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Abstract

In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor
(PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller
(RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of
a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it
performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the
ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped
parameter uncertainty. Furthermore, the compensated controller is designed to achieve L, tracking performance with a desired
attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in
the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by
using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an
experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented
on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust
performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Key words: L, tracking performance, Lyapunov satiability theorem, Permanent-magnet synchronous motor (PMSM) servo drive,
Recurrent interval type-2 fuzzy-neural-network (RIT2FNN), Wavelet neural networks

disturbances and variations of the system parameters occur. In
fact, the control of PMSM drives often necessitates the
determination of machine parameters. Online variation of the
parameters, which essentially depends on temperature
variations, saturation and skin effects, external load
disturbances and unmodeled dynamics in practical applications,
can affect the PMSM servo drive performance [1]-[6]. On the
other hand, a computed torque controller (CTC) is utilized to
linearize the nonlinear equation by cancellation of some, or all,
of the nonlinear terms such that the linear feedback controller
is designed to achieve the desired closed-loop performance.
However, an objection to the real-time use of such control
schemes is the lack of knowledge of uncertainties [7]-[9].

I. INTRODUCTION

Recent advancements in magnetic materials, semiconductor
power devices and control theories have made permanent
magnet synchronous motor (PMSM) drives play a vitally
important role in motion-control applications. PMSMs are
widely used in high-performance applications such as
industrial robots and machine tools because of their compact
size, high power density, high air-gap flux density, high
torque/inertia ratio, high torque capability, high efficiency and
freedom from maintenance. The overall performance of the
speed and/or position control of PMSM drives depend not only
on the quickness and the precision of the system response, but

also on the robustness of the control strategy which has been
carried out to assure the same performances if exogenous
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Therefore, to compensate for various uncertainties and
nonlinearities, a sophisticated control strategy is very important
in PMSM servo drives.

Nowadays, a lot of intelligent control techniques have been
developed to improve the performance of PMSM servo drives
and to deal with nonlinearities and uncertainties by using fuzzy
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logic, neural networks, wavelet neural networks (WNN) and/or
a hybrid of these approaches [10]-[15]. The concept of
incorporating fuzzy logic into a neural network (NN) to
constitute fuzzy-neural-network (FNN) has grown into a
popular research topic [16-25]. However, all of these analyses
and implementations focus on type-1 FNN. On the other hand,
a type-2 fuzzy neural network (T2FNN) consists of a type-2
fuzzy linguistic process as the antecedent part and an interval
neural network as the consequent part. The interval T2FNN
(IT2FNN) is a multi-layer network for the realization of type-2
fuzzy inference systems, and it can be constructed from a set of
type-2 fuzzy rules. Furthermore, the IT2FNN possesses the
merits of both type-2 fuzzy systems and neural networks.
Therefore, it does not require mathematical models and has the
ability to approximate nonlinear systems. In addition, the
IT2FNN is superior to type-1 FNN in the control of
complicated and highly nonlinear systems such as PMSM
servo drive systems. On the other hand, there are only a few
studies to analyze and simulate type-2 FNN or IT2FNN
[26]-[36]. In [52], [53], at the nominal parameters of a PMSM,
a two-degrees-of-freedom integral plus proportional and rate
feedback (2DOF I-PD) position controller is designed and
analyzed. Although the desired tracking and regulation position
control can be realized by using the 2DOF I-PD position
controller at the nominal PMSM parameters, the performance
of the servo drive is still sensitive to parameter variations. To
solve this problem, an IRCS is proposed.

In this paper, an IRCS is proposed for the identification and
control of the rotor position of a PMSM servo drive. First,
based on the principle of L2 tracking performance, a position
tracking controller is designed and analyzed. The IRCS
comprises an RWIT2FNN controller (RWIT2FNNC), an
RWIT2FNN estimator (RWIT2FNNE) and a compensated
controller. In the proposed control scheme, the RWIT2FNNC,
which combines the merits of a self-constructing interval
type-2 fuzzy logic system, a recurrent neural network and a
wavelet neural network, is used as the main tracking controller
to mimic the ICL. Additionally, to relax the requirement of the
lumped uncertainty, an RWIT2FNNE is developed to
approximate an unknown dynamic function. In addition, a
compensated controller is designed to achieve L2 tracking
performance with a desired attenuation level and to deal with
the uncertainties including approximation errors, optimal
parameter vectors, and higher order terms in the Taylor series.
Moreover, the adaptive learning algorithms for the
compensated controller and the RWIT2FNNE are derived
using the Lyapunov stability theorem to train the parameters of
the RWIT2FNNE online, so that the stability of a PMSM servo
drive can be guaranteed. A computer simulation is developed
and an experimental system is established for demonstration
and to verify the effectiveness of the proposed IRCS for
PMSM servo drives. All of the control algorithms have been
implemented in a control computer based on a TMS320C31

DSP and TMS320P14 DSP control board. The dynamic
performance of the PMSM servo drive has been studied under
load changes and parameters uncertainties. The numerical
simulations and experimental results are given to demonstrate
the effectiveness of the proposed IRCS.

This paper is organized as follows. Section II presents the
field—oriented control (FOC) and dynamic analysis of the
PMSM servo drive. Both the problem formulation and a
description of the IRCS of the PMSM servo drive are
introduced. The design methodology for the compensated
controller and the IRCS are given in Section III. In addition,
the design procedures and adaptive learning algorithms of the
proposed IRCS and the compensated controller are described
in details in Section III. The validity of the design procedure
and the robustness of the proposed controller are verified by
means of computer simulations and experimental analysis. The
control algorithms have been developed in a control computer
that is based on a TMS320C31 DSP and TMS320P14 DSP
DS1102 board. The dynamic performance of the PMSM drive
system has been studied under load changes and parameter
uncertainties. Numerical simulations and experimental results
are provided to validate the effectiveness of the proposed
control system in Section IV. Conclusions are introduced in
Section V.

II. MODELING OF THE PMSM AND THE DYNAMIC
ANALYSIS

The voltage equations of the stator windings in the rotating
reference frame can be expressed in (1) and (2). Then, using
FOC and setting the d-axis current as zero, the electromagnetic
torque is obtained as given in (3) and (4) [1]. The parameters of
the surface-mounted PMSM are listed in Table (1)

d '
Vq};* = Rsl;s +Lss El;\ +erxsic;s +wr/1m M
r .7 d -1 T
Vds = Rslds +LSS Elds _a)rLsslqs (2)

The electromagnetic torque can be expressed as:

T, = (3/2)AP/2).A il = K,il, 3)

23 d? 2\d
T,=J,| = |6 +8,|=|—6+T, 4
e m[P]dtz T ﬂm(P)dt r L ( )

From (3) and (4), the motion dynamics can be simplified as:
G o PnPy K e Pl

. P,
g2 eyt 20, ®)

6.=4,0, +B,U(t)+D,.T, (©6)
Assume that the parameters of the PMSM are well known

and that the external load disturbance is absent. Rewriting (6)
can now represent the model of the PMSM servo drive system.

