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Abstract 

 
In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor 

(PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller 
(RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of 
a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it 
performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the 
ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped 
parameter uncertainty. Furthermore, the compensated controller is designed to achieve L2 tracking performance with a desired 
attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in 
the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by 
using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an 
experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented 
on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust 
performance and precise response regardless of load disturbances and PMSM parameters uncertainties. 
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I. INTRODUCTION 
 

 Recent advancements in magnetic materials, semiconductor 
power devices and control theories have made permanent 
magnet synchronous motor (PMSM) drives play a vitally 
important role in motion-control applications. PMSMs are 
widely used in high-performance applications such as 
industrial robots and machine tools because of their compact 
size, high power density, high air-gap flux density, high 
torque/inertia ratio, high torque capability, high efficiency and 
freedom from maintenance. The overall performance of the 
speed and/or position control of PMSM drives depend not only 
on the quickness and the precision of the system response, but 
also on the robustness of the control strategy which has been 
carried out to assure the same performances if exogenous 

disturbances and variations of the system parameters occur. In 
fact, the control of PMSM drives often necessitates the 
determination of machine parameters. Online variation of the 
parameters, which essentially depends on temperature 
variations, saturation and skin effects, external load 
disturbances and unmodeled dynamics in practical applications, 
can affect the PMSM servo drive performance [1]-[6]. On the 
other hand, a computed torque controller (CTC) is utilized to 
linearize the nonlinear equation by cancellation of some, or all, 
of the nonlinear terms such that the linear feedback controller 
is designed to achieve the desired closed-loop performance. 
However, an objection to the real-time use of such control 
schemes is the lack of knowledge of uncertainties [7]-[9]. 
Therefore, to compensate for various uncertainties and 
nonlinearities, a sophisticated control strategy is very important 
in PMSM servo drives. 

Nowadays, a lot of intelligent control techniques have been 
developed to improve the performance of PMSM servo drives 
and to deal with nonlinearities and uncertainties by using fuzzy 
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logic, neural networks, wavelet neural networks (WNN) and/or 
a hybrid of these approaches [10]-[15]. The concept of 
incorporating fuzzy logic into a neural network (NN) to 
constitute fuzzy-neural-network (FNN) has grown into a 
popular research topic [16–25]. However, all of these analyses 
and implementations focus on type-1 FNN. On the other hand, 
a type-2 fuzzy neural network (T2FNN) consists of a type-2 
fuzzy linguistic process as the antecedent part and an interval 
neural network as the consequent part. The interval T2FNN 
(IT2FNN) is a multi-layer network for the realization of type-2 
fuzzy inference systems, and it can be constructed from a set of 
type-2 fuzzy rules. Furthermore, the IT2FNN possesses the 
merits of both type-2 fuzzy systems and neural networks. 
Therefore, it does not require mathematical models and has the 
ability to approximate nonlinear systems. In addition, the 
IT2FNN is superior to type-1 FNN in the control of 
complicated and highly nonlinear systems such as PMSM 
servo drive systems. On the other hand, there are only a few 
studies to analyze and simulate type-2 FNN or IT2FNN 
[26]-[36]. In [52], [53], at the nominal parameters of a PMSM, 
a two-degrees-of-freedom integral plus proportional and rate 
feedback (2DOF I-PD) position controller is designed and 
analyzed. Although the desired tracking and regulation position 
control can be realized by using the 2DOF I-PD position 
controller at the nominal PMSM parameters, the performance 
of the servo drive is still sensitive to parameter variations. To 
solve this problem, an IRCS is proposed. 

In this paper, an IRCS is proposed for the identification and 
control of the rotor position of a PMSM servo drive. First, 
based on the principle of L2 tracking performance, a position 
tracking controller is designed and analyzed. The IRCS 
comprises an RWIT2FNN controller (RWIT2FNNC), an 
RWIT2FNN estimator (RWIT2FNNE) and a compensated 
controller. In the proposed control scheme, the RWIT2FNNC, 
which combines the merits of a self-constructing interval 
type-2 fuzzy logic system, a recurrent neural network and a 
wavelet neural network, is used as the main tracking controller 
to mimic the ICL. Additionally, to relax the requirement of the 
lumped uncertainty, an RWIT2FNNE is developed to 
approximate an unknown dynamic function. In addition, a 
compensated controller is designed to achieve L2 tracking 
performance with a desired attenuation level and to deal with 
the uncertainties including approximation errors, optimal 
parameter vectors, and higher order terms in the Taylor series. 
Moreover, the adaptive learning algorithms for the 
compensated controller and the RWIT2FNNE are derived 
using the Lyapunov stability theorem to train the parameters of 
the RWIT2FNNE online, so that the stability of a PMSM servo 
drive can be guaranteed. A computer simulation is developed 
and an experimental system is established for demonstration 
and to verify the effectiveness of the proposed IRCS for 
PMSM servo drives. All of the control algorithms have been 
implemented in a control computer based on a TMS320C31 

DSP and TMS320P14 DSP control board. The dynamic 
performance of the PMSM servo drive has been studied under 
load changes and parameters uncertainties. The numerical 
simulations and experimental results are given to demonstrate 
the effectiveness of the proposed IRCS. 

This paper is organized as follows. Section II presents the 
field–oriented control (FOC) and dynamic analysis of the 
PMSM servo drive. Both the problem formulation and a 
description of the IRCS of the PMSM servo drive are 
introduced. The design methodology for the compensated 
controller and the IRCS are given in Section III. In addition, 
the design procedures and adaptive learning algorithms of the 
proposed IRCS and the compensated controller are described 
in details in Section III. The validity of the design procedure 
and the robustness of the proposed controller are verified by 
means of computer simulations and experimental analysis. The 
control algorithms have been developed in a control computer 
that is based on a TMS320C31 DSP and TMS320P14 DSP 
DS1102 board. The dynamic performance of the PMSM drive 
system has been studied under load changes and parameter 
uncertainties. Numerical simulations and experimental results 
are provided to validate the effectiveness of the proposed 
control system in Section IV. Conclusions are introduced in 
Section V. 

