the controller. On the other hand, a 
class of optimization problems is the minimization of the 
transition time from any initial state to a desired point that is 
called minimum time optimal control systems. 

Pontryagen's minimum principle is an open loop technique 
for time optimal control systems. In this approach, a time 
optimal control with an input constraint has the bang-bang 
property, and the input control depends on the initial and final 
conditions [8]. For the independence form of any initial and 
final state conditions, a closed-loop time optimal control 
method with the bang-bang property is introduced by using 
an optimal switching surface [8]. However, since the 
elimination of the time variable for system trajectory is very 
complicated, an analytical solution for obtaining the 
switching surface function is not possible for damped 
sinusoidal oscillator systems. To solve this problem, 
approximated or numerical methods are applied [9]. 
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In harmonic oscillator systems, the optimal switching 
surface can be obtained by a set of fixed radial circles [10]. 
These circles only depend on the initial states and the input 
control values. However, the design and implementation of 
the optimal switching surface in stable damped sinusoidal 
oscillator systems are very complicated. In this case, the 
optimal switching surface is a set of dissimilar ellipsoid 
functions that are dependent on the system parameters and 
time, as well as, the initial states and input control values. 

Any dc/dc converter is characterized by an inherently 
damped sinusoidal oscillator with the bang-bang property 
[11]. Thus nonlinear controllers, such as sliding mode 
controllers, are appropriate for application to dc/dc converters. 
On the other hand, applying sliding mode control technique 
to multi-quadrant buck converters has some disadvantages 
such as: a non-constant switching frequency and the presence 
of a steady state regulation error [5], [12]. Nevertheless, 
pulse-width-modulation (PWM) [6], [13], and adaptive 
feed-forward and feedback hysteresis band control [11] were 
suggested to achieve a fixed switching frequency. A single or 
double integral sliding surface method was proposed to 
improve the steady state regulation error [7], [14], [15]. 

In buck converters, load changing leads to a transient over/ 
under voltage and current. In the SMC regime, the transient 
performances of buck converters are improved by appropriate 
selection of the switching surface, i.e., substituting second 
order [15] or approximation of the hyperbola [16] functions 
for the first order linear function. However, for large 
amplitude disturbances or a low capacitance and a high 
inductance, second order and approximation of the hyperbola 
functions do not exhibit suitable transient characteristics 
because the existing condition cannot be satisfied. To 
improve the transient performance of the output voltage and 
to obtain an optimal time response for full load rejection, the 
authors of [10] proposed the optimal switching surface. In 
general, and especially in load changing without output load 
rejection, this method does not have optimal dynamical 
performance. 

In this paper, a closed-loop time optimal control system is 
employed for systems with stable damped mode conditions 
and extended in the general case. It is also extended to 
switching multi-quadrant buck converters. Furthermore, an 
optimal switching surface for dc/dc converters is introduced. 
Unlike the SMC system, the optimal controller in the 
closed-loop form can eliminate tracking errors in minimum 
time for any output variation by using the optimal switching 
surface. Optimal controller parameters are also adapted to 
adjust the optimal switching surface corresponding to any 
load variation. Finally, to compare the capability of the 
optimal SMC system, some numerical simulations and 
experimental results are presented. The results indicate that, 
the transient and steady state performances of the time 
optimal dc/dc converters are effectively improved in 

comparison with the classical SMC systems. 
 