0,(t)= 4,0,(t)+ B, U (1) 7
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TABLEI
PARAMETERS OF PMSM USED IN SIMULATION AND
EXPERIMENTATION

Quantity Symbol Value
Nominal power P, 1 hp (3-phase)
Stator self inductance Ly 0.05H
Stator resistance R, 1.5Q
Voltage constant Ao 0.314 V.s/rad
Number of poles P 4
Rotor inertia In 0.003 kg.m2
Friction coefficient B 0.0009 N.m/rad/sec
Nominal speed (electrical) W, 377 rad/sec
Rated torque T. 3.6 N.m
Rated current / 4 A
Rated voltage Vit 208 V
Rated frequency f 60 Hz
Torque constant K; 0.95 N.m/A
Resolution of the encoder n 4x10000 p/r

By considering the dynamics in (6) with parameter
variations, load disturbances and unpredictable uncertainties
will give:

0,(1) = (Ayy +04,)0,(1) + (B, +AB,)U(1)
+(Dmn +ADm)'TL

0,(t) = A0, () + B, U(0) +T(1) ©)

®)

where A4,,,, B, and D,,, are the nominal parameters of 4,,, B,,
and D,, respectively. AA4,,, AB,,, AD,, and T} are uncertainties
due to the mechanical parameters J,, and f,, and I'(¢) is the
lumped parameter uncertainty which is defined as:
[(¢) = A4,,0,(t) + AB,, U(t) +(D,,, +AD,)T,  (10)
The bound of the lumped parameter uncertainty (PU) is
assumed to be given. That is:

mn

INGEY & an

9 . . ..
where K" is a given positive constant.

III. INTELLIGENT ROBUST CONTROL SYSTEM
(IRCS)

In this section, an IRCS is designed for the identification and
control of the rotor position of the PMSM servo drive. The
IRCS comprises an RWIT2FNNC, an RWIT2FNNE and a
compensated controller. In the proposed control scheme, the
RWIT2FNNC is used as the main tracking controller to mimic
the ICL. Additionally, to relax the requirement of the lumped
uncertainty, an RWIT2FNNE is developed to approximate an
unknown dynamic function. In addition, a compensated
controller is designed to achieve L, tracking performance with
a desired attenuation level and to deal with uncertainties
including approximation errors, optimal parameter vectors, and
higher order terms in the Taylor series. Moreover, the adaptive
learning algorithms for the compensated controller and the
RWIT2FNNE are derived by using the Lyapunov stability

theorem to train the parameters of the RWIT2FNNE online, so
that the stability of the PMSM servo drive can be guaranteed.
The control problem is to find a control law so that the
rotor position, 6, (), can track the desired position, 6" (¢).
To achieve this control objective, a tracking error vector is
defined as E=[e) ¢j]", where 0"(t) and 0"(t) are
the desired position and speed of the PMSM servo drive
system; and e =[0"(1)-0,()], ¢y =[0"(t)-0,(1)], and

¢g =16/"(1)-6.()]
acceleration errors of the PMSM servo drive system. The
PMSM parameters are assumed to be precisely known and
the external load torque is assumed to be measurable. The
ideal control law (ICL) is designed as [51]:

denote the position, speed and

U, (0 =il (1) = B [0 (1) = 4,,0,(t) ~T () + KE]  (12)

where K =[k

constants. Substituting (12) into (9) results in the error

ky], in which & and k, are positive

dynamics, ép'(¢)+k,ép (¢) + kiep (1) =0.

Suppose the control gain, K, is chosen such that all of the
roots of the characteristic polynomial of the error dynamics lie
strictly in the open left half of the complex plane. This implies
that the position tracking error will converge to zero when time
tends to infinity. The PMSM servo drive system is
asymptotically stable when the control effort, U,¢;, is applied.
However, the equation of the ideal control law is not feasible in
practice because the PMSM parameters vary and this variation
cannot be measured or predicted. In addition, the external load
torque in a PMSM system is not known. Therefore, the control
effort (12) cannot be made. Hence an IRCS is proposed to
approach the ICL. The configuration of the proposed IRCS for
a PMSM servo drive is shown in Fig. 1. The proposed control
law is assumed to take the following form:

U;s (t) = U;EW[TZFNNC )+ U;?SWITZFNNE )+ U;sz 0 (13)

s

where  URTPWVC() =1y is  the RWIT2FNNC,

URTTNE (1) = Q(r) is the RWIT2FNNE and U2 (1) is

the compensated controller.

A. Description of the Wavelet Bases and the Wavelet Neural
Network (WNN)

The architecture of a WNN is shown in Fig. 2. This is a
three-layer neural network including the input, hidden, and
output layers. Each output (i.e. H,H,, -
by a sub-WNN is defined as a WNN base. In the RWIT2FNN,
the WNN bases do not exist in the initial state. They are
generated online concurrently with the fuzzy rules using the

etc.) formulated

structure learning algorithm. The WNNs are characterized by
weights and wavelet bases. Each linear synaptic weight of the
wavelet basis is adjustable by learning. Notably, the ordinary
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Fig. 1. Structure of the proposed intelligent robust control system (IRCS) using RWIT2FNN for PMSM servo drive.

wavelet neural network model applications are often useful for
normalizing the input vectors in the interval (0; 1) [37]-[38].
The ¢,,(x;) functions which are used as input vectors to fire
up the wavelet interval are then calculated. Obviously, the
value of ¢, , is obtained as follows:

#(x;)=cos(x;) —0.5<x;<05
s @ap =cos(ax; —b)
0 (otherwise) ’
(14)
whereb=1;...;aanda=1;...;m.
M=331 (15)
a=lb=1

The above equation formulates the non-orthogonal wavelets
in a finite range, where b denotes a shifting parameter, the
maximum value of which equals the corresponding scaling
parameter a. In the RWIT2FNN model, the wavelet bases do
not exist in an initial state, and the amount generated by the
online learning algorithm is consistent between the wavelet
bases and the fuzzy rules. Obviously, a crisp value, ¢@,,, can

be obtained as follows:

n

§¢a.b (xi)
Pab = T

(16)

where ‘X ‘ is the number of input dimension. The final output

of the wavelet neural networks is
s M s
Hj = klejk¢a.h

= jslqo(),() + Wj52¢].0 + W;3¢],1 teet W;M(Dm'm
a7
where I:I; denotes the local output of the WNN for the

output, ', and the jth rule; the link weight, is the

s

Jk>
output action strength associated with the sth output, the jth
rule and the k&th ¢, ,; and M denotes the number of wavelet

bases, which is equal to the number of existing fuzzy rules in
the RWIT2FNN model.