 

II. MODELING OF THE PMSM AND THE DYNAMIC 
ANALYSIS  

 

The voltage equations of the stator windings in the rotating 
reference frame can be expressed in (1) and (2). Then, using 
FOC and setting the d-axis current as zero, the electromagnetic 
torque is obtained as given in (3) and (4) [1]. The parameters of 
the surface-mounted PMSM are listed in Table (1) 
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From (3) and (4), the motion dynamics can be simplified as: 
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Assume that the parameters of the PMSM are well known 
and that the external load disturbance is absent. Rewriting (6) 
can now represent the model of the PMSM servo drive system. 

)(.)()( tUBtAt mrmr += qq &&&             (7) 
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TABLE I 

PARAMETERS OF PMSM USED IN SIMULATION AND 
EXPERIMENTATION 

Quantity Symbol Value 
Nominal power Pn 1 hp (3-phase) 
Stator self inductance Lss 0.05 H 
Stator resistance Rs 1.5 W 
Voltage constant lm 0.314 V.s/rad 
Number of poles P 4 
Rotor inertia Jm 0.003 kg.m2 
Friction coefficient bm 0.0009 N.m/rad/sec 
Nominal speed (electrical) wr 377 rad/sec 
Rated torque Te 3.6 N.m 
Rated current  I 4 A 
Rated voltage  VL-L 208 V 
Rated frequency f 60 Hz 
Torque constant Kt 0.95 N.m/A 
Resolution of the encoder n 4´10000 p/r 
 
By considering the dynamics in (6) with parameter 

variations, load disturbances and unpredictable uncertainties 
will give: 
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where Amn, Bmn and Dmn are the nominal parameters of Am, Bm 
and Dm respectively. DAm, DBm, DDm and TL are uncertainties 
due to the mechanical parameters Jm and bm, and G(t) is the 
lumped parameter uncertainty which is defined as: 

Lmmnmrm TDDtUBtAt )()(.)()( D++D+D=G q&     (10) 
The bound of the lumped parameter uncertainty (PU) is 

assumed to be given. That is: 
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where Kq is a given positive constant. 
 

III. INTELLIGENT ROBUST CONTROL SYSTEM 
(IRCS) 

 

In this section, an IRCS is designed for the identification and 
control of the rotor position of the PMSM servo drive. The 
IRCS comprises an RWIT2FNNC, an RWIT2FNNE and a 
compensated controller. In the proposed control scheme, the 
RWIT2FNNC is used as the main tracking controller to mimic 
the ICL. Additionally, to relax the requirement of the lumped 
uncertainty, an RWIT2FNNE is developed to approximate an 
unknown dynamic function. In addition, a compensated 
controller is designed to achieve L2 tracking performance with 
a desired attenuation level and to deal with uncertainties 
including approximation errors, optimal parameter vectors, and 
higher order terms in the Taylor series. Moreover, the adaptive 
learning algorithms for the compensated controller and the 
RWIT2FNNE are derived by using the Lyapunov stability 

theorem to train the parameters of the RWIT2FNNE online, so 
that the stability of the PMSM servo drive can be guaranteed. 

The control problem is to find a control law so that the 
rotor position, )(trq , can track the desired position, )(tm

rq . 
To achieve this control objective, a tracking error vector is 
defined as Tmm eeE ][ qq &= , where )(tm

rq  and )(tm
rq&  are 

the desired position and speed of the PMSM servo drive 
system; and )]()([ tte r

m
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m qqq
&&&&&& -=  denote the position, speed and 

acceleration errors of the PMSM servo drive system. The 
PMSM parameters are assumed to be precisely known and 
the external load torque is assumed to be measurable. The 
ideal control law (ICL) is designed as [51]: 

 

])()()([)()( 1* KEttAtBtitU rmn
m
rmn

r
qsICL +G--== - qq &&&   (12)

        

where ][ 21 kkK = , in which k1 and k2 are positive 
constants. Substituting (12) into (9) results in the error 
dynamics, 0)()()( 12 =++ tektekte mmm

qqq &&& .  
Suppose the control gain, K, is chosen such that all of the 

roots of the characteristic polynomial of the error dynamics lie 
strictly in the open left half of the complex plane. This implies 
that the position tracking error will converge to zero when time 
tends to infinity. The PMSM servo drive system is 
asymptotically stable when the control effort, UICL, is applied. 
However, the equation of the ideal control law is not feasible in 
practice because the PMSM parameters vary and this variation 
cannot be measured or predicted. In addition, the external load 
torque in a PMSM system is not known. Therefore, the control 
effort (12) cannot be made. Hence an IRCS is proposed to 
approach the ICL. The configuration of the proposed IRCS for 
a PMSM servo drive is shown in Fig. 1. The proposed control 
law is assumed to take the following form: 
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qs W=  is the RWIT2FNNE and )(2 tU L
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the compensated controller. 
 

A. Description of the Wavelet Bases and the Wavelet Neural 
Network (WNN) 

The architecture of a WNN is shown in Fig. 2. This is a 
three-layer neural network including the input, hidden, and 
output layers. Each output (i.e. L,, 21 HH  etc.) formulated 
by a sub-WNN is defined as a WNN base. In the RWIT2FNN, 
the WNN bases do not exist in the initial state. They are 
generated online concurrently with the fuzzy rules using the 
structure learning algorithm. The WNNs are characterized by 
weights and wavelet bases. Each linear synaptic weight of the 
wavelet basis is adjustable by learning. Notably, the ordinary 
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wavelet neural network model applications are often useful for 
normalizing the input vectors in the interval (0; 1) [37]-[38]. 
The )(. iba xf  functions which are used as input vectors to fire 
up the wavelet interval are then calculated. Obviously, the 
value of ba.f  is obtained as follows: 
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The above equation formulates the non-orthogonal wavelets 
in a finite range, where b denotes a shifting parameter, the 
maximum value of which equals the corresponding scaling 
parameter a. In the RWIT2FNN model, the wavelet bases do 
not exist in an initial state, and the amount generated by the 
online learning algorithm is consistent between the wavelet 
bases and the fuzzy rules. Obviously, a crisp value, ba.f , can 
be obtained as follows: 
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where X  is the number of input dimension. The final output 

of the wavelet neural networks is 
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where s
jĤ  denotes the local output of the WNN for the 

output, Hs, and the jth rule; the link weight, s
jkW , is the 

output action strength associated with the sth output, the jth 
rule and the kth ba.f ; and M denotes the number of wavelet 
bases, which is equal to the number of existing fuzzy rules in 
the RWIT2FNN model. 
 