II. SLIDING MODE CONTROL SYSTEMS FOR 
OUTPUT REGULATION 

 

The sliding mode control technique is an effective nonlinear 
control method which has high-performance in terms of 
external disturbances. This technique, which is based on the 
measurement of instantaneous state variables, is suitable for 
variable structure systems. In practice, the switches of a dc/dc 
converter are in the “on” or “off” modes. Thus the input 
control of this system is a piecewise constant function in a 
SMC system in which the system trajectory stays on a 
switching surface by duty cycle control. Consider a linear time 
invariant dynamic system as follows: 

( ) ( ) ( )t t t= +x Ax Bu             (1) 
where x(t) and u(t) are two vectors which represent the 
system state and control input. In addition, A and B are the 
system and input matrices, respectively. The input control 
constraint is given as: 

( )N Pt< <u u u                (2) 

where Nu and Pu are lower and upper limits of the input 
control. For designing classical SMC controllers in 
second-order dynamic systems, a dependant function of the 
states variables is defined as [3]: 

1 2 1 1 1 2 2 2( , ) ( ( ) ( )) ( ( ) ( ))sm f fS x x x t x t x t x tβ β= − + −  (3) 

where 1β and 2β are the sliding coefficients of the controlled 

system and 1( )fx t and 2 ( )fx t are the final values of the state 

variables. The switching surface for the sliding mode control 
system is a linear function as 1 2( , ) 0smS x x = . When the input 
switching frequency tends to infinity, the system trajectory 
stays on the switching surface and the time constant of the 
closed-loop system is 21 /β β [3]. 

Existing, hitting and stability conditions have been 
satisfied for implement the SMC in systems (1) [3]. The 
existing condition determines the region of the phase plane 
where the system trajectory slides on the switching surface. 
For a small region near the switching surface, if the system 
trajectory directs toward the sliding surface (2) by itself, the 
existing condition will be satisfied. To establish this 
condition the following inequality should be held: 

1 2 1 20
( ,l m (i ) , ) 0

sm
sm smS

S x x S x x
→

<          (4) 

where 1 2( , )smS x x is the time derivation of the switching surface. 
The coefficients of the sliding surface are selected in a manner 
that satisfies (4). When inequality (4) holds in the whole region 
of the phase plane, it suffices for the system trajectories to 
reach the sliding surface. Whereas, the hitting condition is the 
sufficient condition to reach the system trajectory of the sliding 
surface. The system trajectory can reach the switching surface 
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when one of the following two conditions is satisfied: 
0 0
0 0

P sm N sm

P sm N sm

S S
S S

∈ > ⇒ ∈ <
∈ < ⇒ ∈ >

x x
x x

           (5) 

where Nx  and Px  are the steady state values of the state 

variables with input controls of Nu and Pu , respectively. 
Considering (4) and (5), the control law for infinite switching 
frequency in the SMC can be determined as: 

0
( )

0
P sm

N sm

S
t

S
≤

=  >

u
u

u
              (6) 

System stability can be guaranteed for a second-order system, 
if its trajectory in the sliding regime directs toward a stable 
operating point [1]. In higher-order dynamic systems, stability 
should be verified by non-linear stability theorems. Therefore, 
in a second-order system, the stability of the closed-loop 
system can be guaranteed by selecting proper values 
for 1β and 2β in (3). Although the switching surface (3) 
guarantees system stability and robustness, it may not result in 
suitable transient characteristics. Thus some of the high 
dynamic performances can be obtained if the switching surface 
is selected in the optimal nonlinear form 1 2( , )smS x x . 
 

III. MINIMUM TIME OPTIMAL CONTROL SYSTEMS 
 

A class of optimization problems is called the 
minimum-time optimal control which minimizes the transition 
time from any initial state to the target set. A systematic 
approach to solve the time optimal problem is using the 
minimum principle of Pontryagin. In the minimum time 
problem, the cost functional is considered as: 

0

ft
J dt= ∫                    (7) 

The system and input matrices in (1) for damped sinusoidal 
oscillator systems are: 

- 0
- 1

n d

d n

B
ξω ω
ω ξω

   
= =   −   

A             (8) 

where ξ and nω  are the damping ratio and the un-damped 

natural frequencies, respectively. In addition, dω  is the 
damped natural frequency which is equal to: 

