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Abstract 
 

Recent developments in power electronics technology have spurred interest in the use of renewable energy sources as distributed 
generation (DG) generators. The key component in DG generators is a grid-connected inverter that serves as an effective interface 
between the renewable energy source and the utility grid. The multifunctional inverter (MFI) is special type of grid-connected 
inverter that has elicited much attention in recent years. MFIs not only generate power for DGs but also provide increased 
functionality through improved power quality and voltage and reactive power support; thus, the capability of the auxiliary service for 
the utility grid is improved. This paper presents a comprehensive review of the various MFI system configurations for single-phase 
(two-wire) and three-phase (three- or four-wire) systems and control strategies for the compensation of different power quality 
problems. The advances in practical applications and recent research on MFIs are presented through a review of nearly 200 papers.  
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I. INTRODUCTION 
In recent years, the installation of more distributed 

generators (DG) in power distribution networks has elicited 
increased attention. A number of reasons can explain this 
trend. Such reasons include environmental concerns, 
electricity business restructuring, and the rapid development 
of small-scale power generation technologies and other 
micro-grid related devices and systems. In practice, DG units 
can be constructed with various renewable energy sources 
(RES). However, the real power output from these energy 
resources is essentially unstable. Given the increasing number 
of RESs and DG installations, new control strategies must be 
developed for the proper operation and management of new 
power grids embedded with DG units to maintain or improve 
system quality and reliability. Power electronics and smart 
technologies play an important role in DG operations, in 
which the effective integration of RES into the power grid is 
the major objective [1]-[6].  

A comprehensive review of AC and DC micro-grid 
systems with RES-based DG units, energy storage devices, 
and loads available in recent literature was presented in [2]. A 

fuel cell system-based power generation system was 
presented in [7]-[9]. Several typical PV-based DG systems 
were designed in [10] and [11], and a DG system based on a 
wind power generator was presented in [12]. Utility is of 
concern because of the high penetration level of intermittent 
RES in distribution systems. This situation may cause a 
hazard to the network in terms of power quality (PQ), voltage 
regulation, and stability. The electric PQ guidelines and 
standard limits can be found in [13]-[19]. The negative 
effects of poor PQ were well investigated in [13], [14], and 
[17]-[19]. 

The relation between DG and PQ is ambiguous. Many 
authors have stressed the positive effects of DG on PQ 
problems. In [20], the sources of PQ problems in DG systems 
were analyzed; this study has contributed significantly to this 
new research field. In [21], [22], the resonance phenomenon 
in a PV plant was discussed to define the unwanted trip off of 
grid-tied inverters, a phenomenon that shows the significance 
and necessity significance of PQ enhancement in DG systems. 
In the field of exhaustive PQ evaluation, [23] presented 
several useful suggestions to form a quantitative exhaustive 
indicator, including various PQ indicators. Exhaustive 
evaluation can provide a decision on the existing PQ, which 
may be used as a reference for DG systems to manage their 
PQ. Therefore, DG systems must comply with technical and 
regulatory requirements to maintain the efficient, reliable and 
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Fig. 1. Generalized block diagram of MFI. 

 
safe operation of the overall grid. DG systems can be 
controlled efficiently to improve the system operation with 
enhanced PQ at the point of common coupling (PCC) with 
the advances in power electronics and digital control 
technologies [24]. Although the main purpose of DG systems 
is to provide active power, reactive power can be 
compensated and active power filter functionality can be 
achieved. 

DG systems are tied to the utility grid either in series or in 
a shunt position. However, the target compensated quantities, 
such as harmonics, unbalance, and reactive power, are 
directly related to the currents. As such, the shunt type 
topology is widely utilized because it effectively injects 
compensating currents at PCC. In practical applications, the 
three-phase voltage source inverter (VSI) is widely used as 
the interface between RES-based DG generators and the 
utility grid. To develop a multifunctional DG inverter, the 
switching signals for VSI, which are by nature current signals, 
may include information on the active power supplied from 
RES and the reactive power required to compensate for the 
PQ disturbances at PCC [25], [26]. The general components 
of a common MFI system and their interconnections are 
shown in Fig. 1. 

