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Abstract 
 

To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound 
control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate 
change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg 
inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear 
systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers 
provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of 
the proposed strategy is verified by conducting simulations and experiments. 
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I. INTRODUCTION 
 Power electronic converters are typical switching nonlinear 

systems. However, their linear models are generally established 
to facilitate control. Significant limitations occur when a linear 
system control method is applied to the controller design of 
such systems. Research on advanced nonlinear control methods 
of power electronic converters is the future trend in system 
design [1]-[5]. 

With bridge topology and switch components, a three-phase 
four-leg inverter system can be described as a typical 
multi-input multi-output (MIMO) system with time-varying 
and coupled nature [6]-[8]. To satisfy its requirements of 
dynamic response and control accuracy, the controller should 
be designed based on nonlinear control theory and technology. 

Sliding mode control is a special nonlinear control [9]-[11]. 
Given that its structure exhibits a switching state as time 
progresses, system state variables that slide with the preset 
manifold can be limited. For some systems, sliding mode 
control presents considerable robustness, which allows it to 
maintain system control rapidity and stability when the model 
is uncertain [12]-[15]. With these advantages, sliding mode 

control has been applied to several power electronic converters, 
such as inverters [16], pulse-width modulation (PWM) 
rectifiers [17], active power filters [18], and DC–DC converters 
[19]. 

In [20], a fixed switching frequency sliding mode controller 
for a single-phase unipolar inverter was proposed. Chattering 
was eliminated by smoothing the control law in a narrow 
boundary layer. In [21], a discrete-time linear state-feedback 
controller with feedforward compensation was presented for 
designing the voltage source of DC–AC converters. In [22], the 
performance of terminal sliding mode control was improved 
via integral compensation, which eliminates steady-state errors 
in a DC/AC inverter. Although the sliding mode variable 
structure control algorithm has been applied to inverters, 
conventional sliding mode control still has problems. With a 
sliding surface that is directly designed from a system model, 
conventional sliding mode controller achieves output voltage 
control by depending only on its considerable robustness. In 
this case, the dynamic quality of the sliding mode cannot be 
optimized. Sliding mode control also has a chattering defect 
that reduces control accuracy [23], [24]. For power electronic 
equipment such as inverters, chattering may cause instability as 
well as chattering of unmolded high-frequency parts of the 
system. Hence, a sliding mode controller should be improved 
to decrease chattering at the design stage. 

To facilitate controller design and improve the tracing 
performance of the control system, a control method that 
combines state feedback and sliding mode control is proposed  
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Fig. 1. Schematic of a three-phase, four-leg inverter. 
 

and applied to a three-phase four-leg inverter in this study. 
Based on the mathematical model for a three-phase four-leg 
inverter, the linear coordinate change matrix and the state 
variable feedback equations are derived via diffeomorphism 
relationship to simplify the inverter model. Controller design 
and control complexity are simplified by mapping the original 
complicated system into independent simplified systems. 
Sliding surfaces and quasi-sliding mode controllers are then 
designed for converted systems based on system relative 
degrees [25]-[27]. Simultaneously, the parameters of the 
controllers are designed according to linear control theory. 

The aforementioned method combines the advantages of 
state feedback control with sliding mode variable structure 
control. On one hand, a precise linear sliding surface can be 
established by state feedback. Then, the parameters can be 
optimized by linear theory, thereby improving the tracking 
performance of the control system inside the boundary layer. 
On the other hand, given the invariance of the sliding mode 
controller to uncertainties and disturbances, the dependence of 
the state feedback method on an accurate mathematical model 
is effectively weakened and the robustness of the control 
system is enhanced. Moreover, the dynamic response outside 
the boundary layer is improved. Finally, the feasibility and 
effectiveness of the proposed algorithms are verified by 
simulations and experiments. 

The rest of this paper is organized as follows. Section II 
presents the constructed mathematical model for a three-phase 
four-leg inverter, followed by the state feedback of the 
proposed model. Section III provides the designed sliding 
surfaces and quasi-sliding mode controllers based on system 
relative degrees. Subsequently, the parameters of the 
controllers are designed based on linear control theory. Section 
IV discusses the simulations and experiments. Finally, Section 
V concludes the paper. 