21d nω ω ξ= −                 (9) 
The optimal switching surface is applied to extract the optimal 
control law for the second order system in (1) and (8) 
with 0nω > , 0 1ξ< < and the constrained input control (2). 
By using (1) and (7,8), Hamiltonian's function 

( ( ), ( ), ( ))H t t tx u p  is obtained as: 

( )( ( ), ( ), ( )) 1 ( ) ( ) ( )TH t t t t t t= + +x u p p Ax Bu      (10) 

where ( )tp is a vector of the costate variables which can be 
obtained as: 

( ) ( ( ), ( ), ( )) ( )Tt H t t t t∂
= − = −

∂
p x u p A p

x
       (11) 

By substituting (8) into (11), the following is obtained: 

1 1

2 2

( ) ( )
( ) ( )

n d

d n

p t p t
p t p t

ξω ω
ω ξω

    
=     −    





         (12) 

The time optimal control of system (1) and (8) with constrained 
input control (2) is followed by the bang-bang property. Thus 
optimal control is a piecewise constant function of time [17]. In 
addition, the input control is achieved by minimization of the 
Hamiltonian (10) subject to (2). Thus by considering (2) and 
(10), the time optimal control is obtained by: 

2

2

2

( ) 0
( ) ( ) 0

( ) 0

p

N

u p t
u t u p t

Singular p t

<
= >
 =

          (13) 

The input control ( )u t in (13) is dependent on the sign of the 

costate variable 2 ( )p t . Then, for 0 1ξ< < and 0nω > in (12), 
the switching number of the input control is not limited. The 
costate variable 2 ( )p t can be obtained by solving (12) with the 
non-singular input control. In this case, the following is 
obtained: 

2 1 2( ) ( cos sin )nt
d dp t e k t k tξω ω ω= +        (14) 

where 1k and 2k are two constant coefficients. Fig. 1 

shows 2 ( )p t and ( )u t with 0.1ξ = and 1 / secn radω = for 
typical initial conditions. These results show that the sign of 

2 ( )p t is constant for / dπ ω units of time. Thus the input control 
will be constant for this duration. Since the initial values of the 
states of the costate variables are unknown, the closed-loop 
optimal control system (1) and (8) based on costate dynamic 
(12) is not realizable. Moreover, by using the convolution 
integral, the state variables of the system (1) and (8) can be 
expressed as: 

0

( ) ( ) (0) ( ) ( )
t

t t t u dυ υ υ= Φ + Φ −∫x x B        (15) 

where (0)x is the initial condition of the system. In addition, 
( )tΦ is the transition matrix of the system which can be 

obtained in the under-damped condition 0 1ξ< < as: 

cos sin
( )

sin cos
n d dtt

d d

t t
t e e

t t
ζω ω ω

ω ω
−  

 


Φ = =
− 

A       (16) 

 
By substituting (8) and (16) into (15), the state variables of the 
system can be expressed as: 

1 1 2

2 2 1

( ) ( (0)cos (0)sin
( ) ( )sin( ))

( ) ( (0)cos (0)sin
( ) cos( )) ( )

n

n

t
d d

d
n c
t

d d

d
n n

x t e x t x t
u t u tt

x t e x t x t
u t t u t

ξω

ξω

ω ω

ω θ
ω ω

ω ω
ξω θ

ω ω

−

−

= + −

− + +

= − −

− + +

    (17) 
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Fig. 1.  2 ( )p t and ( )u t for 0.1ξ = and 1 / secn radω = . 
 
where: 

2
1

2

1
tan

1
n

c
ξ ωθ ω

ξ ξ
− −

= =
−

         (18) 