Measuring instruments, such as advanced metering 
infrastructures and demand energy management and 
protection systems, can also be integrated into MFIs. To 
achieve all these enhancements, current research is focused 
on determining details of utility grid applications, such as 
power supply for critical loads in commercial buildings, 
electronic factories, and hospitals. Results show a significant 
reduction in PQ problems, losses, and downtime and 
protection malfunctions [2], [27]-[29]. 

The present study also developed an abbreviated list of 
different MFI categories. A total of 10 abbreviations were 
identified: MFI-ML, MFI-VM, MFI-CM, MFI-ZM, MFI-DC, 
MFI-FC, MFI-CH, MFI-HM, MFI-MM, and MFI-DM. The 
most substantial control methods and approaches utilized to 
control MFIs are likewise presented in this paper. 

 

II. CLASSIFICATION OF MFIS IN DG SYSTEMS   

MFIs can be classified into two major categories: power 
circuit structure of the MFI and compensated variable in 
PCC. 

 
A. Power Circuit Structure  

 

MFIs can be classified based on the power circuit structure 
utilized to solve PQ problems in a studied system as shown in 
Fig. 2. The important parameters ascribed to these 
classifications are the following: (1) type of power source, (2) 
inverter topology, and (3) power circuit configuration of the 
MFI. Newly developed topologies and/or power circuit 
configurations for MFIs are also presented in this section 
[26].  

1) Classification according to the type of power source: 
AC loads or devices in the power system can be generally 
divided into single-phase and three-phase depending on 
whether the system is supplied by a single-phase (2-wire) or 
three-phase (3-wire or 4-wire) source. Various MFI 
configurations are employed to mitigate PQ disturbances 
from the system. The voltage-related PQ disturbances that 
occur in both single-phase and three-phase systems have 
similar characteristics. Additionally, three-phase systems 
require voltage unbalance compensation to satisfy the 
enhanced PQ.  

The major issue in a single-phase system is the 
compensation for the reactive power and harmonic currents. 
In the case of a three-phase three-wire (3P3W) system, one 
must consider the current unbalance expected from the 
reactive current and current harmonics. A neutral current 
compensation loop is required for a three-phase four-wire 
(3P4W) system. 

The most popular MFI system configuration that 
compensates for PQ disturbances in a single-phase two-wire 
(1P2W) supply system consists of two H-bridge inverters 
(total of four semiconductor switches) as shown in Fig. 3(a) 
[30]-[49]. Fig. 3(b) shows a single-phase three-wire (1P3W) 
half-bridge VSI topology that generates stable sinusoidal 
voltages or achieves PQ compensation [50]. In [51], a new 
active filtering technique was proposed as the interface 
between single-phase VSI and the utility grid. The technique 
involves the use of a single inverter with four legs (1P4L) as 
shown in Fig. 3(c). Two legs are utilized to construct a full 
bridge characterized by low switching frequency. The two 
other legs comprise a filter full bridge characterized by low 
power and high switching frequency.  

Nonlinear loads, such as variable speed drives fed from a 
3P3W system, AC–AC converters, arc welding devices, and 
arc furnaces, cause several PQ problems. A 3P3W VSI-based 
MFI is shown in Fig. 4. It is the most preferred MFI system 
[52]-[127]. Fig. 5 shows the circuit topology of a three-phase, 
two-leg, three-wire inverter that generates active power in the  
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Fig. 2. Classification of MFI based on power circuit structure. 
 

 
Fig. 3. (a) Configuration of 1P2W MFI H-bridge. (b) 
Configuration of 1P3W MFI. (c) Configuration of 1P4L MFI. 

 
utility system to simultaneously achieve harmonic and 
reactive power compensation [128], [129]. Except for 
three-phase loads, some industrial facilities often consist of 
combined loads, such as a variety of single-phase and 
three-phase loads supplied by a 3P4W source.  

A neutral conductor causes an excessive neutral current 
flow and thus demands additional compensation requirements 
in the presence of a fourth wire. To mitigate the neutral 
current in a 3P4W system, various shunt inverter 
configurations have been studied, namely, two-split capacitor 
(2C) [130], [131], four-leg capacitor (4L) [131]-[141], and 
three-H bridge (3HB). 