B. Structure of the Recurrent Wavelet-Based IT2FNN 

This subsection introduces the structure of the 
RWIT2FNN model. The RWIT2FNN integrates an interval 
type-2 fuzzy logic system, a recurrent neural network and a 
WNN. The goal of integrating the RWIT2FNN model with a 
WNN model is to improve the accuracy of the function 
approximation. The interval type-2 Gaussian MF is 
constructed by a type-1 Gaussian MF with an adjustable 
uncertain mean and an adjustable standard deviation [27-29]. 
Fig. 3 shows a 2-D type-2 Gaussian MF with an adjustable 
uncertain mean in ],[ mm  and an adjustable standard 
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Fig. 1.  Structure of the proposed intelligent robust control system (IRCS) using RWIT2FNN for PMSM servo drive. 
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deviation, s. It can be described as 
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The type-2 fuzzy set has a region called the footprint of 
uncertainty and it is bounded by an upper MF and a lower 
MF [34], which are denoted as )(~ xAl  and )(~ xAl , 
respectively. The suggested recurrent WNN-based RIT2FNN 
is presented as follows: 
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where Rj is the jth rule; hj is the internal variable; jĤ is the 

jth WNN base which is the jth output of the local model for 
rule Rj; jA1

~  is the interval type-2 fuzzy set of the antecedent 

part; Fj is the output of the recurrent layer; ],[ 44
LkRk vv  is a 

centroid set with a membership grade of the secondary MF 
setting to unity, which can be called the weighting interval set, 
derived from the interval type-2 fuzzy sets in the consequent 
part [31]; 3

ky  is the output of layer 3; jQ  and jkW  are the 

consequent part parameters for the outputs hj and ba.f , 

respectively; and 5
oy  is the output of the RWIT2FNN. 

The architecture of the RWIT2FNN is a five-layer 
IT2FNN embedded with dynamic feedback connections and 
an WNN, as shown in Fig. 4. The basic functions and signal 
propagation for each layer are described as follows. 
1) Layer 1: input layer: Each node i in this layer is an input 
node, which corresponds to one input variable. These nodes 
only pass the input signal to the next layer, and the input 
variables of the recurrent IT2FNN and WNN are the same. In 
this layer, the node input and output are represented as 
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where 1
ix  represents the ith input to the node of layer 1, and 

N denotes the number of iterations. The input variables are 
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mex qqq -== , which is the tracking position error 

between the desired position command )(tm
rq  and the rotor 

position )(tm
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&&& -== , which is the 

tracking position error change of the rotor. 
2) Layer 2: membership layer: In this layer, each node 
performs an interval type-2 fuzzy MF, as shown in Fig. 2. For 
the jth node the input and output of the membership node can 
be described as follows: 
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where mij and sij are the mean and standard deviation of the 
Gaussian function in the jth term of the ith input linguistic 

variable 2
ix  to the node of layer 2, respectively, and s is the 

number of linguistic values with respect to each input node. 
As shown in Fig. 3, type-2 MFs can be represented as an 
interval bound by the upper MF )(~ xAl  and the lower MF 
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Fig. 2.  Wavelet network basis. 
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Fig. 3.  Interval type-2 fuzzy set with adjustable uncertain mean 
and adjustable standard deviation. 
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)(~ xAl . Therefore, the output of layer 2, )(2 Ny j , is also 

represented as )](),([ 22 NyNy
jj . 

3) Layer 3: rule layer: This layer includes the rule layer and 
the recurrent layer of the RWIT2FNN and the output layer of 
the WNN, in which each output is defined as a WNN base. 
For the internal variable hk in the recurrent layer, the 
following sigmoid membership function is used: 

}exp{1
1

k
k h

F
-+

= , k=1, 2,…….,m       (25) 

å Q=
=

m

k
kkk uNh

1

3)(             (26) 

where hk is the recurrent unit acting as the memory element, 
and Qk is the recurrent weight. Moreover, the neurons in the 
rule layer represent the preconditioning part of a one interval 
type-2 fuzzy logic rule. Thus the neuron in this layer is 
denoted by P, which multiplies the incoming signals from 
layer 2 by the recurrent layer, and then outputs the product 
result, i.e., the firing strength of a rule. For the kth rule node: 
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Substituting (25) and (27) into (28) yields:  

 
}exp{1

1)()(
1

233

1

333 Õ
-+

=Õ=
==

n

j
jjk

k
k

n

j
jjkkk y

h
NuxFNu vv

         (29) 

 ,......,1,

}exp{1
1)(

}exp{1
1)(

)(

1

233

1

233

3 nk
y

h
Nu

y
h

Nu
Nu n

j jjk
k

k

n

j
jjk

k
k

k =

ï
ï
î

ïï
í

ì

Õ
-+

=

Õ
-+

=
=

=

=

v

v

         (30) 
Substituting (24) into (30) will give the output of this layer 
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where 3

jx  represents the jth input to the node of layer 3; 