Since (17) is a nonlinear function of t, the system trajectory 
cannot be obtained by analytical elimination of the time 
variable in (17). The typical system trajectories in (17) are 
shown in Figs. 2-a and 2-b for the two input controls 0Nu =  

and 1Pu = . The system trajectory is divided to different paths 

such as 0 1 0,? �C C C+ + − and 1C−  which start from A at t=0 and is 

directed toward B at / dt π ω= units of time, C 

at 2 / dt π ω= units of time and so on. Relation (14) shows that 
the optimal control should not be constant for more 
than / dt π ω= units of time. Then, the two parts of the 

trajectory 0C+ and 0C− are a set of state variables that can reach to 

the desired point in no more than 2 / dt π ω= units of time with 

the input constants ( ) pu t u= and ( ) Nu t u= , respectively. In the 

general case, similar to Fig. 2, the jth part of the system 
trajectories are called jC+ and jC− . Then the optimal switching 

surface for the time optimal control is constructed by jλ+  

and jλ− . This optimal switching surface is obtained by the 

shifting and its inverse jC+ and jC− . A typical switching surface 
is shown in Fig. 2-b. Finally, the switching surface can be 
defined as: 

1 2
0 0

( , )
n n

j j
op

j j

S x x λ λ+ −
= =

      =    
      



 

       (19)  

where n is the number of system trajectory parts in the 
switching surface. When 0n ≠ , any state variable on  
the jλ+ or jλ− curve can be forced to 1jλ −

+ or the curve for 1jλ −
− by 

the input control ( ) pu t u=  and ( ) Nu t u=  in no more than 

/ dt π ω=  units of time. Based on Fig. 2-b, the phase plane is 
divided into two parts, 1 2( , ) 0opS x x < and 1 2( , ) 0opS x x > . 

Then the time optimal control *( )u t as a function of the state 
variables 1 2( , )x x  can be found as [17]: 

 
a) Trajectory with ( ) 0u t = and ( ) 1u t =  

 
b) Optimal switching surface. 

Fig. 2. Trajectory and optimal switching surface 0.5ξ =  
and 1 / secn radω = . 

 

1 2*

1 2

( , ) 0
( )

( , ) 0
N op

P op

u S x x
u t

u S x x
<

=  ≥
          (20) 

The switching surface of the optimal SMC is a set of ellipsoid 
forms which are dependent on the system parameters. These 
ellipsoid shapes change due to variations in the system 
parameters, and they finally convert into circle shapes when 

0ξ = . Fig. 3 shows a typical system trajectory that can reach 
the desired point from an arbitrary initial state by an optimal 
three times input switching with sequences. 
 

IV. TIME OPTIMAL CONTROL FOR NEW MATRIX 
FORM SYSTEM 

 
In practice, the above relations for the minimum time 

optimal control are not applicable, because the optimal 
switching surface varies according to the load conditions. A 
new system matrix is introduced for modeling and practical 
implementation of the optimal control in damping mode 
conditions. New state space variables are defined as: 

1 1

2 2

( ) 1 / 0 ( )
( ) / 1 ( )

new d

new n d

x t x t
x t x t

ω
ξω ω

    
=    −     

     (21) 

By using (1), (8) and the similar transformation in (21), the 
damped mode system can be presented by: 

( ) ( ) ( )t t t= +n n n nx A x B u             (22) 
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Fig. 3. Optimal trajectory with 0.5ξ = and 1
secn
radω = . 

 
where: 

1
2

2

( ) 0 1 0
( )

( ) 2 1
new

new n n

x t
t

x t ω ξω
     

= = =     − −     
n n nx A B  (23) 

 

In this case, the Hamiltonian of the system can be given as: 
1 2 2

2
2 1

( ( ), ( ), ( )) 1 ( ) ( ) ( )

( ( ) 2 ( ) ( ))
new new new

n new n new

H t t t p t x t p t
u t x t x tξω ω

= + +

− −
n nx p u

   (24) 

By using (11) and (24), the costate dynamical system can be 
obtained as: 

2
1 1

2 2

( ) ( )0
( ) ( )1 2

new newn

new newn

p t p t
p t p t

ω
ξω

    
=     −    





       (25) 

where time domain solution of 2 ( )newp t in (25) is: 