 
Fig. 4. Configuration of the 3P3W VSI-based MFI.  
 

 
Fig. 5. Configuration of a 3P2L MFI. 

 
Fig. 6 shows the 3P4W MFI configurations based on 2C, 

4L, and 3HB topologies. The 2C topology consists of two  
split capacitors on the DC side. The midpoint of the capacitor 
is employed as a connection point for the fourth wire. In the 
2C topology, equal voltages must be maintained in both 
capacitors to prevent the flow of circulating current as shown 
in Fig. 6(a). An additional control loop for DC bus capacitor 
voltage regulation is required for this type of topology.  

An additional leg (two switching devices) is employed in 
the 4L topology to compensate for the load neutral current as 
shown in Fig. 6(b). The 4L topology achieves superior  
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Fig. 6. Inverter topology of 3P4W MFI; (a) 2C shunt inverter topology; (b) 4L inverter topology; and (c) 3HB inverter topology. 

 

 
Fig. 7. Configuration of the CSI-based MFI. 

 
control over neutral current through the use of a fourth leg. 
The 3HB topology involves the use of three units of 
single-phase H-bridge inverters connected to the common DC 
bus of the MFI. The MFI system configuration, in which the 
shunt inverter consists of three units of H-bridges, is shown 
in Fig. 6(c). 

 
2) Classification according to inverter topology: In an MFI, 

both the inverter and rectifier use the common DC bus. The 
inverter maintains the DC link value at its set reference value. 
An MFI can be formed with a pulse-width modulated (PWM) 
current source inverter (CSI) [93], [100]-[103], which 
employs a common inductor LDC to develop the DC bus. Fig. 
7 shows the configuration of a CSI-based MFI system. The 
CSI-based MFI topology is rarely used because of its high 
cost and losses. 

The second topology, the most popular and common 
inverter topology for MFI, is PWM VSI. This topology 
involves the use of a common capacitor CDC. Fig. 8 shows the 
single-line configuration of a VSI-based MFI. Most studies  

Inverter

Distributed 
Source

Transformer
iabc

Vabc

Cdc

Utility grid

 
Fig. 8. Configuration of the VSI-based MFI. 
 

on MFIs generally use the VSI-based topology. The VSI 
topology does not require blocking diodes; it is lighter in 
weight, cheaper, and allows for more flexible control than the 
CSI topology. 

The third topology for MFI consists of a Z-source inverter 
(ZSI) that shares a common energy storage capacitor and an 
inductor. ZSI is different in structure from the conventional 
VSI or CSI because of the presence of X-shaped LC 
impedance shown in Fig. 9. ZSI allows for safe triggering 
through the inverter arms and the amplification of voltage 
across the Z-source capacitor through the inductors in the 
Z-source impedance network. With the rapid development in 
renewable energy technologies, ZSI topology provides DG 
operators greater flexibility in interfacing the generated 
energy to the utility grid [143]-[145]. In [146], a new 
topology called quasi-ZSI (qZSI) was proposed to generate 
power from a PV system with a battery. The battery is shunt, 
with one of the capacitors in quasi-Z-source (qZS) topology 
instead of a DC/DC converter. The system with battery 
support can improve the injected power in the utility grid 
when the PV power fluctuates as shown in Fig. 10.  
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Fig. 9. Configuration of the ZSI-based MFI. 

 
Fig. 10. Configuration of the qZSI-based MFI. 

 
T-source inverter is a modified shape of ZSI, in which the 
number of passive components is reduced to further improve 
the ZSI’s operation as studied in [108]. The configuration of 
the T-source inverter is shown in Fig. 11. 

In [147], the three-phase five-leg topology (DC link is 
omitted; shown in Fig. 12) and its overall control are 
investigated. The performance of the systems is compared 
with that of the traditional six-leg topology. A five-leg 
converter is used to replace the traditional six-leg one while 
performing similar tasks. The structure and control of wind 
energy conversion systems (WECS) with an induction 
generator doubly fed by a five-leg converter are different 
from the traditional scheme with a six-leg converter. The 
number of output control signals can be reduced because the 
number of legs is reduced. Therefore, a modified PWM 
controller for a five-leg converter is preferred. The voltage 
reference generation units remain identical in both five- and 
six-leg cases. Thus, the generation of the desired two sets of 
three-phase voltages in the utility grid and rotor sides is 
possible with a suitable PWM control method. 