B. Structure of the Recurrent Wavelet-Based IT2ZFNN

This subsection introduces the structure of the
RWIT2FNN model. The RWIT2FNN integrates an interval
type-2 fuzzy logic system, a recurrent neural network and a
WNN. The goal of integrating the RWIT2FNN model with a
WNN model is to improve the accuracy of the function
approximation. The type-2 Gaussian MF is
constructed by a type-1 Gaussian MF with an adjustable
uncertain mean and an adjustable standard deviation [27-29].
Fig. 3 shows a 2-D type-2 Gaussian MF with an adjustable

interval

uncertain mean in [z,u] and an adjustable standard
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deviation, o. It can be described as

_ 2
zg(x):exp[_%%} p el u (18)

The type-2 fuzzy set has a region called the footprint of
uncertainty and it is bounded by an upper MF and a lower

MF [34], which are denoted as /Tz(x) and A5(x) ,
respectively. The suggested recurrent WNN-based RIT2FNN

is presented as follows:
R, :1F

J
x| is 4/ and..and x! is 4/ and h;(N) is F;

THEN

. M . .
H; is EIWJ“D""” h;(N+1) is ©; andy;is

(@ @1 ] (19)

where R; is the jth rule; 7#; is the internal variable; H ;1s the

jth WNN base which is the jth output of the local model for
rule R;; Z]j is the interval type-2 fuzzy set of the antecedent
part; F; is the output of the recurrent layer; [@p,, @}, ] is a
centroid set with a membership grade of the secondary MF

setting to unity, which can be called the weighting interval set,
derived from the interval type-2 fuzzy sets in the consequent

part [31]; y; is the output of layer 3; ©; and W, are the
consequent part parameters for the outputs /#; and ¢,,,

respectively; and . is the output of the RWIT2FNN.

The architecture of the RWIT2FNN is a five-layer

IT2FNN embedded with dynamic feedback connections and
an WNN, as shown in Fig. 4. The basic functions and signal
propagation for each layer are described as follows.
1) Layer 1: input layer: Each node i in this layer is an input
node, which corresponds to one input variable. These nodes
only pass the input signal to the next layer, and the input
variables of the recurrent IT2ZFNN and WNN are the same. In
this layer, the node input and output are represented as

netl-1 (N)= x} (20)
Vi(N) = f}(net (N)) = net} (N) i=12 @1)
xl =ep(t) and x} = ey () (22)

where x] represents the ith input to the node of layer 1, and
N denotes the number of iterations. The input variables are
x| =ep =(8" —6,), which is the tracking position error
between the desired position command 6,"(¢) and the rotor
position 6”(t), and x,=¢) =(6"—6,), which is the
tracking position error change of the rotor.

2) Layer 2: membership layer: In this layer, each node
performs an interval type-2 fuzzy MF, as shown in Fig. 2. For

the jth node the input and output of the membership node can
be described as follows:

Hidden
Layer

Input
Layer

1
Rl X2

Fig. 2. Wavelet network basis.
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Fig. 3. Interval type-2 fuzzy set with adjustable uncertain mean
and adjustable standard deviation.

net;(N) =—(1/2)(x} — )’ /oy 23)
YI(N) =4/ (x}) = [} (net} (N)) = exp(net; (N)

1 (xzz _ﬂij)z

=exp| ——
2 (o, 24)

V) as py=Fy
=12(N T, J=ls
Y;(N) as gy =gy,
where 1; and o are the mean and standard deviation of the

Gaussian function in the jth term of the ith input linguistic
variable xl-2 to the node of layer 2, respectively, and s is the

number of linguistic values with respect to each input node.
As shown in Fig. 3, type-2 MFs can be represented as an

interval bound by the upper MF IE (x) and the lower MF
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A5(x) . Therefore, the output of layer 2, y_f(N), is also
represented as [y?(N )y (N)] -
- =j

3) Layer 3: rule layer: This layer includes the rule layer and
the recurrent layer of the RWIT2FNN and the output layer of
the WNN, in which each output is defined as a WNN base.
For the internal variable A; in the recurrent layer, the
following sigmoid membership function is used:

1
F,=—m+«—— =
k 1+exp{_hk},l¢1,2, ....... i 25)
h(N)= Yu;0; (26)
k=1

where /4, is the recurrent unit acting as the memory element,
and ©y is the recurrent weight. Moreover, the neurons in the
rule layer represent the preconditioning part of a one interval
type-2 fuzzy logic rule. Thus the neuron in this layer is
denoted by I, which multiplies the incoming signals from
layer 2 by the recurrent layer, and then outputs the product
result, i.e., the firing strength of a rule. For the kth rule node:

neti(N) = FiTl@ . xjui (N) @7
J
up (N) = f (net}(N) =net{(N) ~ (28)
Substituting (25) and (27) into (28) yields:
3 o333 1 noo3 o5
N)=F, S (N) 2 ———— [a)?
uk( ) k};[lekx/uk( ) 1+6Xp{—hk}_11_=[]wjky/
(29)
3 1 T3 -2
uk(N):—ijkyj
ul (N) = “"Xfl’{‘hk}fl . k=ln
3 3 .2
u,(Ny=————I[lo;
N = oy Y
(30)

Substituting (24) into (30) will give the output of this layer

[17](3 ,yi] as follows:

_ . b
X5 —U.
Elg(N):;ﬁw?kexp _l(l /ul/)z
1+exp{-h;}j=1 - 2 o
uj(N) = F (2 )z
3 1 n 3 1 i_ﬁij
u,(Ny=—TJla; exp| ——
ui(N) 1+exp{—hk}JH=1 Jjk €XP, ) o
, k=1,...n

where x; represents the jth input to the node of layer 3;

w?k are the weights between the membership layer and the

rule layer, and are set to be equal to unity to simplify the
implementation for real-time control; and # is the number of
rules. Similar to layer 2, the output of this part of layer 3 is

represented as [L?,f, gi]. In the second part of layer 3, the

neuron in this layer multiplies the incoming signals, which

are H , from the output of the WNN and u; from the

output of layer 3 of the recurrent WIT2FNN part. The
mathematical function of each node & is derived with (17) as:

3 S S (S 3
Yi(N)=Huj = (klejk%.b J-”k (32)
From (31) and (32) the following is obtained:
n M s _3
QEIW)k‘/’a.b-(Mk (N)
RACOER Ky L k=leon (33)
l_TIkZIW}%.b.(zk(N))
j=lk=
_ . v
n 1 M 1 (x- -u
— YW@, @, exp| — —~——L
,H=11+exp{—hk}gl jkPab @ ji €XP ZTTO_U
Yi(N) = T 7
L 1 %Ws 3 1 Ay
_ ; @ exp| ——
ot expl—iy } o kPab- ji €XP) ) oy
, k=1,...n
(34)

4) Layer 4: type-reduction layer: This layer is used to
implement the type-reduction. The type-reduction is very
intensive, and there exist many kinds of type-reductions, such
as centroid, height, centre-of-sets and modified height. In a
type-1 FLS, the height defuzzification is computationally
inexpensive and gives satisfactory results. However, in a
type-2 FLS, the height type-reduction does not perform as
well. In this case, the centre-of-sets type-reduction does a
better job. Therefore the centre-of-set type-reduction
algorithm [32] is adopted in this paper. Furthermore, the
process of this layer is described as follows:

Yaiyi(N)
net} (N) =*=L - (35)
2 Yi(N)
k=1
v (N) = £, (net] (N)) = net (N)
y ;wék)’fek(]\’) ,
YR = k_ln}— =WRIVR
> Vre(N)
_ k=1yRk o1 (36)
L4 3 ’
. Z_:kayLk (V) .
Yu = k_l,, ; =@y
kZI 2k (N)

where @} e[@}p,,@},] is the centroid of the type-2 interval

consequent set: oy = [wﬁlwﬁz ---wfgn]T and
a =[WZ‘@Z‘2 “‘Wgn]r~
T
VN v (N) (V)
yR — (37)

Sy (V) Sy(N)  Eyk(N)
k=1 k=1 k=1
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T

yaN) v () (38)
n n n
EyuN) TyuN) - Zyi(V)
k=1 k=1 k=1
In order to compute yp,(N) and yLN), (@@ ]

needs to be computed. This can be done by using the exact
computational procedure given in [32]. The computation

procedure for yg,(N) and y‘L‘,(N) is described briefly in
the following. First, the weighting interval set [wék,wzk]
(k=1,...,n) should be set before the computation of
y14(N ). Moreover, algorithms 1 and 2, listed below, are the
type-reduction algorithms to compute y4,(N) and y;,(N)

[32], [34], respectively.
Algorithm 1: Without a loss of generality, assume that the

weighting  intervals m}tk and y;l are arranged in

4

ascending  order, ie., Ty S@hy <-wp, and

YRS VRIS Vi

(1) Compute yg in (36) by yu(V)=FWN)
+y (N)/2 for (k=1,..,n),andlet Ft =g .

(2) Find R(U<R<n-1) suchthat @y <3y <@gz, -

(3) Compute yp in (36) with yp(N)=y>(N) for
k<R and with ya(N) =5 (N) for k >R, and set
J:/;;z = )’?21 .

4) If J:/;‘[ = ¥4, then go to step (5). If ):/1‘;, = Yz » then set
J’?ez = 531 and stop.

(5) Set )7;;] = ;ﬁ, and return to step (2).

Algorithm 2: Without a loss of generality, assume that the

weighting intervals @;, and y;, are arranged in
. : 4 4 4
ascending  order, e, o Sw;,<-w), and

y?l 5)’22 < "'yin .

(1) Compute yf, in  (36) by yj(N)=F(N)
+y (N)/2 for (k=1,..,n),andlet 5, =},

(2) Find LA<L<n-1) suchthat @} <7} < @}

(3) Compute yj, in (36) with y3, (N)=3;(N) for
k<L and with yp (N)=y>(N) for k>L, and set
=4 _ 4
Y =Y -

@ If ;f, * }721, then go to step (5). If ;f, = )7?, , then set
yzl = )72‘1 and stop.

(5) Set )72, = ;2, and return to step (2).

Algorithms 1 and 2 provide a method to separate yfak (N)
and yzk(N) into two sides by the points R and L ,
respectively. Moreover, one side uses lower firing strengths

yi(N) , and the other side uses upper firing strengths

¥ (N) . Therefore, (36) can be rewritten as

Y @y Ve (N)
4 _ o
S
El)/Rk (V)

TTMM

4 3 24 -3
Tre) o (N)+ 2O Vi (N)
=Rk k=R+1

P N+ X T (N)
k=R+1 1=1

lwgk Vi (N)

le:l

VI (N)=

bl
I M= =

4
Yu =", 3
kZIyLk(N)

L 4 =3 2 4 3
oy N+ 2 @y, (N)
k=1 k=L+1

Z 3 n 3
Xyu(N)+ X vy, (N)
k=1 k=L+1

(39)
5) Layer 5: output layer: This layer performs the linear
combination of y7 (N) and y‘L‘,(N),i.e.,

4 4
2 _Yw J2FJ/L1 _ U;‘leTZFNNC ) (40)

1 1
Yo =5 @ryp+o@y) =50 Y po W.0) - @41)

where yg is the output of the RWIT2FNN and

U ;fWIT 2FNNC is the control effort of the servo drive system.
T TqT T 1 1

o=y @] ., y=lr v - x=k x] .

=yt My tag] s o =[0y 0y Oy O]

W=[W,Wyl.and ©=[0,0,].

C. On-Line Learning Algorithm of the RWIT2FNNC

1) Structure Learning Algorithm: The structure learning
algorithm is responsible for on-line rule generation. The first
task in structure learning is to determine when to generate a
new rule. The way the input space is partitioned determines
the number of rules extracted from the training data, as well
as the number of fuzzy sets in the universe of discourse for
each input variable. Geometrically, a rule corresponds to a
cluster in the input space, and the rule firing strength can be
regarded as the degree to which input data belong to the
cluster. Based on this concept, a previous study [39-41] used
rule firing strength as a criterion for type-1 fuzzy rule
generation. This idea is extended to type-2 fuzzy rule
generation criteria in the RWIT2FNNC.

2) Parameter Learning Algorithm



146 Journal of Power Electronics, Vol. 13, No. 1, January 2013

* B W 2RI i
ve =T, =i

or yi=RNTIPNE _ o

Cutput
Layer o

Type-Reduction
Layer [

Consequents

Rule @
Layer & BN W B G
z

Ourput
Layer

Membership
Layer j

Input
Layer

A

Iidden
Layer

Input

Layer
Antecedents ¥

e

Fig. 4. Structure of the recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC).

The central part of the parameter-learning algorithm for
the RWIT2FNNC concerns how to recursively obtain a
gradient vector in which each element in the learning
algorithm is defined as a derivative of an energy function
with respect to a parameter of the network. This is done by
means of the chain rule, and the method is generally referred
to as the backpropagation learning rule, because the gradient
vector is calculated in the direction opposite the flow of the
output of each node. To describe the online parameter
learning algorithm of the RWIT2FNNC using the supervised
gradient descent method, the first the energy function is
assumed as

. L,
Ey =6 =6, = (&)’ 42)

where ¢ is the error signal between a desired rotor position

and the actual position.

Then, the update laws for the parameters in the RWIT2FNNC
are described as follows:

Layer 5: During the learning process of the RWIT2FNNC,
the error term to be propagated is calculated as:

OE OE, oey OE, 0Oep 00,
Sy =——L=|-—L % |=|-—2 0 1| (43
6_}/ 4 ae@ 6)}0 66:9 69, 6y 4

Layer 4: In this layer the error term needs to be calculated
and propagated as

OE oE, oy 1
st=—t |20 Yo |5} (44)
Onet; oy, Onet, 2

and the weighting interval factors are updated by the
following amount:

OE
sz‘k =Ty _49
0w}
i OE, 8net,4 6y2[ _ 4 yi (45)
7 onet} ov;, 0w}, o i)’i
k=1
OF
Aw;k = _nm—f
0@y,

_ Ok, 5”904 5)’?&1 —p 54 yi (46)
| e 4 4 4 |T M=% —,
anetl 6le 6ka

>

k=1

Layer 3: The error term is computed as follows:

53 =0 _[aEQ9 s onet} v} }{ ou? }

onet; - dy> onet! ov; ou; | onet;

Thx (ST + Yy ) —ah Gy @D
k=1 k=1 H]?