2 3 4( ) ( cos sin )nt
new d dp t e k t k tξω ω ω= −       (26) 

where 3k and 4k are two constants that can be obtained from the 
boundary conditions. Similar to the last section, the 
Hamiltonian and costate functions in (24) and (25) are the time 
optimal control of system (23) with the constrained input 
control (2). In this case, the input control is followed by the 
bang-bang property and the piecewise constant for / dπ ω units 
of time. Then, relation (19) is valid for this system by changing 
the system variables to (21). Fig. 4 shows a typical optimal 
switching surface for the new system in terms of different 
values of ξ . In this figure, some of the characteristics of the 

system trajectories such as the peak values of 2 ( )newx t in 

proportion toξ and the peculiarity of point 1 1 2 2, ?? ? �A A A A′ ′
can 

be obtained by solving the response of the system with an input 
control of zero and the initial values 1 (0)newx  and 

2 (0) 0newx = . In this condition, the system trajectory is: 
 

1
1

1
2

(0)( ) ( )

(0)( )

n

n

tnew
new d

tnew
new d

xx t e sin t
sin
xx t e sin t

sin

ξω

ξω

ω θ
θ

ω
θ

−

−

= +

= −
      (27) 

 

 

Fig. 4. Optimal switching surface with 1
secn
radω = . 

 
Fig. 5. Amplitude of state variables in (29) for different values 
ofζ , at pt . 

 
The maximum value of 2 ( )newx t occurs at pt which can be 

obtained from 2 ( ) / 0newdx t dt = as: 

p
d

t θ π
ω
−

=                   (28) 

Thus by using (27) and (28), the variation of 1 ( )newx t in terms 

ofζ , which is given by 1 ( )newpx ζ , can be expressed as: 

1 1( ) 2 (0) tan
newp newx cos x e

π θ
θζ θ
−

= −          (29) 

The variation of 1 ( )newpx ζ with 1 (0) 1newx = is shown in Fig. 5. 

As shown in this figure, the peak amplitudes of 1 ( )newpx ζ  and 

2 ( )newpx ζ in interval 0 0.55ξ< < can be approximated by a 

linear function. 
1 ( ) 5.5newpx ξ ξ≈ ±                (30) 

In practice, the optimal switching curves can be 
approximated by a zigzag linear function. The zigzag 
approximated curves with different values of ζ  are shown in 

Fig. 4. The break points of the zigzag curve are the points iA  
and on the curves. These points vary by 
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linearly changing the value of ζ . However, the slope of the 

linear functions are independent ofζ . In addition 1 ( )newpx ζ is 

the break point of the zigzag curve which is approximated by 
(30). Thus, the zigzag switching surfaces have similar shapes 
but the break points are linearly dependent onζ . 

 

V. OPTIMAL CONTROLLER IN MULTI-QUADRANT 
BUCK CONVERTERS 

By real implementation, the dynamic performances of the 
closed-loop system in classical and optimal SMC controllers 
are compared and evaluated in multi-quadrant buck converters. 
Fig. 6 shows the scheme of a closed-loop SMC in a 
multi-quadrant buck converter with classical and optimal 
switching surfaces. Using ( )cv t and ( ) /ci t C as the state 
variables of the system, the state space model of the 
multi-quadrant buck converter in Fig. 6 can be obtained as (22). 
In this case, the following is obtained: 

2

( ) ( )0 1 0
( )1 1 1( ) ( )

c c

n nc c

v t v t
u t

i t i t
C C

ω ξω

         = +              
−


−





   (31) 

where: 

1 1 2
1 2

1
1 1

2

2

1 1

n l l

l
n

l l

K R R LR R
R R C

RR K K
C R C L R R

ξ
ω

ω

 
= + + + 

 