3
jkv  are the weights between the membership layer and the 

rule layer, and are set to be equal to unity to simplify the 
implementation for real-time control; and n is the number of 
rules. Similar to layer 2, the output of this part of layer 3 is 

represented as ],[ 33
kk uu . In the second part of layer 3, the 

neuron in this layer multiplies the incoming signals, which 

are kĤ  from the output of the WNN and 3
ku  from the 

output of layer 3 of the recurrent WIT2FNN part. The 
mathematical function of each node k is derived with (17) as: 
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From (31) and (32) the following is obtained: 
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4) Layer 4: type-reduction layer: This layer is used to 
implement the type-reduction. The type-reduction is very 
intensive, and there exist many kinds of type-reductions, such 
as centroid, height, centre-of-sets and modified height. In a 
type-1 FLS, the height defuzzification is computationally 
inexpensive and gives satisfactory results. However, in a 
type-2 FLS, the height type-reduction does not perform as 
well. In this case, the centre-of-sets type-reduction does a 
better job. Therefore the centre-of-set type-reduction 
algorithm [32] is adopted in this paper. Furthermore, the 
process of this layer is described as follows: 
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where ],[ 444
LkRkk vvv Î  is the centroid of the type-2 interval 
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In order to compute )(4 NyRl  and )(4 NyLl , ],[ 44
LkRk vv  

needs to be computed. This can be done by using the exact 
computational procedure given in [32]. The computation 
procedure for )(4 NyRl  and )(4 NyLl  is described briefly in 

the following. First, the weighting interval set ],[ 44
LkRk vv  

),....,1( nk =  should be set before the computation of 

)(4 Nyl . Moreover, algorithms 1 and 2, listed below, are the 

type-reduction algorithms to compute )(4 NyRl  and )(4 NyLl  
[32], [34], respectively. 
Algorithm 1: Without a loss of generality, assume that the 
weighting intervals 4

Rkv  and 4
Rly  are arranged in 

ascending order, i.e., 44
2

4
1 RnRR vvv L££  and 

44
2

4
1 RnRR yyy L££ . 

(1) Compute 4
Rly  in (36) by )(()( 33 NyNy kRk =  

2/))(3 Ny
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+  for ),....,1( nk = , and let 44~
RlRl yy @ . 

(2) Find )1~1( -££ nRR  such that 4
)1~(

44 ~ ~
+££ RRRlRR y vv . 

(3) Compute 4
Rly  in (36) with )()( 33 NyNy

kRk =  for 

Rk ~
£  and with )()( 33 NyNy kRk =  for Rk ~

> , and set 
44~~
RlRl yy @ . 

(4) If 44 ~~~
RlRl yy @ , then go to step (5). If 44 ~~~

RlRl yy = , then set 
44 ~~
RlRl yy =  and stop. 

(5) Set 44 ~~~
RlRl yy =  and return to step (2). 

 
Algorithm 2: Without a loss of generality, assume that the 
weighting intervals 4

Lkv  and 4
Lly  are arranged in 

ascending order, i.e., 44
2

4
1 LnLL vvv L££  and 

44
2

4
1 LnLL yyy L££ . 

(1) Compute 4
Lly  in (36) by )(()( 33 NyNy kLk =  

2/))(3 Ny
k

+  for ),....,1( nk = , and let 44~
LlLl yy @ . 

(2) Find )1~1( -££ nLL  such that 4
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+££ LLLlLL y vv . 

(3) Compute 4
Lly  in (36) with )()( 33 NyNy kLk =  for 
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£  and with )()( 33 NyNy

kRk =  for Lk ~
> , and set 
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LlLl yy @ . 

(4) If 44 ~~~
LlLl yy ¹ , then go to step (5). If 44 ~~~

LlLl yy @ , then set 
44 ~~
LlLl yy =  and stop. 

(5) Set 44 ~~~
LlLl yy =  and return to step (2). 

 

Algorithms 1 and 2 provide a method to separate )(3 NyRk  

and )(3 NyLk  into two sides by the points R~  and L~ , 
respectively. Moreover, one side uses lower firing strengths 

)(3 Ny
k

, and the other side uses upper firing strengths 

)(3 Nyk . Therefore, (36) can be rewritten as 
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5) Layer 5: output layer: This layer performs the linear 
combination of )(4 NyRl  and )(4 NyLl , i.e., 
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where 5
oy  is the output of the RWIT2FNN and 

FNNCRWITU 2*
qs  is the control effort of the servo drive system. 

TT
L

T
R ][ vvv = , T

LR yyy ][= , ][ 1
2

1
1

1 xxx = , 

][ 221111 SS mmmmm LL= , ][ 221111 SS sssss LL=  

][ 1 Mjj WWW L= , and ][ 1 jQQ=Q L . 
 

C. On-Line Learning Algorithm of the RWIT2FNNC  
1) Structure Learning Algorithm: The structure learning 
algorithm is responsible for on-line rule generation. The first 
task in structure learning is to determine when to generate a 
new rule. The way the input space is partitioned determines 
the number of rules extracted from the training data, as well 
as the number of fuzzy sets in the universe of discourse for 
each input variable. Geometrically, a rule corresponds to a 
cluster in the input space, and the rule firing strength can be 
regarded as the degree to which input data belong to the 
cluster. Based on this concept, a previous study [39-41] used 
rule firing strength as a criterion for type-1 fuzzy rule 
generation. This idea is extended to type-2 fuzzy rule 
generation criteria in the RWIT2FNNC.  
2) Parameter Learning Algorithm 
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The central part of the parameter-learning algorithm for 
the RWIT2FNNC concerns how to recursively obtain a 
gradient vector in which each element in the learning 
algorithm is defined as a derivative of an energy function 
with respect to a parameter of the network. This is done by 
means of the chain rule, and the method is generally referred 
to as the backpropagation learning rule, because the gradient 
vector is calculated in the direction opposite the flow of the 
output of each node. To describe the online parameter 
learning algorithm of the RWIT2FNNC using the supervised 
gradient descent method, the first the energy function is 
assumed as 
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r eE qq qq =-=         (42) 

where meq  is the error signal between a desired rotor position 
and the actual position. 
Then, the update laws for the parameters in the RWIT2FNNC 
are described as follows: 
Layer 5: During the learning process of the RWIT2FNNC, 
the error term to be propagated is calculated as:  
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Layer 4: In this layer the error term needs to be calculated 
and propagated as 
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and the weighting interval factors are updated by the 
following amount: 
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Layer 3: The error term is computed as follows: 
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where 4
RLkv  can be 4

Rkv  and 4
Lkv .  