4
=9 . a s
z k+2yk
k=1 ke

where wfwf can be wék and @, .
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The update law of Wy is:

5 3
A, =y 2Eo {nﬁii} oF )
oWy, Vo Wi || Wy (48)
= 1y 0 Ui Pas

The update of ©; is:

26, - 61{

OE, ui OF, oh,
o = P I —
909,

Ui
© ou} oF, oh, 00, “9)
n
=601y (1= F ui (N = DIy} (V)
i
Layer 2: The error term is computed as follows:
OE,
ﬁnetjz-
| O, 6y§ 6net14 % ﬁuz anet,z 5)’]2' (50)
dy> onet;} 0Oy} ouj onet; 8y§ 6net§

2
5; =-

=6, F,
The update laws of the means are:
At~ o OE, onet; Oy Onet;
My = T T 3 42 2
v 6&7 Onetj; Qy; Onet; 8£li
- (51)
(=)
_ 23 =i
—nﬁjwjkW
AZL = OE, OE, Onet} 0Oy onet;
M o, | el ay? omer? om
I net}, 8yj net; Opy;
o -7 (52)
_ 2 3 G — 4y
—77,115j w’jkW
Moreover, the update law of the standard deviation is:
OF OE, énet; Oy; onet]
Ao = — 6 _|_ 6 k_i J
ij 770' 6 770' a 3 2 2
oy net; 0y; Onet; 0oy
2 3 (xiz_/uij) (53)
= oS ja

(o))°

where 7, ., ny . ne, 1, and 7, are the learning-rate
parameters of the weighting interval factors, the link weights
of both the RIT2FNN and WNN, the feedback weights, the
means and the standard deviations, respectively. To
accelerate the training, the weighting interval factors, the link
weights, the feedback weights, the means and the standard
deviations of the membership functions are updated by
including a momentum term as follows:

al (N+D) =@, (N)+ Az}, (N)+aha;,(N-1) (54)
Ty (N+)=ag,(N)+Awgy (N)+ahagy (N -1) (55)
Wi (N+1) =W, (N)+ AW, (N)+aAW, (N -1) (56)

O,(N+1)=0,(N)+AO, (N)+aA® (N -1) (57)

EU(N+1)=£ij(N)+A£ij(N)+aAﬁij(N_l) (58)

By (N +1) = i, (N) + ATy (N) + @bz, (N =1) (59)

0;(N+1)=0,;(N)+Ac;(N)+aho;(N-1) (60)
where N denotes the iteration number.

The exact calculation of the Jacobian of the system
0./ ayg) which is contained in (43), (8E,/dy.), cannot
be determined due to uncertainties of the servo drive system
dynamics, such as parameter variations and external load
disturbances. To overcome this problem and to increase the

online learning rate of the network parameters, the delta
adaptation law is adopted as follows:

5 =ep +kpep 61)

where kj' is a positive constant.

D. RWIT2FNN Estimator and Compensated Controller

In this section, the RWIT2FNNE is developed to
approximate an unknown dynamic function including the
lumped parameter uncertainty. Furthermore, a compensated
controller is designed to achieve L, tracking performance
with desired attenuation level. Moreover, the adaptive
learning algorithms for the compensated controller and the
RWIT2FNNE are derived using the Lyapunov stability
theorem to train the parameters of the RWIT2FNNE online.

To achieve the control objective, the tracking errors are
defined as e =[6)"(—6,(1], & =[6]"(1)=6,()], and
épy =[0"(¢)-6.(1)] . The tracking error function is defined as
follows:

E(1)=¢é5 (1) + yey (62)

where 0"(t), 0"(t) and §"(r) are the desired position,
speed and acceleration of the PMSM servo drive; and ¢} (¢),

ey (t)y and &' (1)

acceleration errors of the PMSM servo drive. The weighting

denote the position, speed and

factor, y, is used to normalize the contribution of ¢} (r) and

€y (¢) in the error function E(f). By differentiating (62), the
error function becomes:
By E(6) = By 4, E() + U (1) + Q1) (63)
where the nonlinear function Q(¢) is defined as:
Q1) = B,y {AA,,6, () + AB,, U(t) + (D, + AD,)T,
OO+ 165 = 4, (6,1 + )}

Taking into consideration the parameter variations of the

(64)

PMSM servo drive system, Q(?) is not only nonlinear but is
also a time-varying function, consisting of commands,
PMSM servo system parameters and load torque disturbances.
Since the unknown function Q() is very difficult to obtain in
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advance in practical applications, the RWIT2FNNE is
employed to estimate €(¢) online. Furthermore, since the
output of the RWIT2FNNE, Q(¢), is not able to approximate

Q(t) accurately, a compensated controller U 2(t)1is used to

attenuate the approximation error. Thus the control law is
defined as

UE0)=00)+UL (1) (65)
Q@) =UR"™E@) s the

RWIT2FNNE.

By applying the control law (63)—(65), the closed-loop
dynamics of the PMSM servo drive system can be expressed
as follows:

B—lE(t):B—IA E(t)+U(t) - URW]TZFNNC(I)

mn mn=*-mn

+Q(t) U 2(1)

where output of the

(66)

where the approximation error €)(z) is denoted as

~ T X, o W @
= (@Q-0)=1 ATy( “ Nie, 67)

2| -a" y(x', 4,6,,6)
where &5 is the minimum reconstructed error due to an
and ©

are the optimal parameters of @, #, o, W and O;

. . * * * *
insufficient number of rules; @ , 4, o, W

o, i, o, W and © are the estimated values of the
and ®*) as
provided by the tuning algorithms that will be introduced.

optimal parameters (@ , u o, o, W

The approximation error C(7) in (67) is rewritten as:

~ l T~ 1 ~T ~

Q=—a " 5+=a"J+¢, (68)

2 2

where @ =(w —@) and 7= -p).
The weights of the RWIT2FNNE are updated online to make
its output approximate the unknown nonlinear function Q(?)
accurately. To achieve this, the linearization technique is used
to transform the nonlinear output of the RWIT2FNNE into a
partially linear form so that the Lyapunov theorem extension

can be applied. The expansion of ) in the Taylor series is

obtained as follows:

Dr Wr
~ ; 5,u 5 N 8 * N
y{f}: W=+ %1 (@ -6
il |9 (698
ou mi 0o J,_5
e e (69)
M iy P @ —6)+z
6% (698
W Sy —yir 00 Jo-6

Ey£ﬁ+y§5+ypTVVI~/+yg@+Z

where y,u — ay_Ray_L Vo = ay_Ray_L
ou ou 0o 0o ] __.
_| e L @vze (7% = (4 — i
Yw [awaWWW Yo=|Z0 20 | L ATW A

W=W -W), 6=(©" -0) and Z is a
vector of higher order terms and is assumed to be pounded by
a positive constant. Substituting (69) into (68) will yield

G=(c -6),

~ INTN IATN 1~TA
Q=— +—a y+— +&
) y 2 Yy 2 T y+ég
1 or. . .
=@ (D= yuit= 156 -y = y60) (70)
1
T3 5" (yhHi+ yLG + ypW + p§@)+T
1

