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Abstract 
 

The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high 
efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become 
extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a 
frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation 
method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and 
a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference 
tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control 
method and analysis results. The control method not only guarantees system stability but also improves performance under 
perturbation. 
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I. INTRODUCTION 

Inductive power transfer (IPT) technology is a novel 
technology that can provide wireless energy transmission from 
the power supply to the electrical equipment with the aid of 
magnetic coupling [1], [2]. Without direct electrical contact, 
power transmission becomes more convenient, more robust, 
and more flexible. Most importantly, power transmission 
becomes safe [3]. Therefore, this technology can be used in 
harsh environments, such as underwater, explosive, and 
corrosive areas [4], [5]. Owing to these distinguished features, 
this technology has gained many successful applications in 
material handling system, electrical vehicle, medical implants, 
and consumer devices [6]–[8]. 

In a typical IPT system, two types of resonant converters are 
usually used to produce transformation from DC to high-
frequency AC current, namely, series and parallel resonant 
converters. For the series resonant type, the resonant current 
flowing through the switching devices produces unnecessary 
power loss. Furthermore, under light-load condition, a large 

resonant current exists in the resonant tank and causes low 
efficiency. The parallel resonant converter normally requires a 
large DC inductor to produce a quasi-current source. The LCL 
resonant converter has been proposed because of the defects of 
these two converters. The composite resonant network exhibits 
great filtering capabilities. The impedance transformation 
feature guarantees unity power factor and high efficiency under 
light-load condition [9]. Furthermore, the LCL network 
provides high power capability and stable resonant current 
output. 

Although an LCL converter has many advantages, its 
modeling and controller design remains a problem. The 
additional LCL tank increases the entire system orders to seven 
or even higher. The high-order, switching nonlinearity, 
parameter uncertainty, and multi-operating points make the 
system behavior complex and hard to model [10]. Current 
modeling methods can be divided into two types on the basis of 
the recent research on the IPT system. The first is the discrete 
time-mapping modeling method [11]. This modeling method 
sets up piecewise mapping functions of the system dynamics 
and integrates dynamic boundary condition solving to obtain an 
accurate system model. This system model can give a complete 
description for not only the steady state but also the transient 
process. However, this model requires dynamic numeric 
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computing with system dynamics evolution. Given that the 
analytical model cannot be obtained, this model is extremely 
difficult for the design of the controller. The other modeling 
method is the generalized state space averaging (GSSA) 
method, which is particularly suited to full resonant converters 
that inherently generate quasi-sine-wave voltage and current 
waveforms [12]. This method transforms the nonlinear 
differential model in the time domain into a linear state space 
model in the frequency domain. The obtained system model is 
suited for the control design. However, all parameters must be 
known and fixed in the modeling process. The running 
frequency of an IPT system easily drifts away from the 
designed frequency with load variation in the system dynamics 
[8], [13]. Therefore, frequency and load are uncertain 
parameters. Involving uncertainty in the model is difficult 
because of the nature of modeling in the frequency domain. 

Current research on the controller design of the IPT system 
is mainly focused on tuning-point and pick-up output voltage 
controls [2], [14], [15]. Bang-Bang and PID controls are two 
typical control methods. The distinguished feature of these 
methods is their independence on the system model. Moreover, 
these two types of controllers are easy to design and implement. 
However, with the development of the IPT technology, the 
optimal performance gradually becomes a research interest, 
particularly in large power capability systems such as electrical 
vehicles. In the controller design, a global robust controller 
should be considered to fulfill the requirements of not only the 
stability but also the optimal performance, such as perturbation 
rejection and fast reference tracking. 

Aimed at output voltage control and performance 
optimization, a robust control method based on uncertainty 
modeling is proposed. Initially, the normal GSSA model is set 
up based on the differential system model. In uncertainty 
modeling, the frequency and load parameter uncertainties are 
both considered. The uncertain part is detached from the 
system model, and a generalized plant model is obtained via 
upper linear fractional transformation. A robust controller 
structure, including the weighting functions, is introduced. 
Considering the system performance, a structured singular 
value (SSV) is introduced to enhance perturbation rejection and 

reference tracking capabilities. System order reduction and 
discretization were performed to facilitate the control of 
hardware implementation. The controller performance analysis 
is also provided. Finally, the simulation and experimental 
results verify the robustness of the control method and the 
analysis results. 

