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Abstract 

 
A new active LED driver with high power factor (PF) and low total harmonic distortion (THD) compatible with a rapid-start 

ballast is proposed. An LC input filter is attached to the ballast to increase PF and reduce THD. A boost converter is then installed to 
regulate the LED current, where an unstable operating region has been newly identified. The unstable region is successfully 
stabilized by feedback control with two zeroes. The extremely high overall system of the 10th order is completely analyzed by the 
newly introduced phasor transformed circuits in static and dynamic analyses. Although a small DC capacitor is utilized, the flicker 
percentage of the LED is drastically mitigated to 1% by the fast controller. The proposed LED driver that employs a simple 
controller with a start-up circuit is verified by extensive experiments whose results are in good agreement with the design. 
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I. INTRODUCTION 
Conventional fluorescent lamps are being replaced with light 

emitting diode (LED) lamps to save energy and preserve the 
environment [1]-[13]. An LED lamp has higher efficiency than 
fluorescent lamps; its lifetime is longer than 50,000 hours, 
which is approximately 10 times that of a fluorescent lamp. 
Many countries thus promote the use of LED lamps even 
though these lamps are expensive. The replacement of 
fluorescent lamps with LED lamps in some countries, such as 
Japan, is highly impeded by this issue. Rapid-start ballasts are 
already firmly installed inside ceilings and are difficult to 
replace with new switching converter-type LED drivers. A 
practical solution is to attach an LED driver to a rapid-start 
ballast instead of removing the ballast from the ceiling 
[14]-[16]. A few practical design issues must be considered in 
dealing with LED drivers. First, the use of a large DC input 
capacitor for the LED driver should be avoided because it 
produces a large peak inrush current and may cause occasional 

fires inside the rapid-start ballast [16]. Second, the power factor 
(PF) and total harmonic distortion (THD) of the LED lamp 
should not be reduced although the power level of an LED 
lamp is typically half that of a fluorescent lamp . This problem 
can be resolved by attaching an appropriate LC filter to the 
rapid-start ballast [16]. Third, accurate static and dynamic 
circuit models, including a switching converter and a highly 
nonlinear rapid-start ballast, are required for the design of an 
LED lamp. This cumbersome problem can be addressed by the 
recently proposed unified general phasor transformation [18].   

An active LED driver that is compatible with the rapid-start 
ballast and meets the three design considerations mentioned 
above is proposed in this study. A small DC capacitor with an 
LC filter is attached to the ballast, and a boost converter 
regulates the LED array (Fig. 1). Unlike a conventional boost 
converter, the power source of the converter is not an ideal 
voltage source but the small DC capacitor linked to an output 
of the ballast whose characteristic is highly nonlinear. 
Furthermore, an unstable operating region is identified in this 
study; such region can be avoided by selecting an appropriate 
duty cycle of the boost converter. The complete DC and AC 
phasor transformed circuit models for the 10th order LED lamp 
system developed in this study allow for the drastic reduction 
in LED ripple current even with a small DC capacitor. This 
design is extensively verified by experiments.  
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Fig. 1. Proposed boost converter-type LED lamp with a control 
circuit that is compatible with a rapid-start ballast.. 

 

II. STATIC ANALYSIS AND DESIGN OF THE 
PROPOSED ACTIVE LED DRIVER 

 

The LED lamp (Fig. 1) operates with a rapid-start ballast and 
is composed of an LED array and the proposed LED driver, 
which includes an input filter, a rectifier, a boost converter, and 
a controller. Regulated current is provided by controlling the 
duty cycle of the boost converter for the LED array regardless 
of the large rectified ripple voltage of 120 Hz caused by the 
small DC input capacitor. This capacitor is where the LED 
current obtains the feedback from the source voltage variation 
of the rapid-start ballast and other variations, such as 
temperature. 

