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Abstract 

 
This paper proposes a new dead time compensation method of independent six-phase permanent magnet synchronous motors 

(IS-PMSM). The current of the independent phase machines contains odd-numbered harmonics because of the dead time and the 
nonlinear characteristics of the switching devices. By using the d-q-n three-dimensional vector analysis, these harmonics can be 
extracted at the n-axis current. Thus, the current distortion can be compensated by controlling the n-axis current of the IS-PMSM to 
zero. The proposed method is simple and can be easily implemented without additional hardware setup. The validity of the proposed 
compensation method is verified with simulations and several experiments. 
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I. INTRODUCTION 
Multi-phase permanent magnet synchronous motors 

(M-PMSM) are useful for high power applications such as 
electrical propulsion of ships, locomotive tractions or electric 
vehicle applications, because it has many advantages over 
conventional 3-phases such as reducing torque ripple, lowering 
the DC link current harmonics, improving reliability and 
decreasing the current stress of switching devices [1], [2]. In 
multi-phase drives, it is possible to implement the low power 
switching devices for the high power applications since the 
controlled power is divided over several inverter legs [3], [4]. 
Although failure of any single-phase drive unit degrades the 
control performance of the IM-PMSM, the urgency of 
immediate repairs is reduced since the system shutdown is not 
required [5]. 

In the voltage source inverter (VSI), the current harmonics 
occurs due to the dead-time and nonlinear characteristics of the 
switching devices. The compensation methods of the dead time 

effects for the Y-connected 3-phase machine have already been 
suggested in many technical literatures [6]-[17]. The average 
value of the lost voltage calculation [6], [7], the PWM pulse 
based method [8], the voltage feed forward method [9]-[13], 
the phase angle calculation method [14], the disturbance 
observer method [15], [16], and the support vector regression 
(SVR) method [17] are the main categories of the conventional 
dead time compensation methods. However, these methods are 
based on the Y-connected three-phase machine and have 
drawbacks such as parameter dependency and complexity.  

This paper proposes the vector control method of the 
independent six-phase permanent magnet synchronous motor 
(IS-PMSM) based on a multiple d-q-n axis analysis. Moreover, 
a new dead-time compensation method of the IS-PMSM is also 
proposed to eliminate the current harmonics due to the dead 
time and nonlinear characteristics of the switching devices. The 
simulation and the experimental results are shown to validate 
the proposed method. 

 

II. REVIEW OF DEAD TIME COMPENSATION 
METHODS 

 

Dead time compensation methods have been studied in 
many literatures. The main category of this topic can be 
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classified as follows. 

A. Open Loop Methods 
In most cases, the open loop methods are based on the 

average value theory. The switching leg time is averaged over 
an entire cycle and added to the voltage reference [6], [7]. A 
pulse-based method [8] compensates the dead time for each 
PWM pulse. These methods are dependent on the direction of 
the phase current. In [9]-[13], the compensation voltage is fed 
to the reference voltage in order to generate a modified voltage. 
The compensation voltage is calculated by considering dead 
time, switching period, current command and DC link voltage. 
Since the voltage drop of switching devices and diodes is 
varied with operating conditions such as motor speed, the 
phase currents, and DC-link voltages, it is difficult to 
compensate the dead-time accurately in all operating ranges 
with these open loop methods. 

B. Closed Loop Methods 
The closed loop methods are proposed in [14]-[17]. The 

method in [14] needs the additional computational burden to 
determine the phase angle of currents and set up a lookup table. 
These problems can be solved by using a disturbance observer 
as shown in [15] and [16]. Therefore, it is necessary to tune 
parameters such as observer gains and load conditions. In [17], 
this method is based on an emerging learning technique called 
support vector regression (SVR). It is difficult to implement the 
SVR model method because it requires some parameters, 
online computation and extra memory to construct the 
regression function. 

 

III. MODELING OF THE IS-PMSM 
The IS-PMSM has six stator windings spatially shifted by 

60° electrical degrees with virtual neutral points as shown in 
Fig. 1.  

The voltage equation of the IS-PMSM can be expressed as 
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where 
x: specific phase 
ex: back EMF of each phase 
ix: current of each phase 
R: stator resistance of each phase 
L: Ls - Lm 
Ls: self inductance of each phase, Lm: mutual inductance  
 
The output torque of the IS-PMSM can be expressed as (2). 

 
Fig. 1.  Equivalent circuit of IS-PMSM. 