II. PRINCIPLE OF LCL-TYPE IPT SYSTEM 
 

The topology of a typical LCL resonant IPT system is 
shown in Fig. 1. 

The system can be divided into primary and secondary 
parts. The primary part comprises a full-bridge inverter and 
an LCL composite resonant tank. The inverter consists of 
four switching devices (S1–S4), which form two switching 
pairs (S1 and S4 and S2 and S3). The switching pairs operate 
complementarily and inject an approximate square wave 
voltage into the LCL resonant tank. The LCL resonant tank is 
a T-type resonant network consisting of Lpi, Lpo, and Cp. The 
LCL network transforms the square wave voltage input into a 
sine current in magnetic excitation coil (Lpo) and realizes 
impedance transformation to guarantee the zero-current 
switching (ZCS) condition. The secondary part comprises a 
parallel-tuned network, a rectifier, and a filter. During 
magnetic coupling, the pickup coil (Ls) accepts energy from 
the primary part and produce resonance in the parallel-tuned 
network to increase power transfer capacity. The load finally 
acquires a stable DC output with the rectifier and filter. 

To reduce switching losses and Electromagnetic 
Interference (EMI) , two switching pairs (S1 and S4) and (S2 
and S3) should be switched at zero crossing instants of the 
input current 

piLi  of the LCL resonant tank to achieve ZCS 

running, as shown in Fig. 2. 
The ZCS crossing detection module detects the crossing 
instants of input current and sends complementary driving 
signal to the two switching pairs to guarantee soft switching 
running. Under the ZCS running mode, the switching 
frequency keeps up with the inherent frequency variation of 
the LCL resonant network. Therefore, the system operation 
frequency drifts away from the designed frequency and 

 
Fig. 1. LCL-resonant IPT system topology. 
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becomes uncertain parameters under load variation condition. 
The ZCS operation condition can be acquired by the 
equivalent circuit (see Fig. 3). 

Assuming the square wave current is drawn by the rectifier, 
the equivalent resistance Req of the DC part at the secondary 
side is provided by [16] 

( )2 / 8eq LR Rp=  .                             (1) 

The reflection impedance from the secondary to primary 
sides can be expressed by 

( )2 2 /r SZ M Zw=  ,                            (2) 

where ( )e e/ 1S S q S qZ j L R j C Rw w= + + .  

The input impedance of the LCL network can be expressed 
as 

( )1
r Lpo

in Lpi
p r Lpo

Z j L
Z j L

j C Z j L
w

w
w w

+
= +

+ +
.
           (3) 

The ZCS operation condition can be expressed as 

( )Im 0inZ = .                                (4) 

With the implicit equation, the operation frequency ω can 
be solved with the numerical method. 

III. GSSA MODELING 

The LCL resonant IPT system is a complex system 
because of its switching nonlinearity, increased system order, 
and inconstancy of load condition. An accurate mathematical 
model is difficult to set up. In this paper, the GSSA method is 

utilized to transform the nonlinear system model in the time 
domain into a linear state space model in the frequency 
domain with the expansion of Fourier series. 

According to Kirchhoff’s circuit laws, the differential 
model of the LCL system can be obtained as 
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where 
poLR ,

piLR , and 
sLR  are the equivalent series resistance 

of the inductance poL , piL , and sL , respectively. 

Owing to the switching devices in the primary part and the 
rectifier in the secondary part, the switching nonlinear 
functions fp and fs are included in the differential equation 
model. The functions are used to describe the “on” and “off” 
state of the switching devices and can be defined as 

1          (2 1) / 2     
( )

-1     (2 1) / 2 ( 1)    p

mT t m T m Z
f t

m T t m T m Z
< < + Îì

= í + < < + Îî

，

， ,
   (6) 

where ( ) 1pf t =  denotes that S1 and S4 are turned on and 

S2 and S3 are turned off; ( ) 1pf t = -  denotes that S2 and S3 

are turned on and S1 and S4 are turned off. 
As the phase difference between the input current 

piLi  in 

the primary part and the resonant voltage 
sCv  is 180°, the 

switching function ( )sf t  can be expressed as 

s p( ) ( )f t f t= - .                               (7) 

Considering the differential equation model given in (5), 
the state vector can be defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,pi p po s s f f

T
L C L L C L Cx t i t v t i t i t v t v t v t= é ùë û .     