Fr=—ao" ( ,u +y0,0' +yWW +y@® +7)
2
. (71)
— 0 Wk +ve0 YW+ 760 + g

where the uncertain term I" is assumed to be bounded by a

small positive constant |[[|< p. In order to develop the L,

compensated controller, from (66) and (70), the error
equation in can be rewritten as follows:

o E(0) = By 4, E@O) - UL ()

mn mn
+—a& (j- )/,T,ﬁ ~ Vo6 = ypW = y6®) (72)

+ zﬁr(yZﬁ+y§5+y;,VI~/+y(§(§)+F

N~ N =

In the case of the existence of I', consider the specified L,
tracking performance that follows

?(Ez(r)dr < lB,;;EZ(O) + LﬁT(O)a(O)
0 2 2

m

+2Lu (0)u<0>+— 7(0)5(0)
M 2n

3

(73)

+ ZLVT/T (0 (0) + 2—(?)T(0)c?)(0)

un s
T
+ Lﬁz [T2(z)dr
2174 0
VT €[0,0], T eL,[0,T]

where 71, 175, 13, M4 15 and 756 are strictly positive learning
rates; and p is a prescribed attenuation level. If T is

squared integrable, so that [I'?(z)dz < oo, then [im |E| -
0 t—>®

If the system starts with the initial conditions E(0)=0,
@(0)=0, 0)=0, 50)=0, W(©0)=0 and ©(0)=0,

then the L, tracking performance in (73) can be rewritten as
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T
jEz(T)dT
sup (;—S

[eL,[0,T] frz(r)dr
0

P’ (74)

| =

where the L,-gain from T to the tracking error £ must be

equal to or less than (1/2)p?. If p=oo, this is the case of a

minimum error tracking control without disturbance
attenuation [42-50]. Then, the desired robust tracking
performance in (73) can be achieved for a prescribed

attenuation level p.

Theorem 1. Consider the PMSM servo drive system
represented by (9), if the RWIT2FNNE control law is
designed as (65), the adaptive laws of the RWIT2FNNE are
designed as (75)-(79) and the compensated L, controller is
designed as (80) with the adaptive lumped uncertainty
estimation algorithm given in (81). As a result, the stability of
the RWIT2FNNE system can be guaranteed.

= lm (= yhit=y56 =y W = y6O)E(t) (75)
fi= S 2, E0) (76)

&= VoE() (77)

W =20l yy E© (78)

- —n5® YoE() (79)

Uk = [pz . l]E(r) (80)

P(6) =16 E(0) @1)

where ,5(t) is the on-line estimated value of the hound p.

Proof : To minimize the error function and to derive the
adaptation laws of @, u, o, W, ©® and p, a

Lyapunov function is defined as:

%wmw%aW®mm

1 T~ 1 e
E (t)+ T o+—u U
2 ™ 2m, (82)
PRI WTW+L®T(:)+—p2
3 21, 75 Tle

where p=(p—p) is the estimated error. By taking the

derivative of the Lyapunov function (82) and using (72) and
(80) the following is obtained:

Vo (E@),@, 11,6, W,0, (1))

=B, E(t)E(t)——z%Tza+ ! al i +L5Té
m 7 73

L L67é+ L 50040
Uyn 75 M6

B A E(0) = USE (1)

mn mn

= E(1)| + EﬁT(ﬁ —yhi=yhe —yiw - y56)

1.
5o Toha+yhe+ yiW +y50)+T

1 1 7= 1 1 ~7 .~
-—a w+—uTy +—&T6+—WTw

™ UL 73 M4

+ L8760+ (1)) (83)
s 76
If the adaptive update laws of the RWIT2FNNE are chosen as
(75)~(79) and a robust L, control is designed as (80) with the
adaptive bound algorithm given in (81), then (83) can be
rewritten as follows:

Va(E@),a 550 W,0,5(0))

Byl Ay (1) - [’;p“JEa)

1 - n n N ~ N
= E(t) +5wT(y—y§ﬂ—y§0—yVTyW—y5®)
1.
50 T(yhii+ 56 + ypW + y50) +T

1 R R . R N N
—Ew%y—yf,u—yia—yw—yé@)E(r)

1. 1. | QS
—5@ VuEWO) =28 yoEO =W yiyE(0)

(e

Lo e+ L5
7® YoE(D) + S POEQD)

2
:Ea){B,;LAm,,E(r) [2 JE(MF} —P(OE(t)
p

2
— BB, Ay E(0) — ~ (E(’) p r) +%ﬁ(t)E(t>
P

mn*-mn

+%p21—‘2 <E()B,' A E(t)+ %pZFZ
(84)
Integrating (73) from ¢ =0 to ¢t = T yields:
VQ(E(T),ZD',/J,O’,W,@,[)(T)) - VQ(E(O),W,,U,O',W,@,,D(O))

T T
< —leZ(T)dz'+lp2jF2(T)dz'
24 27

(85)

Since Vo(T) =0, the above inequality (85) implies the

following inequality:
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%fE%r)dr < Vo (E(0).., 1,010, p(0))

0 Lo (86)

+—p? [T (r)dr
27

From (70) and (75), the above inequality is equivalent to the
following:

?(E2 (r)dr < 1 B,E*(0) + LT (0)@(0)
0 2 2m
BT (O)fi(0) + —— &7 (0)5(0)
2n, 21, (87)

LT (0 (0) + 1 ar (0)0(0)

2,4 2n;s
+L p’ ?FZ ()t

21 0
This is (73).

Since Vo (E(),&,11,6,W,0, p(1)) < 0) and

Vo(E(t), @, y,a,W,@), p()) 1is a negative semi-definite
Vo E().@, 11,5, W,0, (1) <
Vo (E(0),&,11,6,W,0,5(0)) , it can be implied that

E, @, u,.c, W,0 and p are bounded functions. Let the

function ie.

function  E(f)= %B,;},Ez < Ve (E(0), &, 1,6, W,0, 5(1))

and integrate the function Z=(¢) with respect to time. This
yields:

t ~ o~
[E(2)dz =+ B} B> Vo (E(0).. 1.6.77.8.5(1))
0 2 (88)

~ Vo (E(t), &, 11,5,W,0,5(1)

Since VQ(E(O),ﬁ,ﬁ,E,VIN/,@,ﬁ(O) is bounded and
Vo (E(2),@, 1,6,W,0, (1) is non-increasing and bounded,

t
the following result can be obtained, |im [E(r)dr <oo. In
t—®()

addition, since Z() is bounded by Barbalat’s Lemma
[42-43], it can be shown that |jm Z(¢#)=0. Thatis, £ —0

t—>00
as t—>o . As a result, the stability of the proposed
RWIT2FNNE and the compensated control system can be
guaranteed.