Single-phase and three-phase VSIs coupled with isolating 
transformers are often preferred to ensure galvanic isolation 
and alter the output voltage value [129], [149]-[152]. In [153], 
a linear model in the stationary frame was developed for a 
VSI connected to the utility grid through ∆-Y and Y-Y 
transformers. The proposed model accounts for the phase 
shift caused by the ∆-Y transformer. This phase shift 
improves the system’s dynamic and steady-state behavior in 
balanced and unbalanced conditions. According to the modal 
analysis performed in [153], the phase shift from the ∆-Y 
configuration can decrease the gain of the open-loop system 
by 62% compared with the Y-Y configuration-based system. 

3) Classification according to power circuit configuration: 
This section presents a review of various MFI configurations. 
a) Multilevel MFI (MFI-ML): In medium-voltage and 
high-power applications, multilevel inverter technology is a  

 
Fig. 11. Configuration of a TSI-based MFI. 

 
Fig. 12. Configuration of the five-leg converter. 

 
very efficient alternative in the interfacing system for the 
integration of RES into the AC grid and also for other  
applications where high-quality voltages and currents are 
required. Superior harmonic spectrum, decreased voltage 
rating for the switches, decreased common mode voltages,  
and minimal voltage changes (dv/dt) are important 
advantages of multilevel inverters. However, the complexity 
of the control method is higher compared with that in the 
traditional two-level inverter. Basically, multilevel MFI can 
be classified into (1) voltage-source multilevel MFI, (2) 
current-source multilevel MFI, and (3) Z-source multilevel 
MFI. 
Voltage-Source Multilevel MFI (MFI-VM): In this section, 
the classification of voltage-source multilevel MFI (referred 
to as MFI-VM in this study) is discussed.  
Diode-Clamped MFI (MFI-DC): The circuit scheme of a 
three-phase, three-level, diode-clamped inverter is provided 
in Fig. 13. This scheme is utilized to integrate DG to the 
utility grid to improve PQ at PCC [86], [154], [155]. Each 
phase of the three-phase inverter employs a common DC bus 
subdivided into three levels by two capacitors. The voltage in 
each capacitor is Vdc/2 and the voltage stress on each switch 
is restricted to Vdc/2 through the clamping diodes. Fig. 14 
shows the three-level neutral point clamped (NPC) inverter 
topology [156]-[165]. Each of the three legs can provide one 
additional output voltage level. The neutral point voltage that 
corresponds to one half of the DC link voltage is available at 
the output of the phases when appropriate diodes are clamped. 
Moreover, five-level NPC is used to connect DG to the AC 
grid [166].  
Flying Capacitor MFI (MFI-FC): The three-phase, 
three-level, flying capacitor inverter topology is used to 
integrate DG to the utility grid as shown in Fig. 15 [165]. 
Each phase leg of the inverter has a configuration identical to 
that of common DC series capacitors. The inner-loop 
capacitors are independent in the A, B, and C phase legs. The  



Review of Multifunctional Inverter Topologies and …                              329 
 

 
Fig. 13. Configuration of the three-level MFI-DC system. 

 

 
Fig. 14. Configuration of the three-level MFI-NC system. 

 
flying capacitor multilevel inverter has the advantages of 
flexible switching control, high protection capability for 
power switches, and control of real and reactive power. The 
inverter requires various switching combinations to balance 
the voltage across the capacitor. This condition implies an 
increase in the complexity of the control algorithm.  
Cascade H-Bridge MFI (MFI-CH): MFI-CH consists of 
multiple H-bridge inverters in cascade arrangement as shown 
in Fig. 16. The cascade topology permits the use of DC 
sources with various voltage levels. High-quality and 
high-resolution multilevel waveforms can be obtained with a 
small number of components. Although the cascaded 
topology requires multiple isolated DC sources, the batteries 
or PV panels in some systems can be utilized to achieve 
high-efficiency transformer-less inverters. The single-phase 
three-level H-bridge [100], 19-level [142], and 27-level [168] 
cascaded H-bridge (CHB) inverters as well as the three-phase 
nine-level cascaded H-bridge [169] inverter are used for the 
integration of DG to the grid to compensate for PQ problems 
in PCC. 
Hybrid multilevel MFI (MFI-HM): The topology of the 
five-level hybrid clamped inverter developed in [170] is  