 
= + =  + 

       (32) 

where C, L, 1R , 2R  and lR  are the capacitance, inductance, 
inductor resistance, capacitor leakage resistance and load 
resistance of the converter, respectively. In addtion, the input 
control of the converter is given by: 

1( ) ( )in
Ku t v t
C

=              (33) 

Based on the structure of the converter, the constraint on the 

input control u(t) can be taken by: 

1 1( )N P
K KV u t V
C C

≤ ≤            (34) 

In this inequality the constraints, PV  and {0, }N pV V= −  are 

the positive and negative input source voltages of the 
converter, respectively. The load current ( )loadi t  is an output 
variable in any multi quadrant buck converter which is 
disturbed by input and output variations. To eliminate the 
disturbance in the minimum time, the optimal switching 
surface could be obtained as in the last section. The final values 
of the state variables are considered as: 

( ) ( ) 0c f ref c fv t V i t= =           (35) 
Using (3), (31) and (35), the switching surface for the classical 
SMC can be obtained as: 

2
1( , ) ( )sm c c c ref c

n

S v i v V i
C
ββ
ω

= − +         (36) 

For 1 1 / lRβ = and 2 nCβ ω= [5], relation (36) can be 
represented as: 

1( , ) ( )sm c c c ref c ref c
l

S v i i i i V v
R

= − = − −      (37) 

Moreover, the optimal switching surface ( ( , ))op c cs v i can be 
obtained as the zigzag curve shown in Fig. 4. By substituting 
(32) into (30) and neglecting 1R and 2R comparison with /L C , 
the break point of the zigzag curve can be obtained as: 

5.5
2cp

l

LV
R C

= ±              (38) 

As shown in Fig. 6, the state of 1 ( ) ( )newp cptx v t= is a linear 

function ofξ , (Eq. 30) in the interval of 0 0.55ξ< < . The 

damping ratio ξ is directly proportional to1 / lR . Then, for the 
given output voltage, the load current is directly proportional 
toξ . Thus the time optimal switching surface can be adjusted 
to the output load which is shown in Fig. 6. 

In passive resistance loads, the sign of the output voltage and 
the current of the converter are the same, and the break points 
of the zigzag switching curve are proportional to /out outi v . Thus 
the break points can be adjusted by using analogue divider 
circuits. In addition, a quadrant Operational Transconductance 
Amplifier (OTA) is especially suited for many low frequency, 
low-power four-quadrant multiplier and divider applications. 
An OTA is similar to conventional operational amplifiers but 
the output of an OTA is a current signal [18]. The output 
current of an OTA is proportional to the transconductance gain 
and the differential input voltage. The transconductance gain is 
adjusted by the amplifier bias current. The divider circuit in Fig. 
7-a is realized by using an OTA and the input-output transfer 
characteristic of this circuit is recorded in Fig. 7-b. The transfer 
characteristic of this circuit is very similar to the zigzag 
switching curve in Fig. 4 and the closed-loop optimal sliding 
mode control system in Fig. 6. 

 
Fig. 6. Scheme of the sliding mode quadrant buck converter. 
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(a) Circuit. 

 
(b) Transfer characteristic.  

Fig. 7. Controller for time optimal switching surface. 
 

VI. NUMERICAL SIMULATIONS AND 
EXPERIMENTAL  RESULTS 

Figs. 8-a and 8-b show the simulation results for the 
classical sliding, exact and approximated optimal SMC, when 
the load of converter is decreased from 0.3lR = Ω  to 

5lR = Ω ( 0.5)ξ = . The input and reference voltages are 

20pV volts= , 0NV = and 10refV volts= and the converter 

parameters are presented in Table I. These results show that the 
approximated optimal switching surface is a proper response to 
damp the output disturbance in a buck converter in the 
minimum time. However, the exact and approximated optimal 
SMC reach the final value in 70 sµ which is sooner than the 
classical SMC with a slope of 1/ 0.3 .  