IV. NUMERICAL SIMULATION AND EXPERIMENTAL
RESULTS

In order to investigate the effectiveness of the proposed
tracking control scheme, simulations and experiments on the
proposed IRCS and an ideal controller are carried out using
the Matlab/Simulink package based on the control system
shown in Figs. 1 and 5. A DSP control board dSPACE
DS1102, which is based on TMS320C31 and TMS320P14
DSPs, is installed in the control computer which includes
multi-channels of ADC, DAC, PIO and encoder interface
circuits. The digital filter and frequency multiplied by four

dSPACE DS 1102 Control Board

Switeh-Mode Power Supply Control Computer
for the Inverter, Digital

Input/Output

Inverter, Driving
Cireuit, Current
Sensors

PMSM Test Bed

(a) Experimental setup.

Control Computer

T™MS Encoder 6, Angular Position
320031 [ K= Interface [«
& Timer
TMS A/D Signal Lag, bs, cs
320P14 < Conditioning —
Digital c:"'\ Converter Circuits
1/0
Analog Outputs
COE\// ?r ter d-q Axes Currents
~ 3-Pulses Speed, Torque
Digital | PWM, | In}erfﬁce
vo_ | 3 Clrauity
iX- an
—  dSPACE Dead Time
DS 1102 DSP Board Generator
6—Pulsesl l l l l l
3-phase LYY PWM
380V Rectifier = IPM Inverter
50 Hz

(b) Block diagram of the proposed DSP-based control system.

Fig. 5. DSP-based intelligent robust control system (IRCS) using
RWIT2FNN for PMSM servo drive.

circuits are built into the encoder interface circuits to increase
the precision of the speed and the position feedback signals
and the coordinate transformations. The sampling rate is
chosen as 200us and hence the carrier frequency of the PWM
inverter is 5 kHz. The control interval of the position control
loop is set at 1 ms. The current-regulated PWM VSI is
implemented using a Mitsubishi intelligent power module
(IPM) using IGBTs with a rating of 50A, 1200V and a
switching frequency of 15 kHz and it is driven by six
Semikron IGBT drivers. The DC-link LC filter components
are an inductor with an iron powder core with 250puH and a
polypropylene-film capacitor with SuF. The speed acquisition
has been performed with a 10,000 pulse/revolution
incremental optical encoder. Therefore, the output of the
frequency multiplier circuit is 40,000 pulses/revolution which
results in high precision of the speed/position measurement.
The selection of the learning rate parameters in the online
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learning algorithm of the proposed RWIT2FNN has a
significant effect on the control performance since a
deteriorated dynamic response results from an inappropriate
selection of the learning rates. Although optimal learning
rates can be obtained online by using the genetic algorithm
(GA) or the particle swarm optimization (PSO) algorithm,
these optimization techniques result in a high computational
burden. Therefore, in the simulations and experiments the
8
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(a) Simulation Results.

learning rate parameters of the weighting interval factors, the
link weights of both the RIT2FNN and the WNN, the
feedback weights, the means and the standard deviations,
respectively, 77, ., 7y, g, 7, and 7, are obtained by
trial and error to achieve the best dynamic performance of the
PMSM servo drive considering the
requirements of the convergence of the tracking error.

system, while
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(b) Experimental Results.

Fig. 6. Dynamic response for the reference position of 2xt rad and subsequent loading of 3.6 N.m for PMSM servo drive system at Case (1) of
parameter uncertainties using L, compensated position controller.
Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, g-d axis current response 2.5 A/div, time base for all
traces 1 sec/div.
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Fig. 6. (Continued) Dynamic response for the reference position of 2x rad and subsequent loading of 3.6 N.m for PMSM servo drive system
at Case (1) of parameter uncertainties using L, compensated position controller.

Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for all
traces 1 sec/div.

The learning rate parameters are chosen as: 7, =0.09, A. Simulation of the PMSM Servo Drive System
My =005, 7o =01, 7,=021, 5,=019, c=075, The simulation results of the PMSM drive system are

D=0075 , 7,=001 , 7,=0025 , 15 =0035,

presented to verify the feasibility of the proposed IRCS under
various operating conditions. To investigate the robustness of
1y =0.08,and 75 =0.04. the proposed controllers, four cases including PU and
external load disturbances are considered.
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(a) Simulation Results.

Dynamic response for the reference position of 27 rad and subsequent loading of 3.6 N.m for PMSM servo drive system at Case (1)

Fig. 7.

of parameter uncertainties using IRCS based on RWIT2FNN position tracking controller.

Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6

(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for all

traces 1 sec/div
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Fig. 7. (Continued) Dynamic response for the reference position of 2r rad and subsequent loading of 3.6 N.m for PMSM servo drive system
at Case (1) of parameter uncertainties using IRCS based on RWIT2FNN position tracking controller.

Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error 6
(rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, g-d axis current response 2.5 A/div, time base for all

traces 1 sec/div

Case 1: 1.0x(L, /R,), 1.0x(B,, /J,,), 1.00x4,,, T;=0-3.6 N.m
Case 2: 0.5x(L, /R,), 1.0x(B,, /J,,), 0.85x4,,, T;=0-3.6 N.m
Case 3: 1.5x(L, /Ry), 1.0x(B,, /J,,), 1.25%A,,, T;=0-3.6 N.m
Case 4: 1.5x(L, /Ry), 1.0x(B,, /J,,), 1.25%A,,, T;=0-3.6 N.m
The dynamic performance of the PMSM servo drive due to

a reference model command of 2 rad under a subsequent
loading of 3.6 N.m for the compensated L, controller alone in
Case (1) of the PU including the responses of the reference
model and the rotor position, the tracking position error, the
rotor speed, the tracking speed error, the d-q axis current
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Fig. 8. Dynamic response for the reference position of 2x rad and no-loading for PMSM servo drive system at Case (1) of parameter

uncertainties using L, compensated position controller.

Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error
6 (rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, q-d axis current response 2.5 A/div, time base for

all traces 1 sec/div.

response and the adaptive control signals are predicted, as
shown in Fig. 6(a). On the other hand, the dynamic
performance of the PMSM servo drive using the IRCS is
shown in Fig. 7(a) in Case (1) of the PU. The disturbance
rejection capabilities have been checked when a load of 3.6
N.m is applied to the shaft at + = 1.45 sec. The results
obtained in Figs. 6(a) and 7(a) illustrate good dynamic
performances in the command tracking and load regulation.
They are realized for both of the position tracking controllers.
Improvement of the control performance by the addition of
the proposed RWIT2FNNC can be observed from the
obtained results in the command tracking and the load
regulation characteristics. From the results shown in Fig. 7(a),
the tracking position and speed errors with the compensated
controller are larger than the ones obtained when using the
RWIT2FNNC. The dynamic performance of the PMSM
servo drive due to a reference model command of 2n rad
under no-loading for the compensated L, controller alone in

Case (1) of the PU including the responses of the reference
model and the rotor position, the tracking position error, the
rotor speed and the tracking speed error are predicted, as
shown in Fig. 8(a). On the other hand, the dynamic
performance of the PMSM servo drive under the same
operating conditions using the IRCS is shown in Fig. 9(a) in
Case (1) of the PU.