 
Fig. 15. Configuration of the three-level MFI-FC system. 

 

 
Fig. 16. Configuration of the MFI-CH system. 

 
shown in Fig. 17. Vdc represents the generator and MPPT. 
The hybrid clamped inverter can maintain the balanced 
voltages of the DC link capacitors regardless of the 
characteristics of the load or its operation mode. The hybrid 
clamped topology can control active and reactive flows 
regardless of the conditions of the load and has a simple 
arrangement that satisfies the voltage balance of the DC link 
capacitors. The disadvantage of the hybrid clamped topology 
is the number of components used. Fig. 18 shows the system 
configuration of the cascaded NPC/H-bridge inverter to 
integrate PV arrays to the utility grid. The system is 
comprised of two PV arrays of the same power rating, a 
nine-level cascaded NPC/H-bridge inverter, an LCL passive 
filter, and a utility grid. 

The main structure of the proposed topology is comprised 
of two similar NPC cascaded cells. The inverter phase 
voltage is the sum of the output voltages of the two cascaded 
cells. Five different voltage output levels (+2Vdc, +Vdc, 0, 
-Vdc, and –2Vdc) are produced at the AC output terminal of 
the cascaded model using proper switching techniques. 

The proposed topology has the following advantages: (1) 
MV operation improves the PQ of the currents injected into 
the utility grid; (2) reduction in cable size; (3) low step-up 
voltage is required; and (4) increased system efficiency. The 
configuration in [127] has the advantages of both multi-phase 
generators and multilevel inverters and serves as a guide to 
obtaining an optimum solution for multi MW rated WECS 
[137]. 
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Fig. 17. Configuration of the five-level MFI-HM system. 
 

 
Fig. 18. Configuration of the cascaded NPC/H-bridge inverter. 
 
Multilevel current source MFI (MFI-CM): MFI-CM allows 
for superior control of the current fed to the electrolyzer; thus, 
the level of operation is near the point of maximum efficiency. 
The power factor and/or harmonics can be compensated for by 
modifying the inverter control strategy to acquire an active 
power filter. The seven-level MFI-CM in [173] is used to 
interface the electrolyzer or fuel cell with the utility grid as 
shown in Fig. 20. It consists of three similar modules and has 
the ability to generate seven-level output current. Each module 
has six switching devices with bidirectional voltage blocking 
abilities and two inductors to maintain the balance of the 
currents. A capacitor bank prevents high voltages caused by  

 

Fig. 19. Configuration of the MFI-MM system. 
 

Fig. 20. Configuration of the MFI-CM system. 
 
the commutation of the currents in the inductive loads. A 
phase-shifted carrier sinusoidal PWM-based control for 
MFI-CM is used to regulate the current in each module. 

 

Z-source multilevel MFI (MFI-ZM): In [174], an improved 
interface for the utility grid connection of the PV generation 
systems was proposed.  

The proposed topology consists of a three-level cascaded 
ZSI and allows for efficient, flexible, and high-quality power 
generation from the PV plant as shown in Fig. 21.  

 

b) Distributed multilevel MFI (MFI-DM): In [189], an inverter 
system interfaced with the utility grid was proposed. The 
system improves the voltage quality of micro-grid applications 
as shown in Fig. 22. The proposed topology consists of two 
three-phase four-leg inverters with DG sources and linear and 
non-linear loads. The topology uses a series-parallel structure 
to construct a grid-interfacing system.  