(8) 

Slow time-varying and fast oscillatory variables exist 
among the state variables. Given that the switching function 
switches its state half a period, the state variables of the 
resonant tank exhibits oscillation property, such as 

, , , ,
pi p po s sL C L L Cii v i v

. 
However, the state variables ,

f fL Ci v  

exhibit slow time-varying property because of the filter. 
When the state vector ( )x t  satisfies the Dirichlet 

conditions, any element of the state vector can be expanded 
in Fourier series as 

Fig. 2. ZCS running mode. 

Fig. 3. Equivalent circuit of the LCL network. 
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where 0 2 / Tw p=  is the fundamental angular frequency, k 
the harmonic number, and n the bound of selected harmonic 
number. The Fourier series coefficient can be expressed as 

0
1( ) ( ) jk t

i ik T
x t x t e dt

T
w-= ò

.
                (10) 

Considering the expansion of the Fourier series, the 
differential equation model in the time domain shown in (5) 
can be transformed into a generalized state variable model in 
the frequency domain as 
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where 2
po sM L LY = - . 

In the transformation, first-order harmonic is enough to 
describe the dynamic behavior of the fast oscillatory variables 
as the LCL resonant and parallel network can eliminate high-
order harmonics. However, for the slow time-varying 
variables, with the LC filter, the zero-order harmonic can 
achieve good approximation. 

Two nonlinear items in (11) can be expanded by 
convolution of the Fourier coefficient. The results are as 
follows: 
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The Fourier coefficients of the nonlinear switching 
functions can be expressed as 
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A generalized state space averaging model can be acquired 
by substituting (12), (13), and (14) into (11). However, the 
coefficients of the fast oscillatory variables include both real 
and imaginary parts. It is necessary to detach them for 

simplification of controller design. Therefore, the new state 
vector in the model can be described as 
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where ( )Re g  and ( )Im g  denote the real and imaginary parts, 

respectively. 
Assigning the DC voltage DCE  as input u  and the load 

voltage Ov , which equals 
fCv , as output y , the state space 

model in frequency domain can be expressed as 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

&

,
                       (16) 

where 1 1, , , 12n n n n n´ ´ ´Î Î Î =A R B R C R , and ÎD R . 
The detailed descriptions of A, B, C, D are provided in the 
Appendix. 

IV. UNCERTAINTY MODELING 

In the system model, the running frequency drifts away 
from the designed frequency because of the varying load 
conditions, making the frequency and load parameter in the 
system model to become uncertain. Therefore, the uncertain 
part should be detached from the system model. The variation 
in uncertain parameters always has a certain boundary and 
the uncertain parameters can be defined as 

L LL L

(1 )
(1 )R R

p
R R p

w ww w d

d

= +

= +
 ,                      (17) 

where the running frequency w  and the load parameter LR  

are considered. LR  is the rated load, and w  is the ZCS 
operation frequency under the rated load condition, which 
can be solved by the ZCS condition provided in (4). wd , 

LRd  

is the uncertain part that should satisfy 1wd £ , 1
LRd £ . 

,
LRp pw  provide the maximum magnitude of parameter 

variations. An upper linear fractional transformation (LFT) 

can be used on wd and 
LR
d , as shown below. 
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U
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With the LFT method, all uncertain parameters in the 
model can be expressed with an uncertain parameters matrix. 
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{ }Δ diag ,
LRw wd d d= L， ，                 (20) 

Here, n n´D Î C  is a diagonal matrix that includes all 
uncertain parameters and satisfies the norm 

condition 1
¥

D < for 1wd £ , . 1
LRd £ . 

The perturbation input and output of the uncertain part can 
be defined as 

1 2 10[ , , , , ]T
RLq pertin y y y yw w w= = L           (21) 

1 2 10[ , , , , ]T
RLp pertout u u u uw w w= = L .        (22) 

The system model can be detached into the uncertain part 
Δ and into the certain part ( )G s , as shown in Fig. 4. 

Here, z  is the generalized system output that considers all 
perturbations. 

The generalized system model can be expressed as  

1 2
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                (23) 

In this model, the system coefficient matrix A  includes 
only certain parameters, and the matrixes 

1B , 2B , 1C , 2C , 11D , 12D , 21D  21D , and 22D  define the 
interconnection relationship among the system input and 
output. 