 

A. Selection of the Converter 
A DC–DC converter is necessary to make the LED current 

constant regardless of the ripple voltage without any power 
loss. Galvanic isolation is not required for tubular-type LEDs; 
hence, an isolation transformer need not be used. Instead, a 
single-stage converter should be utilized considering the 
complexity of the gate driver and voltage rating of the LED 
array. Among various DC–DC converters, the boost converter 
was selected in this study because of the simple driver structure 
of its main MOSFET (Fig. 1). Although soft switching 
provides high efficiency in general, it is not considered because 
the use of high switching frequency to reduce the converter 
filter size does not contribute to the overall filter size, where 
the input filter is already extremely large for the operating 
frequency of 60 Hz. For a buck converter, the n-MOSFET 
utilized for a power switch requires a bootstrap gate driver, 
such as IR2101, which does not work properly when the load 
current is small.  

The LED employed in this study (i.e., 
DG-82A83C-001-5S-3) has forward voltage drop VLED = 3.0 V 
and equivalent series resistance rLED = 6.3 Ω at 60 mA. The  
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Fig. 2. Static phasor transformed circuits of Fig. 1. 

 
LED array can then be characterized by rT and VT as follows 
[10]:  

LEDT rmr ⋅=        LEDT VmV ⋅= ,  (1)  
 

where m is the number of series-connected LEDs. The output 
voltage applied to the LED array (Fig. 1) becomes the 
following: 

  TLTo rIVV +=  .                (2) 
The voltage drop of an LED at 60 mA is determined from 

Eq. (2) as 3.38 V, and its power becomes 0.20 W. This 
condition means that approximately 100 LEDs are required for 
an output power of 20 W.  

 

B. Derivation of the Static Models of the LED Lamp 
The static behavior of the proposed lighting system (Fig. 1) 

was fully analyzed in this study through phasor 
transformations [17], [18], which enable us to determine the 
amplitude and phase of AC circuit variables such as in a DC 
circuit. By applying the transformation, an averaged DC 
phasor circuit was obtained (Fig. 2(a)). The imaginary 
resistors represent the reactance of inductors and capacitors in 
the steady state. The rapid-start ballast is highly nonlinear, 
but its parameters are assumed to be fixed at an operating 
point. The input filter composed of Lc and Cc is attached to 
this ballast to satisfy PF and THD regulations. 

The boost converter and rectifier can be transformed to 
equivalent auto-transformers whose turn ratios are the 
complementary values of their corresponding switch duty 
cycles [19]. The boost converter and rectifier are assumed to 
operate in the continuous conduction mode (CCM) so that they 
can be replaced with the averaged switched transformers. All 
variables, including Vs and Is, are represented as phasors and 
the Zener diode voltage Vz1. The LED array is modeled as DC 
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voltage source VT and dynamic resistance rT. Removing the 
complex transformer for the equivalent circuit of the rectifier 
(Fig. 2(a)) from the left side is possible with a recently 
proposed method [22]. By referring all parameters into the 
primary side of the rapid-start ballast while removing all 
transformers (Fig. 2(b)), the source current is as follows: 
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From Eq. (3), PF can be derived by identifying its real and 
imaginary parts as follows: 
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From Eq. (6), the complex transformer is assumed to have a 
zero phase for simplicity so that the real part operator of Fig. 
2(a) can be neglected; only the real value of equivalent voltage 
source '

tzV  is provided. Given the nonlinearity of the ballast, 

the exact values of Lc and Cc were determined by experiments, 
which will be described in the succeeding section. 

 

C. Determination of Stable Operating Points Using a 
Simplified Model 

As described in the previous section, a detailed analysis of 
the lighting system (Fig. 2(a)) may yield inaccurate results 
because of the nonlinearity of the rapid-start ballast and 
rectifier. The left part of the rectifier circuit must be simplified 
to understand the behavior of the boost converter with the LED 
array. The output V-I characteristic of the rectifier in the steady 
state was measured as shown in Fig. 3. It was found to be quite 
linear for the operating range as shown in Fig. 4; hence, the 
system at the output of the rectifier can be characterized as 
equivalent resistance Ri = 270 Ω and voltage source Veq = 168 
V as follows:  