To further verify the performance robustness of the
proposed control schemes, four cases of PU and external load
disturbances are considered, cases (1~4), for comparison. The
dynamic performance of the PMSM servo drive for both of
the position controllers at all Cases of PU is predicted in Fig.
10. Furthermore, the maximum tracking position errors under
the four cases of PU are approximately 0.35 rad for the
proposed L, compensated control system. On the other hand,
the ones with the IRCS under the four examined cases of PU
are approximately constant and equal 0.12 rad. The maximum
position regulation dips under the four cases of PU are 0.25
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Fig. 9. Dynamic response for the reference position of 27 rad and no-loading for PMSM servo drive system at Case (1) of parameter
uncertainties using IRCS based on RWIT2FNN position tracking controller.

Experimental Scales: position response 4 rad/div, speed response 5 (rad/sec)/div, tracking position error 0.2 rad/div, tracking speed error
6 (rad/sec)/div, adaptive position signal 3 rad/div, adaptive speed signal 1 (rad/sec)/div, g-d axis current response 2.5 A/div, time base

for all traces 1 sec/div

rad, 0.23 rad, 0.3 rad, and 0.35 rad, respectively for the
proposed compensated control system. On the other hand, the
ones with the IRCS under the four cases of PU are
approximately constant and equal 0.12 rad. From the
simulation results shown in Fig. 10, the tracking errors
converges quickly and the robust control characteristics of the
proposed IRCS under the occurrence of PU can be clearly
observed. Compared with the compensated control system,
the tracking errors and regulation characteristics are greatly
reduced. Therefore, the proposed IRCS can yield control
performance that is superior to that of the compensated
control scheme. As a result, the proposed IRCS provides a
rapid and accurate response for the reference model under
load changes. It is within 0.5 sec which is quite fast when
compared with the compensated controller which has a
sluggish recovery time of more than 1.0 sec at PU. Thus it
can be verified that the proposed IRCS under all cases of PU

can satisfy the robustness and accuracy requirements and is
more suitable in the tracking control of the PMSM servo
drives for industrial applications.

B.  Experimentation on the PMSM Servo Drive System
To further verify the performance of the proposed control

scheme applied to a PMSM servo drive in practical
applications, some experimental results are introduced. The
experimental results on the dynamic performance of the
proposed compensated controller due to a reference model
command under a subsequent loading of 3.6 N.m at Case (1)
of the PU including the responses of the reference model and
the rotor position, the tracking position error, the rotor speed,
the tracking speed error, the d-q axis current response and the
adaptive signals are predicted in Fig. 6(b). On the other hand,
the experimental results on a PMSM servo drive using the
proposed IRCS are shown in Fig. 7(b) under the same
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conditions. Furthermore, the disturbance rejection capabilities
have been checked for both of the position controllers. In
addition, the maximum tracking position errors at case (1) of
the PU is approximately 0.36 rad, for the proposed
compensated controller. On the other hand, the one with the
IRCS at case (1) of the PU is approximately 0.13 rad. The
maximum position regulation dip under the same condition is
0.37 rad for the proposed compensated controller. On the
other hand, the one with the IRCS is approximately 0.13 rad.
The experimental results obtained in Figs. 6(b) and 7(b)
clearly illustrate the good dynamic performances, in terms of
command tracking and load regulation performance, are
realized for both position tracking controllers. When
compared with the compensated controller, the tracking
errors and regulation characteristics are much reduced for the
proposed IRCS. Therefore, the IRCS can yield superior
control performance than the L, compensated controller. The
dynamic performance of the PMSM servo drive due to a
reference model command of 2r rad under no-loading for the
compensated L, controller alone at Case (1) of the PU
including the responses of the reference model and the rotor
position, the tracking position error, the rotor speed and the
tracking speed error are predicted, as shown in Fig. 8(b). On
the other hand, the dynamic performance of the PMSM servo
drive under the same operating conditions using the IRCS is
shown in Fig. 9(b) at Case (1) of the PU. As a result, the
proposed IRCS provides a rapid and accurate response for the
reference model under load changes. It is within 0.5 sec
which is quite fast when compared with the compensated
position tracking controller which has a sluggish recovery
time of more than 1.0 sec. It is obvious that the performance
of the PMSM servo drove system using the compensated
controller is greatly improved by using the IRCS. Thus it can
be verified that the proposed IRCS can satisfy the accuracy
requirements and is more suitable in the tracking control of
PMSM servo drive systems in practical applications.

C. Performance Measure of the PMSM Servo Drive
System

To measure the performance of the PMSM servo drive, the
maximum tracking error, TE,,,, the average tracking error,
TE,.can, and the standard deviation of the tracking error, TE,,
are defined as follows:

TE . = maxy|T(k)’ (89)

TE e = 378 90)
k=1 n
n _ 2

e - \/z(m‘) TE i) o1
k=1 n

where T(k)=[6"(k)-0,(k)].

TABLEII

PERFORMANCE MEASURES OF THE PMSM SERVO DRIVE SYSTEM

AT CASE (1) oF PU
Controller Tracking Errors (rad)
Type Maximum Average S.D.
2DOF 1-PDC 0.62680 0.0032250 0.332500
SMC 0.49740 0.0004173 0.115900
L, Controller 0.30540 2.290e-05 0.052480
CTC 0.21030 0.0002138 0.032390
ENNC 0.19230 0.0009900 0.027930
FNNC 0.15990 0.0019580 0.075830
RWENNC 0.10260 0.0003200 0.010440
IRCS 0.06844 2.0627e-05 0.007954

To further investigate the improvement of the proposed
IRCS, performance measures of the Elman neural network
controller (ENNC), the recurrent wavelet ENNC (RWENNC),
the computed torque controller (CTC), the conventional
two-degrees-of-freedom integral plus proportional and rate
feedback controller (2DOF [-PDC), the L, compensated
controller, the fuzzy neural network controller (FNNC) and
the sliding-mode controller (SMC) are compared and
summarized in Table II. From the results shown in Table II, it
can be easily seen that high values of TE,., TE .., and TE
have been successfully reduced by the proposed IRCS.
Therefore, the IRCS possesses the best robust control
characteristics and can control PMSM servo drive systems
effectively.

V. CONCLUSIONS

This paper proposed an IRCS for PMSM servo drives
which guarantees robustness in the presence of parameter
uncertainties and load disturbances. The proposed control
scheme comprises an RWIT2FNNC, an RWIT2FNNE and a
compensated controller. The RWIT2FNNC combines the
merits of a self-constructing interval type-2 fuzzy logic system,
a recurrent neural network and a WNN. Moreover, it performs
the structure and parameter-learning concurrently. The
RWIT2FNNC is used as the main position tracking controller
to mimic the ICL. In addition, the RWIT2FNNE is developed
to approximate an unknown dynamic function including
parameter uncertainty. Furthermore, an L, compensated
controller is designed to achieve L, tracking performance with
a desired attenuation level. Moreover, the adaptive learning
algorithms for the L, compensated controller and the
RWIT2FNNE are derived based on the Lyapunov stability
analysis so that the stability of the PMSM servo drive can be
guaranteed. Simulation and experimental results confirm that
the proposed IRCS grants robust performance and a precise
dynamic response to the reference model regardless of load
disturbances and PMSM parameter uncertainties.
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