 
Fig. 2.  Block diagram of IS-PMSM model. 
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where Pe, Es Is and ωm are the electrical power, RMS 
back-EMFs, RMS phase currents and mechanical angular 
speed of the rotor, respectively.  

The torque equation of the rotational motion can be 
expressed as 

 

Lm
m

me TB
dt

dJT m ++= ww
            (3) 

 

where Jm, Bm and TL are the inertia of the rotor, friction 
coefficient and load torque, respectively. 

The mathematical model of the IS-PMSM is shown in Fig. 
2. 

The six-phase space vector can be equivalently represented 
by three-dimensional (3-D) complex space vector. The d-axis 
and q-axis can be expressed as  
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where 3
pj

ea =  
 

Since the A, C, E phase and D, F, B phase are spatially 
shifted by 180°, the zero-sequence of the six-phases can be 
expressed as 

( )fedcban fffffff -+-+-=
6
1

         (5) 
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Fig. 3.  Six separated H-bridge inverter for IS-PMSM. 

 
Unlike the Y-connected machine, the independent phase 

machine does not have any neutral point. Thus, the IS-PMSM 
has (6n ± 3)th harmonics which are in-phase with each phase 

[18], [19]. Therefore, n-axis current is not always zero. The 
n-axis current is loss element and is not related to the torque of 
the IS-PMSM. 

 

IV. PWM SCHEME OF THE IS-PMSM 
 

To drive the IS-PMSM, six separated H-bridge inverters are 
composed as shown in Fig. 3.  

The space vector PWM (SVPWM) technique is widely used 
to control three-phase motors [20], [21]. In the H-bridge 
inverter, two PWM signals of each pole are complementary as 
described in (6) and the switching function can be expressed as 
(7). 

TABLE I 

THE WHOLE SWITCHING VECTOR OF IS-PMSM 

Switch combinations Phase voltage Space vector
(K=D+jQ)

Sa Sa Sa Sa Sa Sa Va Va Va Va Va Va D Q K

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 V 0 0 0 0 0 0

3 -1 0 0 0 0 0 -V 0 0 0 0 0 0

377 1 1 1 -1 -1 1 V V V -V -V V 0

378 1 1 1 -1 -1 -1 V V V -V -V V

379 1 1 -1 0 0 0 V V -V 0 0 0

727 0 -1 -1 -1 -1 -1 0 -V -V -V -V -V 0

728 1 -1 -1 -1 -1 -1 V -V -V -V -V -V 0

729 -1 -1 -1 -1 -1 -1 -V -V -V -V -V -V 0 0 0

o03/1 ÐV

o03/1 ÐV

V3/1

V3/1

V3/1

V3/1

o1803/1 ÐV

o1803/1 ÐV

V3/2-

V3/32-

V3/32-

V3/3

o1803/1 ÐV

V3/1-

o1203/4 ÐV

o603/2 ÐV

  
TABLE II 

ACTIVE AND ZERO VOLTAGE VECTOR OF IS-PMSM  

Switch combinations Phase voltage Space vector
(K=D+jQ)

Sa Sa Sa Sa Sa Sa Va Va Va Va Va Va D Q K

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 -1 -1 -1 1 V V -V -V -V V 0

2 1 1 1 -1 -1 -1 V V V -V -V -V

3 -1 1 1 1 -1 -1 -V V V V -V -V

4 -1 -1 1 1 1 -1 -V -V V V V -V 0

5 -1 -1 -1 1 1 1 -V -V -V V V V

6 1 -1 -1 -1 1 1 V -V -V -V V V

7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

o03/4 ÐVV3/4

V3/2

o603/4 ÐV

V3/2- V3/32-

o1803/4 ÐV

V3/2

o2403/4 ÐV

o3003/4 ÐV

o1203/4 ÐV

V3/32

V3/2- V3/32

V3/4-

V3/32-
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Fig. 4.  The whole switching vectors of IS-PMSM. 

 

 
Fig. 5.  Active and zero voltage vector of IS-PMSM. 
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With six H-bridge inverters, 36 = 729 voltage vector 
combinations can be made as shown in Table I and Fig. 4. 

Among the whole switching vectors, 6 active voltage vectors 
and 2 zero voltage vectors can be obtained by removing 
voltage vectors which are smaller than (4/3)Vdc or same 
direction vectors, as shown in Table II and Fig. 5. 

However, it is difficult to implement SVPWM to drive the 
IS-PMSM with H-bridge inverters, because the discontinuous 
PWM signals are required during one switching period as 
shown in Fig. 6.  