V. m -SYNTHESIS CONTROLLER DESIGN 

In the controller design, the control target guarantees 
system performance under possible uncertainties. The system 
performance indexes include tracking error and noise 
rejection. On the basis of the system model provided in (23), 
a robust controller ( ) ( ) ( )u s K s e s=  can be added as Fig. 5. 

Here, ref  is the reference input, and the dashed border 
box is the generalized plant model; d is the disturbance to the 
output with finite energy, namely, 2d LÎ . Wp function is the 

performance weighting function, and uW function is the 

control weighting function. [ , ]T
p uz e e=  is the robust 

performance index output. The controller should not only 
guarantee system internal stability but also keep the H¥  

norm of the transfer function Tds(s) from perturbation input d 
to performance index below boundary g  ( 0g > ). 
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The H¥  norm refers to the infinity norm of a transfer 
function. 

The initial setting of Wp and Wu, Wp function reflects the 
dynamic system performance, which includes overshoot and 
settling time. The Wu function reflects the cost of control and 
should be below 1. Oloomi and Shafai [18] present a weight 
selection method to design the weighting function. In the 
system robust design, system un-modeled dynamics may 
bring system-structured uncertainty and should be considered 
in the controller design. Therefore, the uncertain block should 
be redefined to include type kind of uncertainty, which is 
shown as 

11 1( ) { , , , , , }
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j j
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m m
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d d
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ì Dé ù
D = ¼ D ¼ D =ï ê úï Dë ûí
ï Î D Îïî .

  (26) 

Δ should satisfy { : ( ) 1}B sD = DÎD D £ . pΔ should 

satisfy ( ) 1ps D £ . 

The new generalized system model is shown in Fig. 6. 
Here, block P is the total block of all open loop structures, 
including the generalized plant model and the weighted 
function; Δ  is the uncertainty block including all 
unstructured and structured uncertainties. 

To avoid unnecessary conservation brought by the 
structured uncertainty, the SSV should be adopted to evaluate 
the robust performance. SSV defines the smallest σ(Δ) to 

make ( )- DI M  singular, i.e., 
1(min{ ( ):det( ) 0}) ,

( )
0:                det( ) 0,,     

I M
M

I M

s
m

-

DÎD
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In the µ-synthesis controller design, a stabilizing controller 
K should be determined and satisfy 

 

Fig. 4. Uncertain model topology. 

 

Fig. 5. Block diagram of µ-synthesis control system 
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Furthermore, an optimal K to make the SSV minimum is 
necessary to achieve quality performance, i.e., 

( )
inf sup [ ( , )( )]
K s

P K j
w

m wD
ÎR

M  .                 (29) 

Thus, 

( , )( )[ ] [ ( , )( )]P K j P K jm w s wD £M M .         (30) 

Therefore, by using a D–K iteration method [17], we can 
express the stabilizing controller as 
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where D is the scaling matrix 
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D can be expressed with the norm of   
1

( )
inf inf ( , )( )
K s D D

DM P K j Dw -

¥Î .
               (33) 

Applying the iteration method to minimize (27), the 
optimal ( )K s  can be acquired. A detailed iteration process 

in the IPT system is described in the next section. 

VI. CONTROLLER PERFORMANCE ANALYSIS 

Table I lists the primary circuit parameters used in 
designing the LCL-resonant IPT system. 

In the D–K iteration in the last section, ( )sD  is first set to 

unity matrix I . The frequency range is set to -2 610 ,10é ùë û , 

and a feedback controller ( )K s  can be solved. In the first 

iteration, the corresponding max m  reaches 118.005, which 
does not satisfy the robust performance requirement. By 
using the solved ( )K s , we can acquire the scaling 

matrix ( )sD , and the solved ( )sD can be used to obtain a 

better ( )K s . With the iterative computation, the solved 

controller ( )K s  finally satisfies the performance 

requirement provided in (31). The characteristic parameters 
of the controller K and the scaling matrix D in the iteration 
process are listed in Table II. 

The maximum m value decreases in every iteration and 
finally drops below 1 after four iterations. In the frequency 

range of -2 610 10é ùë û， , the frequency response of m  is shown 

in Fig. 7. 
In the entire frequency range, m  is always below 1. 