In addition, other simulation results are done for a converter 
with parameter similar to those in Table I in 10pV volts= , 

0NV =  and 5refV volts= . In this case, the output load 

changes from 2.5lR = Ω  to 5lR = Ω ( 0.5)ξ = . The output 
voltage, the capacitor current and the system trajectory are 
shown in Figs. 9-a to 9-c. These figures illustrate that the 
disturbance of the output voltage is damped in about 25t sµ=  

for the optimal sliding mode control. However, this occurs in 
more than 100t sµ=  for the classical sliding mode control 
with a slope of 1 0.2β = . 
  The experimental results of the system are shown in Figs. 
10-a and 10-b. In these figures, Ref 1 and Ref 2 are 
representations of the ground levels for CH1 and CH2. 
Furthermore, the maximum magnitudes of the output over the 
voltage for the optimal and classical SMC are similar. Under 
step up/down load variations, the storage energy in the 
inductor/capacitor is transferred to the capacitor/inductor and a 
transient over/under voltage appears in the output voltage. 
Therefore, the output load connection to the output of a 
converter may be damaged. Thus optimal regulation of the 
minimum over-voltage magnitude and the transient time is an 
important property of closed-loop multi-quadrant buck 
converters. To compare the transient performances of the two 
closed-loop systems, a transient over-voltage index can be 
introduced as: 

2
0( ) ( ( ) )t

c refj t v t v dt= −∫  (39) 

As shown in Figs. 11-a and 11-b, the transient over-voltage 
index for the optimal SMC is less than that of the classical 
SMC. The above-mention results for a multi-quadrant buck 
converter with 10pV volts= , 10NV volts= − are shown in Figs. 

12-a and 12-b, when the converter load increases from 
10lR = Ω  to 5lR = Ω .  

Thus the time optimal controller can be applied to damp 
disturbances with minimum time and energy for multi-quadrant 
buck converters. 

 
(a) Output voltage. 

 
(b) Capacitor current. 

Fig. 8.  Classical and optimal SMC with 20PV v= and 0NV =  
and load step decreased from 0.3 to 5. 
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     (a) Output voltage.                         (b) Capacitor current.                   (c) System trajectory. 

Fig. 9. Classical and optimal SMC with 10pV v= , 0NV =  and load step decreased from 2.5Ω to 3Ω . 
 

 
(a) Classical SMC. 

 
(b) Time optimal SMC. 

 
Fig. 10.  Experimental results for output voltage and capacitor 
current. 
 

VII. CONCLUSIONS 
This paper presents the design of a time optimal sliding mode 
closed-loop controller for the class of second-order systems 
with stable damped harmonic oscillator systems. An adjusted 
time optimal controller was suggested to make the optimal 
switching surface correspond to every load variation. 
Multi-quadrant buck converters were used to verify the validity 
of the design procedure. By substituting the optimal switching 
surface for the classical one, the output voltage could be 
regulated in a minimum time. Moreover, the transient 
over-voltage index in the optimal SMC is considerably 
decreased. 

   

 
(a) Load decreased from 2.5lR = Ω to 5lR = Ω . 

 
(b) Load increased from 10lR = Ω to 5lR = Ω . 

Fig. 11.  Transient over voltage energy index for classical and 
time optimal SMC. 

 
 

TABLE I 

CONVERTER PARAMETERS 

Description Parameter Value 
Capacitance 
Inductance 

Load resistance  
Inductor resistance  

Capacitor 
resistance  

C 
L 

lR  

1R  
2R  

3 Fµ  
96 hµ  

{ }0.3,2.5,5,10 Ω  
0.2Ω  

810− Ω  



Minimum Time Regulation of DC-DC Converters in …                          777 
 

 

 
(a) Output voltage. 

 
(b) Capacitor current. 

Fig. 12. Classical and optimal SMC with 10pV volts= and 

10NV volts= −  and load step increased from 10lR = Ω to 
5lR = Ω  
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