 

II. STATE FEEDBACK OF A THREE-PHASE 
FOUR-LEG INVERTER 

A. System Model of a Three-Phase Four-Leg Inverter 
The schematic of a three-phase four-leg inverter is shown in 

Fig. 1. 
Udc denotes the DC power supply voltage. ica, icb, and icc 

denote the inverter inductor currents. ila, ilb, and ilc denote the 
three-phase load currents. ua, ub, and uc denote the output 

voltages. L is the output filter inductor, and C is the output 
filter capacitor. Ra, Rb, and Rc are the load resistances. 

The three-phase pulse modulation variables are defined as 
ma, mb, and mc. Assuming that the switch is ideal, and 
switching dead time, filter inductor resistor, and capacitor 
resistor are ignored, the mathematical model can be obtained 
by applying Kirchhoff theorem as follows: 

a
ca a a

b
cb b b

c
cc c c

ca
a a dc

cb
b b dc

cc
c c dc

duC i u R
dt

duC i u R
dt

duC i u R
dt

diL u m U
dt

diL u m U
dt

diL u m U
dt

 = −

 = −

 = −

 = − +


 = − +


 = − +


 .              (1)
 

The mathematical model presented in Eq. (1) shows that a 
three-phase four-leg inverter is a linear MIMO system. 

The objective of a three-phase four-leg inverter is to control 
the output voltage that tracks references through PWM. The 
output voltage and inductor current are defined as state variable 
X = [x1 x2 x3 x4 x5 x6]T = [ua ub uc ica icb icc]T; switch function 
is defined as the input variable U = [u1 u2 u3]T = [ma mb mc]T; 
and voltage error is defined as output variable 
Y = H[X(t)]T = [h1(X) h2(X) h3(X)]T = [uaref-x1 ubref-x2 
ucref-x3]T. uaref, ubref, and ucref are the references of the 
three-phase output voltages. 

An affine nonlinear system model of a three-phase four-leg 
inverter can be described as follows: 

   1 1 2 2 3 3[ ( )] [ ( )] [ ( )] [ ( )]
( )

f t g t u g t u g t u = + + +


=

X X X X X
Y H X

,    (2) 

where
 

5 6 3 34 1 2 1 2( ) , , , , ,
T

a b c

x x x xx x x x xf
C R C C R C C R C L L L

 
= − − − − − − 

 
X , 

[ ]1( ) 0,0,0, ,0,0 T
dcg U L=X , [ ]2( ) 0,0,0,0, ,0 T

dcg U L=X , and 

[ ]3( ) 0,0,0,0,0, T
dcg U L=X . 

 

B. State Feedback of a Three-phase Four-leg Inverter 
Lfh = (∂h/∂X)f is defined as the Lie derivative of f and h. The 

control variable of the systems after the state feedback is 
defined as V = [v1, v2, v3]T. The new state variables can then be 
designed as follows: 
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.               (3) 
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According to Eq. (3), the relationship among the new state 
variables can be expressed as follows: 

 

1 1 4
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.    (4) 

By setting 2 1z v= , 4 2z v= , and 6 3z v= , we transform the 
original complicated system into the following simplified 
system: 

= +Z AZ BV ,                  (5) 

where

 

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 
 
 
 

=  
 
 
 
  

A , 

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 
 
 
 

=  
 
 
 
  

B . 

Hence, the relationship between the original control variable 
U and the new one V is as follows: 

4
1 1 12 2 2

5
2 2 22 2 2

6
3 3 32 2 2

1 1[( ) ]

1 1[( ) ]

1 1[( ) ]

dc a a

dc b b

dc c c

xLCu x v
U LC R C R C

xLCu x v
U LC R C R C

xLCu x v
U LC R C R C


= − + −


 = − + −


 = − + −


 .        (6) 

The equivalent block diagram is shown in Fig. 2. The part of 
the block diagram in the dashed box is the original system. 

 

III. DESIGN OF SLIDING MODE VARIABLE 
STRUCTURE CONTROLLER 

A. Design of Sliding Surface 
The purpose of a three-phase four-leg inverter is to control 

the output voltage that tracks references. This task is a tracking 
control problem, the target of which is X* = [uaref, ubref, ucref]T. 
Through state feedback, the state-space equilibrium point of 
system (5) is determined as Z* = [0, 0, 0]T. The tracking 
problem of the original system is then transformed into a 
stabilization problem. 

Therefore, the control aim of the system is to find a suitable 
control law V. Under this control law, the system is 
asymptotically stable with an excellent dynamic response at 
Z*.  

Eq. (5) implies that the system is mapped to three 
independent simplified linear systems after state feedback.  

-
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Fig. 2. Diagram of an inverter system based on state feedback. 