 

iieqi IRVV ⋅−=  .             (7) 
 

The load current of LED array IL versus the duty cycle of 
boost converter D in the steady state is derived from Fig. 4 as 
follows: 
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Fig. 3. Measured static rectifier output characteristic curve. 
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The critical duty cycle Dc that maximizes IL is derived from 

Eq. (8) as follows: 
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For the LED array of m = 100, the calculated IL from Eq. (8) 
is compared with the experimental result as shown in Fig. 5. IL 
increases for duty cycle D up to the critical value Dc = 0.75 
similar to the conventional boost converter; however, it 
decreases when D is larger than Dc. Load current IL can be 
either controlled for the lower region (D < Dc) or the higher 
region (D > Dc). However, the lower region is preferred 
because rectifier current Ii for the higher region increases for 
the same load current IL as shown in Eq. (8). The maximum 
duty cycle should thus be restricted to D < Dc. In this study, the 
Zener diode Dz2 was employed to limit the maximum duty 
cycle by clamping control voltage vc . 

 

III. DYNAMIC ANALYSIS AND DESIGN OF THE 
PROPOSED ACTIVE LED DRIVER 

A. Derivation of the Dynamic Models of the LED Lamp 
Controlling the proposed active LED driver is challenging 

because of the highly nonlinear characteristics and the 10th 
order complexity of the overall system. As shown in Fig. 1, the 
proposed controller includes the differential current sensing 
part and frequency compensation circuit components CT, Rz,  
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Fig. 5. Measured and analyzed static characteristics of IL vs. D 
with the critical value of Rc of Eq. (17) that determines the 
dynamic stability of the LED driver. 

 
and Cz as well as a conventional PWM control circuit. The 
dynamic models for the overall LED driver should be derived 
to design the proposed controller. As shown in Fig. 6(a), the 
models can be regarded as operating in a quasi-steady state; the 
same static model used in the steady state (Fig. 4) was thus 
adopted. This condition can be justified by the very slow 
dynamic response of the rapid-start ballast and input filter. Its 
operating frequency of approximately 60 Hz is more than 20 
times lower than the bandwidth of the dynamics of the 
controller. One difference is rectified current ripple ir, which is 
a surge current of 120 Hz that acts as a major disturbance to the 
control system. The proposed controller should mitigate these 
ripple harmonics by a fairly fast control loop. Considering that 
ripple voltage vr that appears in capacitor Ci is easy to measure 
and analyze, an approximated equivalent circuit can be 
obtained as shown in Fig. 6(b) by applying the Thevenin 
theorem to the left part of the dotted line of the circuit of Fig. 
6(a). The detailed analysis of vr for a given ir is complicated 
and avoided in this study. Instead, it will be measured for an 
open loop control condition and regarded as an independent 
source from here on.  

The large signal model of Fig. 6(b) is then perturbed, and an 
AC model is obtained in the frequency domain by removing all 
DC sources but including the ripple voltage source [19]. The 
harmonic ripples and perturbed small signals appear in the 
same equivalent circuit; this occurrence is uncommon. Finally, 
the most simplified model (where the auto transformer of the 
boost converter is removed) is obtained as shown in Fig. 6(d). 
A filtered circuit with three independent voltage sources 
appears. 

 
 

B. Transfer Function of Load Voltage vs. Duty cycle: 
)(sGd
 

For the AC analysis, DC operating point Ii is calculated from 
Fig. 4 as follows: 
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The input side impedance is derived from Fig. 6(c) as follows: 
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The transfer function from )(
^

sD  to )(
^

sVL  when )(
^

sDVL  is 
zero is derived with Eq. (11) as follows: 
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From Eqs. (13) and (14), transfer function Gd (s) from )(
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The zero frequency response is obtained from Eq. (15) as 
follows: 
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where Rc is critical resistance that determines the proposed 
system stability as follows: 

tsi
L

ts
c RDR

V
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When the numerator of Eq. (16) is positive (i.e., Rc > 0), the 