Therefore, the robust stability and performance can be 
satisfied. Furthermore, the permitted perturbation under the 
structured uncertainty condition can be expressed as 

1/ 0.549
¥

D < .                               (34) 

The final ( )K s  in the iteration can be selected as a 

controller. However, the controller order increases to 18, 
which is necessary to reduce the order of the controller on the 
condition that the robust performance indexes are satisfied. 
The Hankel norm approximation method is used to reduce the 
controller from 18 to 7. Comparison before and after order 
reduction is provided in Fig. 8. 
The real and dashed lines correspond to the frequency 
response before and after order reduction, respectively. The 
two frequency response curves reach a good agreement in the 
frequency range of -2 510 ,10é ùë û , which verifies the feasibility 
of the reduced-order controller. 

VII. SIMULATION RESULTS USING GSSA MODEL 

The GSSA model for the LCL-resonant system with the 
robust control method has been constructed by using 
MATLAB-Simulink. The simulation parameters are listed in 
Table I, and the topology of the model is shown in Fig. 9. 

TABLE I 
SYSTEM PARAMETERS 

 

 

Fig. 6. Robust control system structure. 
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In the simulation model, the dashed box refers to the 
generalized system model G with detached uncertain part. 
The output y of the model is affected by an external 
disturbance d. The error signal e is the difference between the 
output y and reference signal ref, and the controller block 
produces a control output u with the robust control algorithm 
discussed earlier. 

In the model, the elements of the uncertainty matrix Δ  are 
replaced by a group of bounded random signal. The 
weighting function pW and uW are shown as 

2

1,000( )
10 1

( ) 10

p

u

W s
s

W s -

=
+

= .

                             (35) 

The controller should be discretized to make the controller 
suitable for digital processing unit implementation, such as 
digital signal processing (DSP). Using bilinear transformation, 
the controller discretization can be expressed as 

 
( 1) ( ) ( )
( ) ( ) ( )

k k

k k

x n A x n B u n
y n C x n D u n

+ = +
= +   .         (36) 

 
The coefficient matrix can be defined as 

2.88 -2.72 0.84 0.012 6.78 -1.40e-8 7.44e-13
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

k

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

A  (37) 

[ ]1 0 0 0 0 0 0 T
k =B                       (38) 

[ ]-410 -8.05 8.09 8.43 -8.29 -1.73e-1 -8.44e-4 1.46e-7k = ×C   (39) 

[-0.000344]k =D    .                              (40) 
To verify the performance of the controller, several 

simulation experiments were carried out. The first experiment 
was the dynamics response simulation from start to steady 
state with frequency perturbation. The simulation time range 
was set from 0 s to 0.2 s. The output voltage reference was 
set to 48 V. Simulation results are shown in Fig. 10. 

The upper part of Fig. 10 is the added random frequency 
perturbation, and the lower part is the corresponding output 

TABLE II 
ITERATION PARAMETERS 

 

 
Fig. 7. Frequency response of m . 

 

Fig. 8. Frequency response reduced-order controllers. 
 
 

Fig. 9. Simulation model. 
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voltage response. From start to steady state, the settling time 
was 25 ms, and the system had an overshoot of about 12.5%. 
In the steady state, the output voltage had achieved good 
tracking of the reference. Furthermore, on the existence of 
frequency perturbation, the controller can restrain the random 
perturbation within 10 ms. 

The second experiment was the simulation of the dynamic 
response with the load parameter perturbation. The 
simulation time range was from 0 s to 0.3 s. The reference 
was set to 0 to observe the controller performance without 
reference. A square wave signal with a period of 0.2 s was 
selected as the output perturbation. Simulation results are 
shown in Fig. 11. 

The upper part of Fig. 11 is the added load parameter 
perturbation, and the lower part is the corresponding output 
voltage response. Under the perturbation, the settling time 
needed to track the output voltage was 20 ms. In the steady 
state, the output voltage can achieve a good tracking of the 
reference. 

The third experiment was to verify the reference tracking 
performance of the controller. The simulation time range was 
from 0 s to 0.3 s. The reference was set to start at 48 V and 
jump to 20 V and finally return to 48 V. The reference jump 
instants were set to 0.1 and 0.2 s, respectively. Simulation 
results are shown in Fig. 12. 