 
System relative degree is defined as r. A sliding mode control 
can be designed to make the system output dynamics, that is, 
diz/dti for (1 ≤ i ≤ r), satisfy the following r-order dynamic 
equation: 

1 1* *

0 0

( ) ( ) 0
r rr j r j

j jr j r j
j j

d z d z d z d z
dt dt dt dt

λ λ
− −

= =

+ − + =∑ ∑ ,       (7) 

where z* is the desired output reference needed to be tracked 
by the system. This last relation must be satisfied when the 
sliding regime is achieved, which can be accomplished by 
identifying Eq. (7) with the invariance condition 0σ = , that is, 

1 1* *

0 0

( ) ( ) 0
r rr j r j

j jr j r j
j j

d z d z d z d z
dt dt dt dt

σ λ λ
− −

= =

= + − + =∑ ∑

.
     (8) 

The sliding surface is derived by the following simple 
integration: 

11 * 1 *
*

01 1
1

( ) ( ) ( )
rr j

jr j
j

d z z d z z z z dt
dt dt

σ λ λ
−− −

− −
=

− −
= + + −∑ ∫

.
   (9) 

The tracking error dynamics is exponentially stable if the 
coefficients λ0, …, λr-1 are chosen such that the Laplace 
s-polynomial, that is, 

1
1 0 0r r

rs sλ λ−
−+ + + = ,            (10) 

is Hurtwitz (all poles are within the left half side of the Laplace 
plane). 

For the output variable function h1(X)=uaref-x1, the Lie 
derivatives can be calculated as follows: 
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
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



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.    (11) 

The relative degree of h1(X) is r1 = 2. Similarly, relative 
degrees are obtained as r2 = r3 = 2 for h2(X) = ubref  − x2 and 
h3(X) = ucref  − x3. 

For the case of the A-phase subsystem, we design the sliding 
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mode variable structure controller as follows. The A-phase 
subsystem can be expressed as Eq. (12), with a relative degree 
of r1 = 2 and a control target of z1

* = 0. 
1 2

2 1

z z
z v

=
 =





                    (12) 

From Eq. (9), we obtain the following sliding surface: 
* *

*1 1 1 1
1 1 0 1 1

2 1 1 0 1

( ) ( ) ( )d z z d z z z z dt
dt dt

z z z dt

σ λ λ

λ λ

− −
= + + −

= + +

∫
∫

.     (13) 

 

B. Sliding Mode Controller Design 
Based on the sliding surface, we can derive the equivalent 

control v1eq as the continuous control input that forces 1 0σ = , 
that is, 

1 1 2 0 1eqv z zλ λ= − −
.
                (14) 

According to the general rules of the sliding mode variable 
structure control, the system can reach a switching manifold 
within a limited time. However, the switching ripple for a 
power electronic converter is amplified because of the inherent 
chattering phenomenon in sliding mode controls. A particular 
approach law designed for sliding mode control can generally 
reduce chattering while maintaining the robustness of variable 
structure control. 

The quasi-sliding mode control is chosen as the approach 
law based on the boundary layer. The adoption of the 
saturation function sat(σ/∆) enables the controller to exist as a 
normal sliding mode variable structure control outside the 
boundary layer and as a continuous state feedback control 
inside the boundary layer, which weakens chattering. 

Boundary layer thickness is defined as ∆. The approach law 
can then be expressed as follows: 

1 1sat( / )nv ε σ= − ⋅ ∆ ,               (15) 

where ∆>0, ε>0, 
1

1 1 1

1

1,
sat( / ) / ,

1,

σ
σ σ σ

σ

+ > ∆
∆ = ∆ ≤ ∆
− < −∆

 . 

The control law is equivalent to a constant approach law 
with considerable robustness outside boundary layer ∆. Given 
the existence of the boundary layer, the ε value can be a large 
constant. In this manner, feedback gain is increased to ensure 
fast tracking control. Inside the boundary layer ∆, continuous 
feedback control achieves an ideal sliding mode by sacrificing 
robustness to suppress chattering. 

The subsystem controllers of B- and C-phases can also be 
obtained based on the symmetry of the three-phase system. By 
using Eqs. (14) and (15), we can achieve the three-phase 
sliding mode controller as follows: 

1 11 1 2 0 1 1

2 2 2 1 4 0 3 2

3 1 6 0 5 33 3

sat( / )
sat( / )
sat( / )

eq n

eq n

eq n

v vv z z
V v v v z z

v z zv v

λ λ ε σ
λ λ ε σ
λ λ ε σ

 + − − − ⋅ ∆       = = + = − − − ⋅ ∆        − − − ⋅ ∆+     

.  (16) 

 

-

2
1 0 1 0( ) ( )s s

s

ε ε ελ λ λ λ+ + + +
∆ ∆ ∆

1
s

1
s

1Z2Z1V1Z−1 0refZ =

 
Fig. 3. Control system block diagram (|σ| ≤ ∆). 