 

 
Fig. 4. Structure of the recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC). 
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The update law of jkW  is:  
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The update of Qk is: 
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Layer 2: The error term is computed as follows: 
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The update laws of the means are:   
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Moreover, the update law of the standard deviation is:  
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where vh , Wh , Qh , mh  and sh  are the learning-rate 

parameters of the weighting interval factors, the link weights 
of both the RIT2FNN and WNN, the feedback weights, the 
means and the standard deviations, respectively. To 
accelerate the training, the weighting interval factors, the link 
weights, the feedback weights, the means and the standard 
deviations of the membership functions are updated by 
including a momentum term as follows: 

)1()()()1( 4444 -D+D+=+ NNNN LkLkLkLk vavvv   (54) 

)1()()()1( 4444 -D+D+=+ NNNN RkRkRkRk vavvv   (55) 

)1()()()1( -D+D+=+ NWNWNWNW jkjkjkjk a   (56) 

)1()()()1( -DQ+DQ+Q=+Q NNNN kkkk a      (57) 

)1()()()1( -D+D+=+ NNNN
ijijijij
mammm     (58) 

)1()()()1( -D+D+=+ NNNN ijijijij mammm      (59) 

)1()()()1( -D+D+=+ NNNN ijijijij sasss      (60) 

where N denotes the iteration number.  
The exact calculation of the Jacobian of the system 

)/( 5
or y¶¶q  which is contained in (43), )/( 5

oyE ¶¶ q , cannot 
be determined due to uncertainties of the servo drive system 
dynamics, such as parameter variations and external load 
disturbances. To overcome this problem and to increase the 
online learning rate of the network parameters, the delta 
adaptation law is adopted as follows: 

mmm
o eke qqqd &+=5             (61) 

where mkq  is a positive constant. 
 

D. RWIT2FNN Estimator and Compensated Controller  
In this section, the RWIT2FNNE is developed to 

approximate an unknown dynamic function including the 
lumped parameter uncertainty. Furthermore, a compensated 
controller is designed to achieve L2 tracking performance 
with desired attenuation level. Moreover, the adaptive 
learning algorithms for the compensated controller and the 
RWIT2FNNE are derived using the Lyapunov stability 
theorem to train the parameters of the RWIT2FNNE online. 

To achieve the control objective, the tracking errors are 
defined as )]()([ tte r

m
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m qqq -= , )]()([ tte r
m
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m qqq
&&& -= , and 

)]()([ tte r
m
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m qqq
&&&&&& -= . The tracking error function is defined as 

follows: 
mm etetE qq g+= )()( &      (62) 

where )(tm
rq , )(tm

rq&  and )(tm
rq&&  are the desired position, 

speed and acceleration of the PMSM servo drive; and )(tem
q , 

)(tem
q&  and )(tem

q&&  denote the position, speed and 
acceleration errors of the PMSM servo drive. The weighting 
factor, g, is used to normalize the contribution of )(tem

q  and 

)(tem
q&  in the error function E(t). By differentiating (62), the 

error function becomes: 
)()()()( 11 ttUtEABtEB mnmnmn W++= -- &       (63) 

where the nonlinear function W(t) is defined as: 
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Taking into consideration the parameter variations of the 
PMSM servo drive system, W(t) is not only nonlinear but is 
also a time-varying function, consisting of commands, 
PMSM servo system parameters and load torque disturbances. 
Since the unknown function W(t) is very difficult to obtain in 
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advance in practical applications, the RWIT2FNNE is 
employed to estimate W(t) online. Furthermore, since the 
output of the RWIT2FNNE, W(t), is not able to approximate 

)(ˆ tW  accurately, a compensated controller )(2 tU L
qs is used to 

attenuate the approximation error. Thus the control law is 
defined as 

)()(ˆ)( 2 tUttU L
qs

E
qs +W=            (65) 

where )()( 2 tUt FNNERWIT
qs=W  is the output of the 

RWIT2FNNE. 
By applying the control law (63)–(65), the closed-loop 
dynamics of the PMSM servo drive system can be expressed 
as follows: 
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where the approximation error )(~ tW  is denoted as 
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where We  is the minimum reconstructed error due to an 

insufficient number of rules; *v , *m , *s , *W  and *Q  

are the optimal parameters of v , m , s , W  and Q ; 

v̂ , m̂ , ŝ , Ŵ  and Q̂  are the estimated values of the 

optimal parameters ( *v , *m , *s , *W  and *Q ) as 

provided by the tuning algorithms that will be introduced. 
The approximation error )(~ tW  in (67) is rewritten as: 
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where )ˆ(~ * vvv -=  and )ˆ(~ * yyy -= . 
The weights of the RWIT2FNNE are updated online to make 
its output approximate the unknown nonlinear function W(t) 
accurately. To achieve this, the linearization technique is used 
to transform the nonlinear output of the RWIT2FNNE into a 
partially linear form so that the Lyapunov theorem extension 
can be applied. The expansion of y~  in the Taylor series is 
obtained as follows: 
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vector of higher order terms and is assumed to be pounded by 
a positive constant. Substituting (69) into (68) will yield 
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where the uncertain term G  is assumed to be bounded by a 
small positive constant r£G . In order to develop the L2 

compensated controller, from (66) and (70), the error 
equation in can be rewritten as follows: 
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In the case of the existence of G, consider the specified L2 
tracking performance that follows  
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where h1, h2, h3, h4 h5 and h6 are strictly positive learning 
rates; and r  is a prescribed attenuation level. If G is 

squared integrable, so that ¥<ò G
¥

tt d
0

2 )( , then 0lim =
¥®

E
t

. 