Hence, in this paper, the unipolar SPWM is used to control 
the IS-PMSM. In case of Y-connected machines, the voltage 
utility factor of SPWM is 61.2% of the DC link voltage and 
this value is smaller than 70.7% of SVPWM in the linear 
modulation range [20]. On the other hand, in case of IS-PMSM, 
the utility factor of SPWM is 70.7%, because the maximum 
phase voltage of the H-bridge inverter is Vdc. 

 
(a) 

 
(b) 

Fig. 6.  PWM signals when the voltage vector is located between 
0° to 60°. (a) Phase A, C and E. (b) Phase D, F and B. 
 

 
Fig. 7. Unipolar SPWM and the output voltage of the H-bridge 
inverter. 

 
Fig. 7 shows the unipolar PWM of the H-bridge inverters. 

Since the frequency of the output voltage is twice the carrier 
frequency, total harmonic distortion (THD), iron loss and the 
current pulsation are lower than the bipolar SPWM [22]. 
 

V. ANALYSIS OF THE DEAD TIME EFFECT 
The dead-time and the nonlinear characteristics of the 

switching devices cause the voltage distortion of the PWM 
inverter [21]. It is convenient to analyze the dead-time effects 
from one phase leg of the inverter and extend the results to the 
other phase legs. Fig. 8 shows the average voltage distortion of 
the H-bridge inverter based on the dead time (turn-on/off delay 
time of the switching devices). 

If S1 is turned off, the output voltage error occurs during the 
turn off time Toff. If S4 is turned on, the output voltage occurs 
during the dead time Td and the turn on time Ton. Therefore, the 
voltage error can be expressed as 
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where Ts is the switching period of the H-bridge inverter. 
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Fig. 8.  Switching patterns and output voltages of the H-bridge 
inverter. 
 

Therefore, the average voltage error of each phase can be 
expressed as 
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Fig. 9 shows the phase currents and the voltage errors of the 

IS-PMSM. The voltage errors of each phase of the IS-PMSM 
can be represented in the frequency domain by using Fast 
Fourier Transform (FFT) as shown below: 

 

þ
ý
ü

î
í
ì ×××++++D=D ttttVVx wwww

p
7sin

7
15sin

5
13sin

3
1sin4 (11) 

 
From (11), the current ripple based on the load impedance 

ZL(nωm) and the load impedance angle Φn can be expressed as 
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Fig. 9. Six phase currents and voltage errors of the IS-PMSM. 

 

VI. PROPOSED DEAD TIME COMPENSATION 
METHOD 

The phase currents have 6n ± 1 and 6n ± 3 harmonics as 
shown in (12). The 6n ± 1 harmonics appears as 6n harmonic 
ripple of the d-q axis currents and also occurs in 
Y-connection machines. Thus, several literatures have 
already been proposed to eliminate these harmonics [4], [23]. 
On the other hand, the 6n ± 3 harmonics occurs only in the 
independent phase machines. Therefore, this paper focuses on 
the compensation of the 6n ± 3 current harmonics.  

Assume the 3rd, 9th and 15th harmonics are dominant among 
6n ± 3 harmonics. Then, the phase currents of the IS-PMSM 
can be expressed as (13). 
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where I3, I9 and I15 are the magnitude of the 3rd, 9th and 15th 
harmonics.  

The phase currents can be transformed to the stationary 
reference frame as (15). 
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Then (14) can be expressed as the synchronous reference 
frame like (15). 
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Equation (15) shows that the 6n ± 3 current harmonics 
caused by dead time and turn-on/off time of the switching 
devices appears at the n-axis of the synchronous reference 
frame. Therefore, this current can be used for the dead time 
compensation of the IS-PMSM. 

The flowchart of the proposed dead time compensation 
method is shown in Fig. 10. The sampled phase currents are 
transformed to the synchronous d-q-n axis currents. The 
n-axis current which contains 6n ± 3 harmonic components 
can be reduced to zero automatically by a PI current regulator. 
Then the distortion of phase currents caused by dead time can 
be reduced. 

Fig. 11 shows the block diagram of the proposed dead time 
compensation method. There are three current regulators 
including n-axis. The d-q-n voltage references are converted to 
the phase voltages to implement SPWM to each phase. By 
controlling the n-axis current to zero, the distortion of the 
phase currents caused by dead time can be reduced. 