 
C. Analyzing the Sliding Mode Controller 

The three-phase linear control system can be obtained by 
substituting V from Eq. (16) into Eq. (12). Then, we can 
analyze the control system in A-phase. 

1) When |σ| ≤ ∆:  the controller transfer function can be 
expressed as follows: 

2
1 0 1 0

1

( ) ( )
( )c

s s
G s

s

ε ε ελ λ λ λ+ + + +
∆ ∆ ∆= − .       (17) 

The control system block diagram is shown in Fig. 3. 
The closed-loop transfer function of the control system is as 

follows: 
3

3 2
1 0 1 0

( )
( ) ( )

ss
s s sε ε ελ λ λ λ

Φ =
+ + + + +

∆ ∆ ∆

.      (18) 

The control system shown in Eq. (18) is a third-order linear 
system. The system parameters can be designed according to 
linear theory. 

The parameters can be selected by using the pole assignment 
method. The system poles are installed as a negative real 
(exponential decay term) and a complex conjugate pair 
(attenuation sine term). The denominator of Eq. (18) can be 
obtained as follows: 

3 2
1 0 1 0

2 2
0

3 2 2 2
0 0 0

( ) ( )

( )( 2 )

(2 ) (2 )
n n

n n n n

s s s

s s s s

s s s s s s s

ε ε ελ λ λ λ

ζω ω

ζω ζω ω ω

+ + + + +
∆ ∆ ∆

= + + +

= + + + + +

.    (19) 

The closed-loop poles of the system are 

1 0s s= − , 2
2,3 1n ns ζω ω ζ= − ± − . 

Based on the stability condition, the closed-loop poles of the 
system are all located on the left half side of the Laplace plane. 
Hence, the real parts of the selected poles are negative 
( 0 0s > , 0nζω > ). s2 and s3 are chosen as the dominant poles, 

and 0 5 ns ζω> ×  is  satisfied. System step response attenuates 
slowly when the distance between a pole and the imaginary 
axis is short, and vice versa. Therefore, the transient 
characteristics of a system are mainly affected by the conjugate 
poles. According to linear system theory, dynamic performance 
can be regulated by adjusting the values of ζ  and nω . 

2) When |σ| > ∆: the control system is nonlinear. 
The control system block diagram is shown in Fig. 4. 
For the open-loop system, a large constant ε is added as a 

feedforward to system control. In this manner, the open-loop 
gain is amplified to improve the robustness of the control 
system. 
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Fig. 4. Control system block diagram (|σ| > ∆). 
 
 

TABLE I 
PARAMETERS OF THE SYSTEM 

Inverter output voltage 
DC bus voltage 
Filter inductor 
Filter capacitor 

Switching frequency 

u(Peak value) 
Udc 
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C 
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5 mH 
5 uF 
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Q
ua
si

-slid
in
g 

M
od
e 

C
on
tro
l

le
r

3D
-SV
PW
M

In
ve
rte
r

uref

-
z1,3,5 V U u

icz2,4,6 1

2

3

( )

( )

( )

f

f

f

L h X

L h X

L h X

 
 
 
 
  

4
1 1 12 2 2

5
2 2 22 2 2

6
3 3 32 2 2

1 1[( ) ]

1 1[( ) ]

1 1[( ) ]

dc a a

dc b b

dc c c

xLCu x v
U LC R C R C

xLCu x v
U LC R C R C

xLCu x v
U LC R C R C


= − + −


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

 = − + −
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Fig. 5. Control block diagram of a three-phase four-leg inverter. 
 

According to Eqs. (6) and (16), the variable structure 
controller that is transformed into the original system is as 
follows: 

4 1 4
1 1 12 2 2

0 1 1

5 52
2 2 12 2 2

0 2 2

6 3 6
3 3 12 2 2

0 3

1 1[( ) ( )

( ) sat( / )]
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( ) sat( / )]
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bref
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u x s

x xxLCu x
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x x xLCu x
U LC R C CR C R C

u x

λ

λ ε

λ

λ ε

λ

λ ε

= − + + −

+ − + ⋅ ∆

= − + + −

+ − + ⋅ ∆

= − + + −
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












 ∆

.     (20) 

The resistor Ra, Rb, Rc parameters can be identified through 
output voltages and currents. Pulses are modulated by using a 
3D space vector PWM (SVPWM) algorithm. 