gain is positive and thus corresponds to the positive slope of IL 
in Fig. 5. This condition is justified considering that IL is 
proportional to VL as follows: 

tsLtsL RIVV +=        (18) 
or 
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(b) Approximated model of (a) obtained by replacing the 

rectified current ripple with its equivalent voltage 
source in the time domain. 
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Fig. 6. Derivation of the dynamic models of the proposed LED 
driver with the rectified ripple disturbance of the dynamic 
stability of the LED driver. 
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Critical duty cycle Dc that maximizes IL of Eq. (10) is also 
obtained from Eq. (17) when Rc = 0 as shown in the lower part 
of Fig. 5. Notably, the Rc of Eq. (17) should be positive to keep 
the proposed system stable. The first term of Eq. (17) is always 
negative as can be easily identified from Eq. (18). 

Li

CL

d

vL

rT

'd
iL

Vz1

Rs

CT

VT

iref)(sGc

Ri

CiVeq

ii
vr

d
iL

 
(a) Control signals in the time domain. 

Vr(s)

Iref (s)

 
(b) Control block diagram of the frequency domain. 

 
Fig. 7. Overall control block diagram of the proposed LED driver 
of Fig. 1. 
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A. Transfer Function of Load Voltage vs. Rectified Ripple 
Voltage: )(sGr  

As discussed in the previous section, ripple voltage Vi(s) is 
adisturbance, and its transfer function to load voltage 
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should be obtained to mitigate the effect of this 

disturbance on the ripple current of the LED. This transfer 
function is easily derived from Fig. 6(d) in a very similar 
manner to Eq. (13) as follows: 
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B. Transfer Function of Load Current vs. Load 
Voltage: )(sGv  

The overall configuration of the proposed controller is 
redrawn in Fig. 7(a). All the circuit parameters at the LED load 
side are highlighted. Fig. 7(a) is modeled for the complete 
modeling of the proposed LED driver for use in subsequent 
sections. Transfer function Gv (s) is defined for perturbed load 
current )(

^
sIL  against perturbed load voltage )(

^
sVL

 and 
obtained from Fig. 7(a) as follows: 
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C. Transfer Function of the Control Circuit: )(sGc  

The transfer function of the control circuit (Fig. 1) from 
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where gm and rm are the gain and output resistances of the 
operational transconductance amplifier (OTA), respectively. 
The amplitude of the saw tooth of the PWM is denoted as Vsaw. 

 

D. Controller Stability Design 
The overall control block diagram of the proposed LED 

driver is drawn in Fig. 7(b) by combining the transfer functions 
of Eqs. (13) to (22). The overall transfer function for the 
reference current input is derived from Fig. 7(b) with Eq. (15) 
as follows: 

)()()(1
)()()(

)(
)()(

^

1 sGsGsG
sGsGsG

sI
sIsH

vdc

vdc

ref

L

+
=≡  .      (23) 

 

The overall transfer function for the ripple voltage input is 
derived from Fig. 7(b) with Eq. (15) again as follows: 
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From Eqs. (23) and (24), the proposed LED driver is 
determined to have loop gain as follows: 
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To make the system stable, converter transfer function Gd (s) 
was examined with Eq. (15) and plotted in Fig. 8 for the circuit 
parameters of Table I used in the experiment. For clarity, these 
calculation results were verified by the circuit simulator 
MMSIM72 (Cadence) using the equivalent circuit in Fig. 6, 
which is found to be very accurate. As shown in Eq. (15), three 
poles and two zeroes exist in Gd (s), which is rewritten as 