 

VII. SIMULATION 
The computer simulation of the proposed dead time 

compensation method is performed by using MATLAB 
simulink [24]. The rotor speed of the IS-PMSM is 100 rpm,  

the dead time is 2 μs and the on-off time of the switching 
devices are 0.08 μs and 0.27 μs, respectively. The specification 
of the implemented IS-PMSM is shown in Table III. 

Fig. 12 shows the simulation results of the proposed dead 
time compensation method. The six-phase currents and n-axis 
current have 6n ± 3 harmonics before the compensation as 
shown in Fig. 12(a) and (d). On the other hand, there is no 
distortion at the d-q axis current as shown in Fig. 12(b) and 
(c). After the compensation, the n-axis current has no 
harmonics and the six-phase currents have pure sinusoidal 
waveform. 

Fig. 13 shows the harmonic spectrum of the phase A current 
obtained from FFT. After the dead time compensation, the 6n 
± 3 harmonics are effectively eliminated as shown in Fig. 
13(b). 
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Fig. 11. Block diagram of the proposed dead time compensation algorithm. 

 
Fig. 10. Flowchart of the dead time compensation for ISPMSM. 

TABLE III 

MOTOR SPECIFICATION 
Rated Power 2[kW] Poles 48 

Rated Current 8[A] Stator Resistance 3[Ω] 

Rated Speed 600[rpm] Stator Inductance 13[mH] 

Max Speed 1600[rpm] Torque Constant 0.153[Nm/A] 
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Fig. 12. Simulation results of the dead time compensation. (a) 
phase currents. (b) d-axis current. (c) q-axis current. (d) n-axis 
current 

  
Fig. 13. The harmonic spectrum of the phase A current. (a) Before 
compensation. (b) After compensation, 
 

VIII. SIMULATION 
The proposed dead time compensation method is 

implemented to 2 kW IS-PMSM. The specification of the 
IS-PMSM is shown in Table III. The entire drive system is 
controlled by digital signal processor (DSP) TMS320VC33 
and field-programmable gate array (FPGA). The sampling 
period of the current regulator is 100 μs and the PWM 
switching frequency is 5 kHz. The dead time is configured at 2 
μs and the turn-on/off times of the switching devices are 0.08 
μs and 0.27 μs, respectively. Before the dead time 
compensation, these harmonics appears only at the n-axis 
current as shown in Fig. 14. After the compensation, the n-axis 
current harmonics are eliminated and the phase currents have 
pure sinusoidal waveforms. However, there are no harmonics 
in the d-q axis currents before and after the compensation. 

Fig. 15 show the stationary d-q-n axis currents and Lissajous 
circles. As shown in Fig. 15(a), the harmonic components 
appear at the stationary n-axis current. Thus the Lissajous 
figure of the stationary d-q axis currents is perfectly circular 
shape as shown in Fig. 15(b). On the other hand, the distorted 
Lissajous shape of the stationary d-q-n axis currents before the 
compensation becomes circular after the compensation as 
shown in Fig. 15(c). 

 
Fig. 14. Experimental results of the dead time compensation. (a) 
phase currents. (b) d-axis current. (c) q-axis current. (d) n-axis 
current. 

 

 
Fig. 15. Comparison of the stationary d-q-n axis currents before 
and after compensation. (a) Stationary d-q-n axis currents. (b) 
Lissajous circle of the stationary d-q axis currents. (c) Lissajous 
shape of the stationary d-q-n axis currents. 

 
Fig. 16 shows the spectrum of the phase A current. Before 

the compensation, the phase A current has 3rd harmonic 
component dominantly; after the compensation, only the 
fundamental component is exist. These results show that the 
distorted currents and output voltages of the H-bridge inverter 
due to the dead time and the nonlinear characteristics of the 
switching elements can be compensated by using the proposed 
method. 
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Fig. 16. FFT results of the phase A current. (a) Before 
compensation. (b) After compensation. 
 

IX. CONCLUSIONS 
This paper proposes the vector control method based on a 

multiple d-q-n spaces concept for IS-PMSM and the dead-time 
compensation algorithm by using the n-axis current as a 
reference signal for the compensation. The current harmonics 
caused by dead time and the nonlinearity of the switching 
devices were analyzed mathematically and effectively 
eliminated by controlling the n-axis current to zero. 

This algorithm does not require any additional hardware and 
the other information except phase current and rotor position 
for reference frame transformation. Moreover, this method can 
be easily implemented without complicated mathematical 
calculation and off-line experimental measurements. The 
feasibility and effectiveness of the proposed algorithm were 
verified through the computer simulation and experiments. 
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