The proposed system can withstand voltage-related 
disturbances and maintain the power transfer between DG and 
the utility grid while maintaining a superior quality voltage for 
the customer loads. Voltage unbalance correction and 
harmonic current compensation functions are also achieved 
with MFI-DM. 
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TABLE I  
COMPENSATED VARIABLES USED IN MFIS 

Compensation Approach  Reference Number 
 
Reactive power 

30, 38, 40, 58, 72, 75, 76, 86, 87, 97, 99, 107, 114, 
115, 117, 129, 133, 137, 153, 154, 155, 157, 162, 
163, 174, 188, 190 

 
Current harmonics with reactive power 

30, 33, 39, 45, 51, 57, 59, 78, 79, 83, 85, 88, 90, 91, 
94, 96, 100, 105, 106, 110, 113, 116, 119, 121, 128, 
144, 152, 156, 158, 172 

Voltage harmonics with reactive power 71, 73, 80, 82, 143 
Current harmonics and voltages with reactive power 98 
Current harmonics and current unbalance with reactive power 62, 63, 77, 84, 95, 109, 160, 171, 184, 185 
Current harmonics, current unbalance, and neutral current with reactive power 133, 136, 137, 139, 140, 141 
Mitigate unbalance, harmonics, and voltage flicker with reactive power 150 
Current harmonics and voltage sag with reactive power 61, 167 
Reactive power and voltage regulation 31, 67, 70, 148, 182, 183 
Reactive power, voltage sag, voltage ride-through, and voltage support 60 
Voltage harmonic and voltage unbalance with reactive power 67, 141 
Reactive power and voltage sag and/or swell 37, 92, 111, 118, 122 
Voltage control with reactive power 32, 44, 186 
Voltage ride-through capabilities and frequency variation with reactive power 164 
Voltage harmonic and voltage sag with reactive power 120 
Fault ride-through with reactive power 101, 104 
Regulate the PCC voltage and load unbalance with reactive power 130 

 

 

Fig. 21. The configuration of the MFI-ZM system. 
 

B. Classification Based on the Compensated Variable 
The main aim of an MFI is compensate for PQ problems 

(voltage quality problems, such as sags, swells, flickering, 
unbalance, harmonics, and current quality problems, including 
harmonics, reactive current, unbalance and neutral current) at 
the connection point of the DG sources to the utility grid. The 
classification of MFIs based on the compensation approach is 
presented in Table I. 

 
III. ABBREVIATIONS OF MFI CONFIGURATIONS 

Several abbreviations of MFIs based on the topology or 
application were described in Section II. Ten key 
abbreviations, namely, MFI-ML, MFI-VM, MFI-CM, 
MFI-ZM, MFI-DC, MFI-FC, MFI-CH, MFI-HM, MFI-MM, 
and MFI-DM, are presented in Table II. These abbreviations 
can be used to emphasize the main features of MFIs more 

concisely [26]. MFI-DC, MFI-FC, and MFI-CH are generally 
based on the VSI topology. 

 

IV. CLASSIFICATION OF MFIS BASED ON 
CONTROL TECHNIQUES 

An advanced control technique is very critical for the 
efficient operation of power electronic-based MFI systems. 
MFI control techniques calculate the current and voltage 
reference signals and determine the switching sequence of the 
inverter switches. Frequency domain techniques, such as fast 
Fourier transform, are rarely used because of the large 
computation time and delay in calculating the reference 
signals [26]. Time domain techniques allow for the 
instantaneous derivation of compensating currents or voltage 
signals. A large number of control techniques have been 
successfully applied to MFIs in the time domain. 

The most common time domain control methods used for 
MFIs are instantaneous active and reactive power (also called 
three-phase pq theory) [175] and synchronous reference 
frame (also called three-phase dq theory) methods [176]. 
These methods convert the current and voltage signals in the 
ABC frame into the stationary reference frame (pq theory) or 
the synchronously rotating frame (dq theory) to extract the 
fundamental and harmonic quantities [26]. Instantaneous 
active and reactive powers are calculated in pq theory, 
whereas dq theory is concerned with the free current of the 
source voltage. Real and reactive powers are concerned with 
fundamental components (pq theory). The fundamental 
components in the distorted voltage or current (dq theory) are 
DC quantities in these theories. MFI controllers based on 
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Fig. 22. Configuration of the MFI-DM system. 