The output voltage had good tracking of the reference 
variation from 48 V to 20 V to 48 V. Tracking was completed 
after approximately 20 ms. 

The simulation results verified that the m  controller can 
achieve good reference tracking and perturbation rejection 
performance. 

 

VIII. PHYSICAL SYSTEM SIMULATION RESULTS 

To verify the robust control method, a physical system 
simulation model is set up by using MATLAB. The 
simulation model is shown in Fig. 13. 

The block of the LCL resonant IPT system refers to the 
entire system provided in Fig. 1. A controllable voltage 
source block is placed in front of the IPT system to produce a 
DC regulation input EDC. The output voltage Vo is compared 
with a reference voltage to produce error signal e. The 
discretized robust controller produces control output u based 
on the error signal, and the control output u is converted to 
the regulation signal dcE% to the controllable voltage source 
block. 

Several simulations have been carried out to verify the 
controller performance. The first simulation was the 
dynamics response test from start to steady state. The 
reference voltage was set to 48 V. The simulation results are 
shown in Fig. 14. 

The three waveforms from up to down are output 
voltage ov , Buck chopper output DCE , and primary resonant 

current 
poLi , respectively. From system start to steady state, 

the settling time was 25 ms and had a 15% overshoot. In the 
steady state, the system had a stable output voltage (48 V) 
and had a good reference tracking performance. 

 
 

 
Fig. 10. Transient response under frequency perturbation. 

 
Fig. 11. Transient response under load parameter perturbation. 
 

Fig. 12. Transient response with reference tracking. 
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Fig. 13. Physical simulation model. 
 

 

Fig. 14. System start simulation under robust control. 

 

Fig. 15. Load jumping simulation under robust control. 

 
 

The second simulation was the perturbation rejection test 
on the condition of load parameter variation. The load was 
switched between 22 and 33W . The results are shown in Fig. 
15. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. Two load switching tests were used. The 

first switching test was the load jumps from 22 W  to 33 W  
and the second was the load jumps back from 33 W  to 22 
W . In each switching, about 14 ms was needed to complete 
the control regulation and had a maximum 11 V overshoot on 
the output voltage. The Buck chopper output had a regulation 
between 24 and 23 V. Under load perturbation, the output 
voltage was always maintained at the reference voltage. 

 
 
To observe the controller performance under steady state, 

two tests have been conducted on the condition that the load 
resistance was set to 22 and 33 W , respectively. The results 
are shown in Fig. 16. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. On both load conditions, the output voltage 

was always stable with no voltage ripple. However, on the 
Buck chopper output, a small ripple exists because of the 
controller tiny regulation. The resonant current maintained 
sine oscillation with low distortion. 

The third simulation was the verification of the reference 
tracking performance of the controller. The reference voltage 
was set to have two switches between 48 and 20 V. The 
results are shown in Fig. 17. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. The first switching test was from 48 V to 

20 V, and the second was from 20 V to 48 V. The regulation 
time in both switching is about 20 ms. The maximum 
overshoot was about 10% on the output voltage. The output 
voltage had achieved good tracking performance in the 
system dynamics. 

 

IX. EXPERIMENTAL RESULTS 

For the sake of verifying the controller performance in a 
real LCL resonant IPT system, an experimental system has 
been constructed according to the parameters provided in 
Table I. The structure of the experimental system is shown in 
Fig. 18. 

The block of the LCL resonant IPT system refers to the 
entire system given in Fig. 1. A Buck DC chopper with input 
voltage 25 VdU = is placed in front of the IPT system. The 
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Fig. 17. Reference tracking simulation under robust control. 
 
 

Fig. 18. Experimental system structure. 

 

filter inductance Lb and filter capacitance are 1 mH and 
470 µF. The operation frequency is 100 kHz. The primary 
function of the chopper is to produce a variable DC input 
voltage EDC regulation for the IPT system according to the 
robust controller output. The output voltage VO is measured 
with a resistor divider network and sample by an AD574 
sampling chip. The output voltage information is sent back to 
the primary part with the aid of a RF link. The robust 
m control algorithm is embedded in the DSP unit (type: 
TMS320F2812). The control output is transformed into a 
PWM signal in the gate drive module and drives the Buck 
chopper to realize control. 