Fig. 5 shows the control block diagram of a three-phase 
four-leg inverter. 

 

IV. SIMULATIONS AND EXPERIMENTS 
A. Design of the System Parameters 

MATLAB/Simulink software is used in this study to analyze 
the control system. A low-power three-phase four-leg inverter 
prototype is built to verify the feasibility of the proposed 
algorithm. The main structure of the inverter is shown in Fig. 1. 
The DC power source consists of a voltage regulator and a 
three-phase rectifier. The inverter loads are resistances. The 
insulated-gate bipolar transistor switches are 
GD100HFT120C2S from Starpower Semiconductor Ltd. 
(Jiaxing, China). The proposed sliding control is implemented 

into a TMS320F28335 digital signal processor from Texas 
Instruments, Inc. (Texas, USA) with a 10 kHz sampling 
frequency. 

The system parameters are provided in Table I. 
Through simulations and comparisons, the optimum control 

parameters are selected as 0.707ζ = , 7.071nω = , and 

0 30 5 ns ζω= > × . 
The closed-loop poles of the system are s1 = −s0 = −30 and 

s2,3 = −5 ± 5j. From Eq. (19), we obtain the following: 
1 0

2
0 1 0

2
0 0

2

( ) 2

( )

n

n n

n

s s

s

s

λ ε ζω

λ ε λ ζω ω

ε λ ω

+ ∆ = +
 + ∆ = +


∆ =

.          (21) 

The controller parameters are obtained as λ0 = 50, λ1 = 10, 
and ε/∆ = 30 by eliminating imaginary roots. The boundary 
layer can be selected as ∆ < max(|σ1 |)/2 and is valued as 
∆ = 50 in the experiment. To verify the correctness and 
effectiveness of the proposed control algorithm, dynamic 
response and steady-state performance are analyzed under the 
same conditions. 

 

B. Unbalanced Load Experiment 
Inverter output voltage and current simulation steady-state 

waveforms with unbalanced resistive loads are shown in Fig. 6. 
The load parameters are Ra = 20 Ω, Rb = 15 Ω, and Rc = 10 Ω. 
The output root mean square (RMS) voltages in Fig. 6 are 
Ua = 70.27 V, Ub = 70.85 V, and Uc = 71.04 V. In this figure, 
the output voltages present smooth waveforms, small 
distortions, and symmetry, although the loads are asymmetric. 
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Fig. 6. System simulation waveforms with three-phase 
unbalanced resistive loads. (a) Three-phase output voltages. (b) 
Inductor currents. (c) Load currents. 

 
A TDS2014 oscilloscope (Tektronix, Inc., Oregon, USA) is 

used as the experiment measuring instrument. Fig. 7(a) shows 
the output voltage experimental waveforms, whereas Fig. 7(b) 
presents the output current experimental waveforms. The 
experiment results agree with the simulation results. 

Simulations and experiments are also conducted on 
unbalanced resistance–inductance loads and nonlinear loads. 
Resistance–inductance loads are chosen as 
Ra = Rb = Rc = 10 Ω, La = 2 mH, Lb = 4 mH, and Lc = 8 mH. 
The simulation waveforms are shown in Fig. 8. With results 
similar to resistive loads, currents are asymmetric, whereas 
voltages are symmetric. Fig. 9 shows the three-phase voltages 
and C-phase current experimental waveforms under the same 
condition. To compare their phase relationship, voltage and 
current are shown in the same figure. 

A-phase load is chosen as the series that comprises a diode 
and a resistance, others as resistances, and 
Ra = Rb = Rc = 10 Ω. According to the simulation waveforms 
in Fig. 10, balanced output voltages can be achieved under 
unbalanced nonlinear loads. The experimental waveforms in 
Fig. 11 verify the simulation results. 

 
(a) 

 
(b) 

Fig. 7. System experimental waveforms with three-phase 
unbalanced resistive loads. (a) Three-phase output voltages. (b) 
Load currents. 
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Fig. 8. System simulation waveforms with three-phase 
unbalanced resistance–inductance loads. (a) Three-phase output 
voltages. (b) Load currents. 
 