If the system starts with the initial conditions 0)0( =E , 

0)0(~ =v , 0)0(~ =m , 0)0(~ =s , 0)0(~
=W  and 0)0(~

=Q , 
then the L2 tracking performance in (73) can be rewritten as  
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where the L2-gain from G to the tracking error E must be 
equal to or less than 2)2/1( r .  If r=¥, this is the case of a 
minimum error tracking control without disturbance 
attenuation [42-50]. Then, the desired robust tracking 
performance in (73) can be achieved for a prescribed 
attenuation level r. 
 
Theorem 1: Consider the PMSM servo drive system 
represented by (9), if the RWIT2FNNE control law is 
designed as (65), the adaptive laws of the RWIT2FNNE are 
designed as (75)-(79) and the compensated L2 controller is 
designed as (80) with the adaptive lumped uncertainty 
estimation algorithm given in (81). As a result, the stability of 
the RWIT2FNNE system can be guaranteed. 
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where )(ˆ tr&  is the on-line estimated value of the hound r. 
Proof : To minimize the error function and to derive the 
adaptation laws of v , m , s , W , Q  and r , a 
Lyapunov function is defined as: 
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where )ˆ(~ rrr -=  is the estimated error. By taking the 
derivative of the Lyapunov function (82) and using (72) and 
(80) the following is obtained: 
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If the adaptive update laws of the RWIT2FNNE are chosen as 
(75)–(79) and a robust L2 control is designed as (80) with the 
adaptive bound algorithm given in (81), then (83) can be 
rewritten as follows: 
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Integrating (73) from t = 0 to t = T yields: 
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Since 0)( ³W TV , the above inequality (85) implies the 
following inequality: 
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From (70) and (75), the above inequality is equivalent to the 
following: 
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This is (73). 
Since )0))(~,~,~,~,~,~),(( £QW tWtEV rsmv&  and 

))(~,~,~,~,~,~),(( tWtEV rsmv QW
&  is a negative semi-definite 

function i.e. £QW ))(~,~,~,~,~,~),(( tWtEV rsmv  
))0(~,~,~,~,~,~),0(( rsmv QW WEV , it can be implied that 

Q
~,~,~,~,~, WE smv  and r~  are bounded functions. Let the 

function ))(~,~,~,~,~,~),((
2
1)( 21 tWtEVEBt mn rsmv Q-£=X W

- &  

and integrate the function )(tX  with respect to time. This 
yields: 
 

)(~,~,~,~,~,~),((                                 

))(~,~,~,~,~,~),0((
2
1)(

0

21

tWtEV

tWEVEBd
t

mn

rsmv

rsmvtt

Q-

Qò £=X

W

W
-

 (88) 

 

Since )0(~,~,~,~,~,~),0(( rsmv QW WEV  is bounded and 

)(~,~,~,~,~,~),(( tWtEV rsmv QW  is non-increasing and bounded, 

the following result can be obtained, ¥£òX
¥®

tt d
t

t 0
)(lim . In 

addition, since )(tX&  is bounded by Barbalat’s Lemma 
[42-43], it can be shown that 0)(lim =X

¥®
t

t
. That is, 0®E  

as ¥®t . As a result, the stability of the proposed 
RWIT2FNNE and the compensated control system can be 
guaranteed. 
 

IV. NUMERICAL SIMULATION AND EXPERIMENTAL 
RESULTS 

In order to investigate the effectiveness of the proposed 
tracking control scheme, simulations and experiments on the 
proposed IRCS and an ideal controller are carried out using 
the Matlab/Simulink package based on the control system 
shown in Figs. 1 and 5. A DSP control board dSPACE 
DS1102, which is based on TMS320C31 and TMS320P14 
DSPs, is installed in the control computer which includes 
multi-channels of ADC, DAC, PIO and encoder interface 
circuits. The digital filter and frequency multiplied by four 

circuits are built into the encoder interface circuits to increase 
the precision of the speed and the position feedback signals 
and the coordinate transformations. The sampling rate is 
chosen as 200ms and hence the carrier frequency of the PWM 
inverter is 5 kHz. The control interval of the position control 
loop is set at 1 ms. The current-regulated PWM VSI is 
implemented using a Mitsubishi intelligent power module 
(IPM) using IGBTs with a rating of 50A, 1200V and a 
switching frequency of 15 kHz and it is driven by six 
Semikron IGBT drivers. The DC-link LC filter components 
are an inductor with an iron powder core with 250mH and a 
polypropylene-film capacitor with 5mF. The speed acquisition 
has been performed with a 10,000 pulse/revolution 
incremental optical encoder. Therefore, the output of the 
frequency multiplier circuit is 40,000 pulses/revolution which 
results in high precision of the speed/position measurement. 

The selection of the learning rate parameters in the online 

 
(a) Experimental setup. 
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(b) Block diagram of the proposed DSP-based control system. 
 

Fig. 5. DSP-based intelligent robust control system (IRCS) using 
RWIT2FNN for PMSM servo drive. 
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learning algorithm of the proposed RWIT2FNN has a 
significant effect on the control performance since a 
deteriorated dynamic response results from an inappropriate 
selection of the learning rates. Although optimal learning 
rates can be obtained online by using the genetic algorithm 
(GA) or the particle swarm optimization (PSO) algorithm, 
these optimization techniques result in a high computational 
burden. Therefore, in the simulations and experiments the 

learning rate parameters of the weighting interval factors, the 
link weights of both the RIT2FNN and the WNN, the 
feedback weights, the means and the standard deviations, 
respectively, vh , Wh , Qh , mh  and sh  are obtained by 

trial and error to achieve the best dynamic performance of the 
PMSM servo drive system, while considering the 
requirements of the convergence of the tracking error.  
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(a) Simulation Results. (b) Experimental Results. 
Fig. 6. Dynamic response for the reference position of 2p rad and subsequent loading of 3.6 N.m for PMSM servo drive system at Case (1) of 
parameter uncertainties using L2 compensated position controller. 
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6 
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for all 
traces 1 sec/div. 
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(a) Simulation Results. (b) Experimental Results. 