Several experiments have been carried out for verification 

of the controller performance. The first experiment was the 
dynamics response test from start to steady state. The 
reference voltage was set to 48 V. The experiment results are 
shown in Fig. 19. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. From system start to steady state, it took 

about 28 ms  and no overshoot occurred in the process. In the 
steady state, the system had a stable output voltage (48 V), 
and the output voltage had achieved good tracking of the 
reference. 

The second experiment was the perturbation rejection test 
on the condition of load parameter variation. The load was 
switched between 22 and 33 W . The experimental results are 
shown in Fig. 20. 

 
 
 

(a) L 22R = W  

 

(b) L 33R = W  

Fig. 16. System steady-state simulation. 
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The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. Two load switching tests were conducted. 

The first switching test was the load jumps from 22 W to 
33 W and the second was the load jumps back from 33 W to 
22 W . The settling time was 12 ms for each switching to 
complete the control regulation and had a max 6 V overshoot 
on output voltage. The Buck chopper output had a regulation 
between 23 and 20 V. Under load perturbation, the output 
voltage was always maintained at the reference voltage. 

Two tests have been carried out on the condition that the 
load resistance was 22 W and 33 W , respectively, to  
observe the controller performance under the steady state.  
The results are shown in Fig. 21. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. On both load conditions, the output voltage 

was always stable without voltage ripple. However, a small 
ripple exists on the Buck chopper output because of the 
controller tiny regulation. The resonant current was 

maintained sine oscillation with low distortion. The ZCS 
frequency in (a) was 34.9 kHz, and the ZCS frequency in (b) 
was 35.7 kHz. The frequency drifting was about 0.8 kHz. The 
system efficiency in (a) was 79%, and the system efficiency 
in (b) was 73%. The results show that the system can achieve 
good robust performance when the load and frequency 
perturbation were imposed to the system. 

The third experiment was the verification of the reference 
tracking performance of the controller. The reference voltage 
was set to have two switches between 48 and 20 V. The first 
switching was set from 48 V to 20 V, and the second 
switching was set from 20 V to 48 V. The experimental 
results are shown in Fig. 22. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. The first switching test was from 48 V to 

20 V and the second was from 20 V to 48 V. The regulation 
time in both switching was about 30 ms. Almost no overshoot 

 
Fig. 19. System start experimental waveforms under robust 
control. 
 

 
Fig. 20. Load jumping experimental waveforms under robust 
control. 

 

 
(a) L 22R = W  

 
(b) L 33R = W  

Fig. 21. System steady state experimental waveforms. 
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on the output voltage exists. The output voltage has achieved 
a good tracking performance in the system dynamics. 
However, a small ripple occurred on the envelope of the 
resonant current because of the tiny regulation. 

 

X. COMPARISON 

An experimental system was set up to compare the robust 
control method with the conventional control method. A 
normal PID control method was selected for comparison. The 
PID controller was discretized with a sampling period T = 1 
µs. The PID controller is expressed as 

 
0.5 z  0.48 ( )

z  1 
T z -

=
-

.                        (41) 

 
To compare the system performance under the perturbation 

between the robust control and the PID control method, the 
closed loop frequency response comparison in the entire 
frequency range is used (see Fig. 23). 

In the frequency range [100 106], the frequency response 
under robust control is much lower than the frequency 
response under the PID control, which denotes better 
perturbation suppression performance of the robust control 
compared with the PID control for the IPT system. 

The experimental system under PID control is shown in 
Fig. 24. 
The system structure is the same as the robust control system 
structure shown in Fig. 18, except that the controller used the 
PID control algorithm. The system parameters are the same 
as the parameters shown in Table I. 

Similar experiments were carried to compare the control 
performance with the robust control method. The first 
comparison experiment was the dynamics response test from 
start to steady state. The reference voltage was set to 48 V. 
The experiment results are shown in Fig. 25. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. Approximately 60 ms passed from start to 

steady state, and the system has 4 V overshoot. In the steady 
state, the system had a stable output voltage (48 V) and the 
output voltage had achieved good tracking of the reference. 
However, some voltage ripple exists on the Buck chopper 
output. Compared with the robust control, the PID control 
took more time to reach the reference voltage. 