C. Output Voltage Tracking Experiment 
Considering that the nature of the load has an insignificant 

effect on the results under transient conditions,we still adopt  
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Fig. 9. System experimental waveforms with three-phase 
unbalanced resistance–inductance loads. 
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Fig. 10. System simulation waveforms with three-phase 
nonlinear loads. (a) Three-phase output voltages. (b) Load 
currents. 
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Fig. 11. System experimental waveforms with three-phase 
nonlinear loads. 

 
resistive loads for analysis and comparison. 

Fig. 12 shows the system voltage tracking performance 
under an unbalanced load condition. The load parameters are 
Ra = 20 Ω, Rb = 15 Ω, and Rc = 10 Ω. The initial output 
voltages are Ua = 70.7 V, Ub = 70.7 V, and Uc = 70.7 V 
(rms).  

0.2 0.22 0.24 0.26 0.28 0.3-150

-100

-50

0

50

100

150

t(s)

u(
V

)

 

 

ua
ub
uc

 
(a) 

0.2 0.22 0.24 0.26 0.28 0.3-15

-10

-5

0

5

10

15

t(s)

il(
A

)

 

 

ila
ilb
ilc
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Fig. 12. System simulation waveforms of voltage tracking. (a) 
Three-phase output voltages. (b) Load currents. 
 

 
Fig. 13. System experimental waveforms of voltage tracking. 

 
Ua = Ub = Uc = 56.5 V are assigned to the reference voltages 
at 0.23 s and adjusted to the original given values at 0.27 s. 
After the mutation of the reference voltage value, output 
voltage amplitude changes and restores stability rapidly. The 
currents reach a new steady state within a short period. Then, 
the three-phase output voltages track the new references 
without static error. The preceding analyses show that the 
control system exhibits good tracking performance. 

Fig. 13 depicts the three-phase voltage experimental 
response to reference mutation, which proves that the system 
exhibits excellent voltage tracking performance. 
 

D. Load Disturbance Experiment 
Fig. 14 shows the output voltage and current waveforms of 

the inverter with load disturbance. The initial loads are 
Ra = Rb = Rc = 20 Ω. The loads at 0.23 s are adjusted to 
Ra = 20 Ω, Rb = 15 Ω, and Rc = 10 Ω. The amplitude of the 
output voltage initially exhibits small fluctuations but stability 
is soon restored. Thus, the control system demonstrates strong  
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Fig. 14. System simulation waveforms with load disturbance. (a) 
Three-phase output voltages. (b) Load currents. 
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Fig. 15. System experimental waveforms with load disturbance 
 

resistance against load disturbance. 
The experimental three-phase voltages and C-phase load 

current waveforms are shown in Fig. 15. Given the 
experimental limitations, only the C-phase load is adjusted. 
After load mutation, load current changes rapidly, whereas load 
voltage remains stable. 
 

E. DC Bus Voltage Disturbance Experiment 
Fig. 16 depicts the simulation waveform of an inverter with 

DC bus voltage disturbance. The mutation time and amplitude 
of the DC bus voltage are shown in Fig. 16(a). Output voltage 
and load current are substantially stable when the DC bus 
voltage fluctuates. The proposed controller achieves strong 
resistance against DC bus voltage disturbance. 

Fig. 17 shows the experimental waveforms of the DC bus 
voltage and three-phase output voltages. The experiment  
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Fig. 16. System simulation waveforms with DC bus voltage 
disturbance. (a) DC bus voltage. (b) Three-phase output voltages. 
(c) Load currents. 
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Fig. 17. System experimental waveforms with DC bus voltage 
disturbance. 
 
results agree with the simulation results. 

Good control performances can be achieved in the steady 
and transient states with strong anti-interference capability and 
robustness. The simulation and experiment results indicate that 
the new sliding mode control method is effective.  
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V. CONCLUSIONS 
This study proposes a compound control method that 

combines state feedback and quasi-sliding mode variable 
structure control for a three-phase four-leg inverter system. The 
original complicated system is mapped into independent 
simplified systems by deriving the linear coordinate change 
matrix and the state variable feedback equations. According to 
system relative degrees, sliding surfaces and quasi-sliding 
mode controllers are designed for the linear systems. Normal 
sliding mode variable structure control is adopted outside the 
boundary layer, whereas continuous state feedback control is 
adopted inside the boundary layer, which weakens chattering. 
The proposed controllers provide flexible dynamic control 
response and excellent stable control performance with 
chattering suppression. The feasibility of the proposed strategy 
is verified through simulations and experiments. 
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