follows: 
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From Eq. (26), the first pole and zero (i.e., p1 and z1, 
respectively) can be approximately obtained by neglecting the 
high-order terms at low frequency as follows: 
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As calculated from Eq. (28), the first pole and zero are p1/(2π) 
= ˗47 Hz and z1/(2π) = ˗13 Hz, respectively, which are mainly 
formed by large input capacitance Ci . The low-frequency pole 
and zero do not reduce the system stability because their values 
are negative and only a slight change occurs in the phase of 
much less than 90 degrees (Fig. 8). 
However, the high-frequency zero, z2, should be positive as far 
as Rc  > 0. This condition can be proved from Eq. (26), 
considering z1 < 0, as follows: 
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Complex poles p2 and p3 and positive zero z2 are determined 
from Eq. (28) and Table I as |p2| /(2π) = |p3| /(2π) = 951 Hz and 
z2/(2π) = 27 kHz, respectively. They may affect the system 
stability significantly because the phase of Gd (s) approaches 
180 degrees because of the poles and even crosses over it 
because of the positive zero. The complex poles are mainly 
formed by the Li and CL of the boost converter as identified 
from the highest-order coefficient of Eq. (27). However, the 
dominant pole compensation that allows the high-order 
dynamics to be buried cannot be used for the proposed design 
because fast response is crucial to eliminate the 120 Hz ripple 
caused by the feedback loop control. 

Two additional zeroes are thus inserted to the frequency at 
the two poles so that they cancel each other out. The first zero 
is inserted to the OTA output, and the second one is added at 
the current sensing circuit as follows: 

 

zzCRpp /1|||| 32 ==            (30a) 

TT Crpp /1|||| 32 == .           (30b) 
 

From Eq. (30b), CT is determined as 270 nF for rT  = 620 Ω; 
however, the value of RzCz only can be determined from Eq. 
(30a) for now. 

 

E. Controller Gain Design to Mitigate the 120 Hz 
Ripple 

Considering the increased concern over the flicker in LED 
lamps and its effect on human health [20], the ripple current of 
LEDs is mitigated in this study. The small voltage change 
across LEDs causes a large current variation because of the  
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Phase Margin = 44 °

 [d
eg

]
 [d

B]

Frequency [Hz]

Gain = 34.2 dB @ 120 Hz

simulation

simulation

 
Fig. 9. Calculated bode plot of the loop gain of the proposed 
LED driver from Eq. (25) after being compensated. The 
diamond-shaped symbols denote the simulated AC response of 
Fig. 6(b) to verify the calculation. 

 
small dynamic resistance. The flicker percentage (percent 
flicker) is defined as follows [21]: 
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where Amax and Amin are the maximum and minimum 
brightness, Imax and Imin are the maximum and minimum 
currents, and Iripple and Iavg are the ripple and average currents 
of the LED lamp, respectively. In Eq. (31), the brightness of 
the LED is assumed to be linearly proportional to its current. 
The targeted flicker percentage was set to approximately 1% to 
be nearly flicker-free. Given that the average current of the 
LED array in this study is 60 mA, Iripple should be less than 1.2 
mA to meet the specification in Eq. (31). 

From Eq. (24), the ripple current can be obtained for the 

ripple frequency of  rω (= 2π x 120 rad/s) in the steady state 
as follows: 
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where it has been approximated considering that the loop gain 
of Eq. (25) is much larger than 1 at the ripple frequency. 
Applying Eqs. (13), (15), and (26) to (32) and neglecting all 
poles and zeroes higher than 120 Hz result in the following: 
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(33b) 

 

For the operating conditions in Table I, peak-to-peak ripple 
voltage Vr is measured to be approximately 13 V when Ci is 47 

μF. Cz can thus be calculated from Eq. (33b) as 330 nF for the 
given value of )(2 rjH ω = 1.2 mA/13 V = ˗80.7 dB. Cz is thus 

selected as 250 nF considering a 25% margin. From Eqs. (30a) 
and (33b), Rz is finally determined to be 670 Ω as follows:   

 

||/1 2pCR zz =  .             (34) 
 

As shown in Fig. 9, the compensated loop gain and phase 
margin at 120 Hz are 34.2 dB and 44º, respectively. This 
finding confirms the design of fairly high gain and appropriate 
margin. This calculation was verified by simulation using the 
equivalent circuit of Fig. 6(b); good agreement was observed. 