 
TABLE II 

ABBREVIATIONS OF MFI CONFIGURATIONS 
 

Abbreviation Description 
MFI-CH Cascaded H-Bridge Multilevel MFI 
MFI-CM Current-Source Multilevel MFI 
MFI-DC Diode-Clamped Multilevel MFI 
MFI-DM Distributed MFI 
MFI-FC Flying Capacitor Multilevel MFI 
MFI-HM Hybrid Multilevel MFI 
MFI-ML Multilevel MFI 
MFI-MM Multiphase Multilevel MFI 
MFI-VM Voltage-Source Multilevel MFI 
MFI-ZM Z-Source Multilevel MFI 

  
 

instantaneous active and reactive power theory were studied 
in [30], [60], [71], [72], [77], [78], [81], [82], [99], [100], 
[106], [112], [114], [133], [137], [140], [153], [177], and 
[178], whereas synchronously rotating frame theory-based 
controllers were studied in [55]-[57], [63], [65], [66], [70], 
[80], [82], [85], [87]-[89], [101], [103], [104], [107], [118], 
[120], [129], [139], [148], [150], [151], [162], [165]-[167], 
[174], and [179]-[182]. 

Synchronously rotating frame theory has limitations when 
the source voltages are unbalanced and/or distorted. Dq 
theory is modified and referred to as “dq0 theory” to 
eliminate these limitations as can be found in [86], [90], [113], 
[130], and [157]. A new adaptive linear neuron (ADALINE) 
technique called MO-ADALINE was implemented in 
multi-output (MO) systems to track or estimate the 
parameters and symmetrical components. The control 
strategy involves the use of combined fuzzy logic controller 
for voltage regulation and processing unit-based ADALINE 
for harmonics, unbalance, and reactive power compensation 
[63]. 

Moreover, a new adaptive neuro-fuzzy control method is 
utilized to achieve smooth bi-directional power flow and 
nonlinear unbalanced load compensation simultaneously; in 
this case, the traditional PI controller might be insufficient 
because of the instantaneous changes in the dynamics of the 
system [132], [183]. In [69], a novel integrated diagnostic 
system was developed for islanding detection using a 
neuro-fuzzy model for grid-tied inverter-based DGs. In [69], 
an adaptive neuro-fuzzy inference system was used for 
islanding detection.  

In [126], a current control method for inverters based on 
the sigma delta modulation algorithm called the sigma 
delta-based current controlled voltage source inverter 
(ΣΔ_CC_VSI) interfaced with DG generators was studied. A 
particle swarm optimization method was used for the 
optimum tuning of the controllers as a result of the existent 
number of PI controllers. ΣΔ_CC_VSI minimizes the 
harmonics of the unfiltered voltage. Thus, it is powerful in 
minimizing electromagnetic interference, which is critical for 
sensitive loads [26].  

The combination of methods and strategies results in 
diverse control concepts used in grid-connected VSCs, such 
as PI controller-based voltage oriented controller (PI-VOC) 
[111], [136], space-vector pulse width modulation 
(SV-PWM) and voltage oriented control (VOC) method 
[174], direct power control (DPC) with space vector 
modulation (SVM) based on sliding mode control (SMC) 
[97], DPC-based SVM [101], DPC strategy with non-linear 
SMC with and SVM [117], and DPC-EMC (electromagnetic 
compatibility) [73]. DC-bus voltage control has a critical role 
in delivering the required MFI performance. During the 
sudden changes in system dynamic conditions, such as 
instantaneous load change or voltage sag/swell, the DC-link 
controller responds quickly to return the DC-bus voltage to 
its reference point with minimum delay time and overshoot. 



Review of Multifunctional Inverter Topologies and …                              333 
 

The PI-based DC-link voltage controller is simple to 
implement and is therefore preferred by most researchers, 
including [30], [32], [35], [38], [39], [55], [59], [60]-[62], 
[67], [75], [76], [79], [81], [92], [101]-[103], [107], 
[116]-[118], [120], [122]-[128], [130], [134], [136], [139], 
[140], [145], [146], [148], [155], [157], [160], [161], [165], 
[167], [171], and [184]-[186].  