  
Fig. 6.  (Continued) Dynamic response for the reference position of 2p rad and subsequent loading of 3.6 N.m for PMSM servo drive system 
at Case (1) of parameter uncertainties using L2 compensated position controller. 
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6 
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for all 
traces 1 sec/div. 

 
The learning rate parameters are chosen as: 09.0=vh , 

05.0=Wh , 1.0=Qh , 21.0=mh , 19.0=sh , 75.0=s , 

075.0=D , 01.01 =h , 025.02 =h , 035.03 =h , 

08.04 =h , and 04.05 =h . 

A.  Simulation of the PMSM Servo Drive System 
The simulation results of the PMSM drive system are 

presented to verify the feasibility of the proposed IRCS under 
various operating conditions. To investigate the robustness of 
the proposed controllers, four cases including PU and 
external load disturbances are considered.  
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(a) Simulation Results. (b) Experimental Results. 

  
 
Fig. 7.  Dynamic response for the reference position of 2p rad and subsequent loading of 3.6 N.m for PMSM servo drive system at Case (1) 
of parameter uncertainties using IRCS based on RWIT2FNN position tracking controller. 
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6 
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for all 
traces 1 sec/div 
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(a) Simulation Results. (b) Experimental Results. 

  
Fig. 7.  (Continued) Dynamic response for the reference position of 2p rad and subsequent loading of 3.6 N.m for PMSM servo drive system 
at Case (1) of parameter uncertainties using IRCS based on RWIT2FNN position tracking controller. 
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6 
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for all 
traces 1 sec/div 

 
Case 1: 1.0´(Ls /Rs), 1.0´(bm /Jm), 1.00´lm, TL=0–3.6 N.m 
Case 2: 0.5´(Ls /Rs), 1.0´(bm /Jm), 0.85´lm, TL=0–3.6 N.m 
Case 3: 1.5´(Ls /Rs), 1.0´(bm /Jm), 1.25´lm, TL=0–3.6 N.m 
Case 4: 1.5´(Ls /Rs), 1.0´(bm /Jm), 1.25´lm, TL=0–3.6 N.m 
The dynamic performance of the PMSM servo drive due to 

a reference model command of 2p rad under a subsequent 
loading of 3.6 N.m for the compensated L2 controller alone in 
Case (1) of the PU including the responses of the reference 
model and the rotor position, the tracking position error, the 
rotor speed, the tracking speed error, the d-q axis current 
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response and the adaptive control signals are predicted, as 
shown in Fig. 6(a). On the other hand, the dynamic 
performance of the PMSM servo drive using the IRCS is 
shown in Fig. 7(a) in Case (1) of the PU. The disturbance 
rejection capabilities have been checked when a load of 3.6 
N.m is applied to the shaft at t = 1.45 sec. The results 
obtained in Figs. 6(a) and 7(a) illustrate good dynamic 
performances in the command tracking and load regulation. 
They are realized for both of the position tracking controllers. 
Improvement of the control performance by the addition of 
the proposed RWIT2FNNC can be observed from the 
obtained results in the command tracking and the load 
regulation characteristics. From the results shown in Fig. 7(a), 
the tracking position and speed errors with the compensated 
controller are larger than the ones obtained when using the 
RWIT2FNNC. The dynamic performance of the PMSM 
servo drive due to a reference model command of 2p rad 
under no-loading for the compensated L2 controller alone in 

Case (1) of the PU including the responses of the reference 
model and the rotor position, the tracking position error, the 
rotor speed and the tracking speed error are predicted, as 
shown in Fig. 8(a). On the other hand, the dynamic 
performance of the PMSM servo drive under the same 
operating conditions using the IRCS is shown in Fig. 9(a) in 
Case (1) of the PU. 

To further verify the performance robustness of the 
proposed control schemes, four cases of PU and external load 
disturbances are considered, cases (1~4), for comparison. The 
dynamic performance of the PMSM servo drive for both of 
the position controllers at all Cases of PU is predicted in Fig. 
10. Furthermore, the maximum tracking position errors under 
the four cases of PU are approximately 0.35 rad for the 
proposed L2 compensated control system. On the other hand, 
the ones with the IRCS under the four examined cases of PU 
are approximately constant and equal 0.12 rad. The maximum 
position regulation dips under the four cases of PU are 0.25 
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(a) Simulation Results.                                        (b) Experimental Results. 

Fig. 8. Dynamic response for the reference position of 2p rad and no-loading for PMSM servo drive system at Case (1) of parameter 
uncertainties using L2 compensated position controller. 
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 
6 (rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for 
all traces 1 sec/div. 
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rad, 0.23 rad, 0.3 rad, and 0.35 rad, respectively for the 
proposed compensated control system. On the other hand, the 
ones with the IRCS under the four cases of PU are 
approximately constant and equal 0.12 rad. From the 
simulation results shown in Fig. 10, the tracking errors 
converges quickly and the robust control characteristics of the 
proposed IRCS under the occurrence of PU can be clearly 
observed. Compared with the compensated control system, 
the tracking errors and regulation characteristics are greatly 
reduced. Therefore, the proposed IRCS can yield control 
performance that is superior to that of the compensated 
control scheme. As a result, the proposed IRCS provides a 
rapid and accurate response for the reference model under 
load changes. It is within 0.5 sec which is quite fast when 
compared with the compensated controller which has a 
sluggish recovery time of more than 1.0 sec at PU. Thus it 
can be verified that the proposed IRCS under all cases of PU 

can satisfy the robustness and accuracy requirements and is 
more suitable in the tracking control of the PMSM servo 
drives for industrial applications. 