 

IV. FABRICATIONS AND EXPERIMENTAL 
VERIFICATIONS 

 

A. On-board Power Supply for the Controller 
For the operation of the proposed LED driver without an 

external power supply, a cheap and simple on-board power 
supply is required for the controller. A Zener regulator in series 
with the LED array was used as shown in Fig. 1. At start-up, 
this regulator cannot generate any voltage because the boost 
converter does not operate until the regulator activates the 
control circuit. A start-up circuit is thus implemented by simply 
adopting the diode Ds connected between vi and an 
appropriated intermediate point of the LED array. During 
start-up, Ds is turned on to provide the regulator with LED 
current directly from vi. Ds is automatically turned off after 
start-up because load voltage vL is increased as the boost 
converter operates. The point near the center of the array was 
carefully selected to meet this condition. 

 

B. Experiments to Determine the Combination of Lc 
and Cc 

Several design requirements, such as load power of 20 W, 
PF higher than 90%, low THD characteristics, and high 
efficiency, should be considered for the source voltage variable 
range to determine the suitable values of Lc and Cc of the input 
filter (i.e., from 94 Vrms to 106 Vrms). The proposed boost 
converter-type LED driver is very similar to the passive LED 
driver in terms of output power and resonant frequency [16]. 
Therefore, the inductor of the input filter is considered to be 
approximately 0.1 H to 0.3 H. The suitable value of Cc that 
increases PF to above 0.9 is approximately 2 µF to 4 µF from 
Eq. (4). However, determining the exact values of Lc and Cc is 
theoretically impossible because of the non-linearity of the 
rapid-start ballast. Eq. (4) is inaccurate because the rectifier 
does not always operate in CCM and the elimination of the 
complex transformer is approximated and imperfect. The 
equations can thus be used as a guideline to select Lc and Cc, 
which were actually determined by experiments. The load 
power and PF for different source voltages were measured as 
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shown in Fig. 10. The results are shown in Table II. The 
combination of 0.1 H, 3 µF or 0.1 H, 4 µF cannot satisfy the 
operating point of 20 W. The value of Lc was selected as 0.2 H 
in consideration of the THD of the source current and the cost. 

Two additional experiments were conducted to determine 
the exact value of Cc considering the power loss and PF by 
changing Cc from 2 µF to 4 µF as shown in Fig. 11. As a result, 
0.2 H and 2.4 µF were selected as the optimal values of Lc and 
Cc, respectively. 

 

C. Experimental Verifications of the Design 
The proposed boost converter type LED driver was built 

based on the proposed design procedure and verified in the 
laboratory. The value of input capacitor Ci was set to as small 
as 47 µF to decrease the maximum peak voltage across 
capacitor Cb in the initial transient period [16]. This LED 
driver can thus ensure a stable initial start-up. 

The experimental results for load voltage VL, load current 
IL, source power Ps, ballast power loss Pb, load power PL, PF, 
and the efficiency for source voltages from 94 Vrms to 106 
Vrms are summarized in Table III. Compared with a previous 
study [16], the load power in the present study is perfectly 
regulated within 0.1% offset error without system instability. 
Source voltage vs, source current is, rectified voltage vi, and 
LED current iL were measured in ms (Fig. 12) to verify the 
line regulation. The measured rectified ripple voltage vr and 

LED ripple current 
^

Li  are approximately 13 Vp-p and 1 
mAp-p, respectively. With regard to the ratio of these 
peak-to-peak values to that of the 120 Hz ripples, 
themeasured loop gain at 120 Hz is 33.2 dB, whereas the 