To improve the response time of PI controller-based 
methods, researchers have developed several methods, 
including a spatial repetitive controller [128], neuro-fuzzy 
controller [132], [141], PI-type fuzzy logic controller [162], 
adaptive hysteresis band controller [78], adaptive sensorless 
controller [51], sliding mode controller [97], H∞ controller 
[131], H∞ repetitive controller [203], unified DC-link current 
controller [101], Lyapunov function-based current controller 
[105], fast dynamic high-performance non-linear controller 
[106], predictive current controller based on SV-PWM [158], 
and current and reactive power controllers [108]. SVM has 
proven to be a popular and favorable PWM scheme because 
of its high DC-link voltage utilization [93], [108], [110], 
[114], [115], [164], [169], model predictive control (MPC) 
[84], adaptive hysteresis controller [89, 110, 113], 
model-based control [111], fuzzy with hysteresis current 
controller [45], automatic voltage regulation [188], 
auto-voltage regulator designed based on discrete PID 
algorithm [119], and the optimal linear-adaptive regulator, 
which has been selected for the controller using 
linear–quadratic regulator control technique [158]. In [137], a 
stationary-frame resonant controller with direct feedback 
variables was utilized to arrange a dual-loop control scheme. 
The control methods studied in [41], [65], [73], [150], and 
[190] have no additional control loop for DC bus voltage 
regulation. The DC-link is controlled by either a current or 
voltage control loop. 

V. PRACTICAL STUDIES ON MFIS 
Some of the available MFIs are mainly experimental 

prototypes or small-scale installations whose capacities are 
low in general as shown in Table III. The available capacities 
of MFIs in single-phase are small; these MFIs are mainly 
implemented in PV grid-connected systems (<4 kVA). 
However, the available capacities of MFIs in three-phase are 
usually large; these MFIs are used in wind and solar plants 
(<400 kVA). The capacity of existing MFIs is small and 
should promote the experimental prototype for industrial 
applications. 

Both active power flow control and compensation of PQ 
problems are achieved in the same MFIs in DG generators 
that involve the use of few power electronic components, are 
small, and have high efficiency, low investment cost, reduced 
maintenance cost, and high reliability. The reduction in 
investment, operation, and maintenance cost as well as the 
enhancement of the cost-effective features of MFIs were  

TABLE III 

INSTALLED CAPACITY OF MFIS 

Power Source Reference Capacity Application 

Single-phase 

[46] 0.3 kVA PV 
[30] 1 kVA PV 
[21] 1 kVA PV 
[156] 1 kVA PV 
[31] 2 kVA PV 

Three-phase 

[148] 1.2 kW Fuel-Cell 
[138] 2.5 kW Wind 
[192] 2.5 kW Wind 
[75] 3 kW Wind 
[196] 3 kW PV 
[135] 3.7 kW Wind 
[55] 11 kW Wind 
[195] 20 kW PV 
[194] 30 kVA Wind 
[193] 400 kVA Micro-source 

 
proposed in [77], [163], and [191]. 
 

VI. CONCLUSIONS 

This paper presented an exhaustive review of the MFIs 
utilized to improve the power quality in the utility grid and 
at consumer level. The review and classification of 
published articles show that MFIs can help mitigate both 
current- and voltage-related PQ disturbances. The latest 
developments in grid-tied inverters fed by RES-based DGs 
(i.e., PV and/or wind systems) have introduced new 
regulations and standards to enhance PQ. The development 
of new control strategies and execution of multifunctional 
compensation capability are the main research trends 
related to both active power flow control and mitigation of 
various PQ disturbances using MFIs. The different aspects 
of MFIs and the new developments in this field of research 
were discussed in detail in this study.  

MFI-based DG systems are essential to future utility 
grids for the delivery of high-quality, reliable, and efficient 
electricity supply. To achieve this goal, various multi-level 
topologies and structures should be employed to increase 
the size of installed MFIs. The classification of MFIs will 
help researchers, users, and suppliers of electrical power to 
acquire an overview for further research and studies on 
this subject. 
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