 
B.  Experimentation on the PMSM Servo Drive System 

To further verify the performance of the proposed control 
scheme applied to a PMSM servo drive in practical 
applications, some experimental results are introduced. The 
experimental results on the dynamic performance of the 
proposed compensated controller due to a reference model 
command under a subsequent loading of 3.6 N.m at Case (1) 
of the PU including the responses of the reference model and 
the rotor position, the tracking position error, the rotor speed, 
the tracking speed error, the d-q axis current response and the 
adaptive signals are predicted in Fig. 6(b). On the other hand, 
the experimental results on a PMSM servo drive using the 
proposed IRCS are shown in Fig. 7(b) under the same 
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(a) Simulation Results.                                       (b) Experimental Results. 

Fig. 9. Dynamic response for the reference position of 2p rad and no-loading for PMSM servo drive system at Case (1) of parameter 
uncertainties using IRCS based on RWIT2FNN position tracking controller. 
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 
6 (rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base 
for all traces 1 sec/div 
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conditions. Furthermore, the disturbance rejection capabilities 
have been checked for both of the position controllers. In 
addition, the maximum tracking position errors at case (1) of 
the PU is approximately 0.36 rad, for the proposed 
compensated controller. On the other hand, the one with the 
IRCS at case (1) of the PU is approximately 0.13 rad. The 
maximum position regulation dip under the same condition is 
0.37 rad for the proposed compensated controller. On the 
other hand, the one with the IRCS is approximately 0.13 rad. 
The experimental results obtained in Figs. 6(b) and 7(b) 
clearly illustrate the good dynamic performances, in terms of 
command tracking and load regulation performance, are 
realized for both position tracking controllers. When 
compared with the compensated controller, the tracking 
errors and regulation characteristics are much reduced for the 
proposed IRCS. Therefore, the IRCS can yield superior 
control performance than the L2 compensated controller. The 
dynamic performance of the PMSM servo drive due to a 
reference model command of 2p rad under no-loading for the 
compensated L2 controller alone at Case (1) of the PU 
including the responses of the reference model and the rotor 
position, the tracking position error, the rotor speed and the 
tracking speed error are predicted, as shown in Fig. 8(b). On 
the other hand, the dynamic performance of the PMSM servo 
drive under the same operating conditions using the IRCS is 
shown in Fig. 9(b) at Case (1) of the PU. As a result, the 
proposed IRCS provides a rapid and accurate response for the 
reference model under load changes. It is within 0.5 sec 
which is quite fast when compared with the compensated 
position tracking controller which has a sluggish recovery 
time of more than 1.0 sec. It is obvious that the performance 
of the PMSM servo drove system using the compensated 
controller is greatly improved by using the IRCS. Thus it can 
be verified that the proposed IRCS can satisfy the accuracy 
requirements and is more suitable in the tracking control of 
PMSM servo drive systems in practical applications. 

 

C. Performance Measure of the PMSM Servo Drive 
System  

To measure the performance of the PMSM servo drive, the 
maximum tracking error, TEmax, the average tracking error, 
TEmean, and the standard deviation of the tracking error, TEsd, 
are defined as follows: 
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TABLE II 

PERFORMANCE MEASURES OF THE PMSM SERVO DRIVE SYSTEM 
AT CASE (1) OF PU 

Controller 
Type 

Tracking Errors (rad) 
Maximum Average S.D. 

2DOF I-PDC 0.62680 0.0032250 0.332500 
SMC 0.49740 0.0004173 0.115900 
L2 Controller 0.30540 2.290e-05 0.052480 
CTC 0.21030 0.0002138 0.032390 
ENNC 0.19230 0.0009900 0.027930 
FNNC 0.15990 0.0019580 0.075830 
RWENNC 0.10260 0.0003200 0.010440 
IRCS 0.06844 2.0627e-05 0.007954 

 
 

To further investigate the improvement of the proposed 
IRCS, performance measures of the Elman neural network 
controller (ENNC), the recurrent wavelet ENNC (RWENNC), 
the computed torque controller (CTC), the conventional 
two-degrees-of-freedom integral plus proportional and rate 
feedback controller (2DOF I-PDC), the L2 compensated 
controller, the fuzzy neural network controller (FNNC) and 
the sliding-mode controller (SMC) are compared and 
summarized in Table II. From the results shown in Table II, it 
can be easily seen that high values of TEmax, TEmean and TEsd 
have been successfully reduced by the proposed IRCS. 
Therefore, the IRCS possesses the best robust control 
characteristics and can control PMSM servo drive systems 
effectively. 

 

V. CONCLUSIONS 
This paper proposed an IRCS for PMSM servo drives 

which guarantees robustness in the presence of parameter 
uncertainties and load disturbances. The proposed control 
scheme comprises an RWIT2FNNC, an RWIT2FNNE and a 
compensated controller. The RWIT2FNNC combines the 
merits of a self-constructing interval type-2 fuzzy logic system, 
a recurrent neural network and a WNN. Moreover, it performs 
the structure and parameter-learning concurrently. The 
RWIT2FNNC is used as the main position tracking controller 
to mimic the ICL. In addition, the RWIT2FNNE is developed 
to approximate an unknown dynamic function including 
parameter uncertainty. Furthermore, an L2 compensated 
controller is designed to achieve L2 tracking performance with 
a desired attenuation level. Moreover, the adaptive learning 
algorithms for the L2 compensated controller and the 
RWIT2FNNE are derived based on the Lyapunov stability 
analysis so that the stability of the PMSM servo drive can be 
guaranteed. Simulation and experimental results confirm that 
the proposed IRCS grants robust performance and a precise 
dynamic response to the reference model regardless of load 
disturbances and PMSM parameter uncertainties.
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Fig. 10. Dynamic response for the reference position of 2p rad and subsequent loading of 3.6 N.m for both position controllers at different 
Cases (1~4) of parameter uncertainties. 
(a) Using L2 compensated position controller 
(b) Using IRCS based on RWIT2FNN position tracking controller 
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