TABLE I 
CIRCUIT PARAMETERS OF THE PROPOSED LED LAMP 

Parameters Values Parameters Values Parameters Values 

Ri 270 Ω rm 4 MΩ gm 3 mS 

rT 620 Ω Li 4 mH D 0.65 

Rs 30 Ω Ci 47 μF Vt 300 V 

Rs1 82 kΩ CL 1 μF VL 340 V 

Rs2 27 kΩ CT 270 nF Vsaw 3 V 

Rz 670 Ω Cz 250 nF   

 
TABLE II 

EXPERIMENT RESULTS 
Parameters PF THD 

Regulation Lc Cc 
Vs = 94 

Vrms 
Vs = 100 

Vrms 
Vs = 106 

Vrms 

0.1H 
2 µF 0.98 0.98 0.89 Unsatisfactory 
3 µF - 0.98 0.98 Unsatisfactory 
4 µF - - 0.98 Unsatisfactory 

0.2H 
2 µF 0.98 0.95 0.88 Satisfactory 
3 µF 0.99 0.99 0.98 Satisfactory 
4 µF 0.90 0.97 0.99 Satisfactory 

0.3H 
2 µF 0.97 0.99 0.88 Unsatisfactory 
3 µF 0.99 0.97 0.97 Unsatisfactory 
4 µF 0.94 0.98 0.99 Satisfactory 

THD regulation IEC61000-3-2 class C standard - 5th: 10%, 7th: 7%, 9th: 
5% 

 
simulated one (Fig. 9) is 34.2 dB. The discrepancy of 1.0 dB 
is of no practical concern; the experiment thus verifies that 
the proposed design guarantees the required mitigation of an 

LED ripple current of 1.2 mAp-p. LED ripple current 
^

Li  with  
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Fig. 10. Measured output power and input power factor with respect to duty ratio D for the source voltages from 94 Vrms to 106 Vrms. 
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Fig. 11. Measured Ploss and PF with respect to Cc for the source 
voltage from 94 Vrms to 106 Vrms. 
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Fig. 12. Measured waveforms of the proposed LED driver to 
verify the line regulation capability for Vs = 100 Vrms. 
 
line frequency is substantially decreased compared with that 
in a previous study [16]. 

This experiment also shows that the selected combination of 
Lc and Cc meets the THD regulation for source voltages from 
94 Vrms to 106 Vrms as shown in Fig. 13. Excluding the power 
dissipation of the rapid-start ballast, the efficiency of the 
proposed boost converter-type LED driver was measured to be 
88.5%, which is decent considering the hard switching. 

The switching waveforms of MOSFET drain voltage vx, 
inductor current iLi, load voltage vL, and LED current iL were 
measured in µs as shown in Fig. 13; a large reverse recovery 
current appeared in iLi  as expected. The prototype of the 
proposed LED driver is shown in Fig. 15. The prototype is 

 
Fig. 13. Measured source side harmonic currents for the source 
voltage from 94 Vrms to 106 Vrms. 
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Fig. 14. Measured waveforms of the proposed LED driver for Vs 
= 100 Vrms. 

TABLE III 

MEASUREMENT RESULTS FOR PF AND EFFICIENCY 

Parameters 
Results for each source voltage 
94 Vrms 100 Vrm 106 Vrms 

IL 61.7 mA 61.8 mA 61.7 mA 

VL 324 V 324 V 324 V 

Ps 29.4 W 29.7 W 30.0 W 

Pb 6.9 W 7.1 W 7.2 W 

PL 20.0 W 20.0 W 20.0 W 

PF 0.999 0.983 0.939 
Efficiency of 

the LED driver 88.9% 88.5% 87.7% 

 
compact in size and inexpensive. 

 

V.  CONCLUSIONS 
The proposed boost converter-type LED driver compatible 

with a rapid-start ballast was proven to be very stable with 
fairly high PF and low THD characteristics. The very 
complicated 10th order overall system was completely analyzed 
for static and dynamic characterizations through reasonably 
simplified models. A systematic design procedure was fully 
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established and verified by extensive simulations and 
experiments as having good agreement. The flicker percentage 
was successfully mitigated by the proposed fast feedback 
controller to as low as 1% even though a small DC capacitor 
was used. The experiments also showed that all the design 
requirements and standards were completely satisfied for 
source voltages from 94 Vrms to 106 Vrms.   
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