The second comparison experiment was the perturbation 
rejection test on the condition of load parameter variation. 
The load was switched between 22 and 33 Ω. The 
experimental results are shown in Fig. 26. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. Two load switching tests were used. The 

first switching test was the load jump from 22 Ω to 33 Ω, 
which took about 60 ms to complete the control regulation. 

 
Fig. 23. Frequency response comparison between the robust and 
PID controller. 
 
 

 
Fig. 24. Experimental system structure under conventional PID 
control. 

 

Fig. 22. Reference tracking experimental waveform under robust 
control. 
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The second test was the load jumps back from 33 Ω to 22 Ω, 
which took about 35 ms to complete the control regulation. 
Each switching had a maximum of 5 V overshoot on output 
voltage. Some ripple still exists on the Buck chopper output. 
The system efficiency under 22 Ω load condition was 75%, 
and the system efficiency under 33 Ω load condition was 
69%. Compared with the robust control, the PID control takes 
more time to reach the reference voltage, and the system 
efficiency was lower than the robust control method. 

The third experiment was the verification of the tracking 
performance of the controller. The reference voltage was set 
to have two switches between 48 and 20 V. The comparison 
experimental results are shown in Fig. 27. 

The three waveforms from up to down are output voltage 

ov , Buck chopper output DCE , and primary resonant current 

poLi , respectively. The first switching test was from 48 V to 

20 V and the second was from 20 V to 48 V. The regulation 
time in both switching was about 105 ms. Almost no 
overshoot on the output voltage exists. The output voltage 
had achieved good tracking performance in the system 
dynamics. However, the settling time was larger than the 
robust control method, and some ripple existed on the Buck 
chopper output. 

 
 

XI. CONCLUSIONS 

 
The IPT system is a nonlinear, high-order, and partially 

uncertain system. The mathematical model and the global 
control method of the entire system are difficult to set up. A 
robust optimization control method is proposed to enhance 
output control and to optimize the performance of the 
complex system. A generalized state space averaging model 
is constructed to transform the nonlinear model into a linear 
approximation model. Considering the running frequency and 
load parameter uncertainty, the uncertain system model is 
detached from the system model by using the LFT method. 
Taking the system stability and performance into account, a 
robust control structure is introduced for the LCL resonant 
IPT system. The weighting functions are also designed. A 
robust µ controller based on the SSV is designed to realize 
optimal control and to avoid unnecessary conservation. The 
detailed analysis of the controller performance is provided. 
Order reduction and discretization are applied on the 
controller for the convenience of hardware realization. The 
control method is verified by simulation and experimental 
results. 

 
Fig. 27. Reference tracking experimental waveform under PID 
control. 
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Fig. 25. System start experimental waveforms. 
 
 

 
Fig. 26. Load jumping experimental waveforms under PID 
control. 
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APPENDIX 

The matrices A, B, C, D in (16) are listed as follows: 

-1 -1
pi Lpi 0 pi

-1 -1
0 pi Lpi pi
-1 -1

p 0 p
-1 -1

p 0 p
-1 -1 -1 -1

s s Lpo 0 Ls
-1 -1 -1 -1

s 0 s Lpo Ls
-1 -1 -1 -1

Lpo po Ls 0

A=

-L R ω -L 0 0 0 0 0 0 0 0 0
-ω -L R 0 -L 0 0 0 0 0 0 0 0
C 0 0 ω -C 0 0 0 0 0 0 0

0 C -ω 0 0 -C 0 0 0 0 0 0
0 0 -Ψ L 0 Ψ L R ω Ψ MR 0 Ψ M 0 0 0
0 0 0 -Ψ L -ω Ψ L R 0 Ψ MR 0 Ψ M 0 0
0 0 -Ψ M 0 Ψ MR 0 Ψ L R ω Ψ po

-1 -1 -1 -1
Lpo 0 po Ls po

-1
s 0

-1 -1 -1
s 0 s

-1 -1 -1
f f

-1 -1 -1
f f L
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0 0 0 -Ψ M 0 Ψ MR -ω Ψ L R 0 Ψ L 0 0
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0 0 0 0 0 0 0 0 0 4π L 0 -L
0 0 0 0 0 0 0 0 0 0 C -C R

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

 

where 2= po sM L LY -  

1 1[0 2 0 0 0 0 0 0 0 0 0 0]TpiB Lp - -= -   

[0 0 0 0 0 0 0 0 ]0 10 0 TC =  

0D =  
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