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Abstract 
 

Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a 
fundamental issue in vehicle power train control and battery management systems. This study proposes a novel 
model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. 
The state-space model of lithium-ion battery is developed based on a three-order resistor–capacitor equivalent circuit 
model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is 
designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can 
then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests 
that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove 
that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under 
different driving cycles. 
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I. INTRODUCTION 
Lithium-ion battery is a promising power source for hybrid 

and pure electric vehicles because of its high energy and 
power density. Accurate state-of-charge (SOC) estimation is 
important in vehicle power train control and battery 
management systems [1]. 

Although the traditional coulomb counting method can 
realize online SOC measurement, it easily accumulates errors 
because of incorrect measurements. Moreover, the initial 
integral value is difficult to measure by using this method. 
Thus, this method is seldom used alone. Many recent studies 
have focused on SOC estimation. Methods for SOC 
estimation generally include voltage-based correction [2], [3], 
fuzzy logic-based [4]-[8], neural network [9]-[11], and 
Kalman filter [12]-[21] methods. Wei et al. [2] proposed a 
method based on current time window to estimate battery 
SOC of fuel cells for hybrid electric cars. Leksono et al. [3] 
proposed a coulomb counting method with modified 

Peukert for SOC estimation on a LiFePO4 battery. The 
voltage-based correction method periodically revised SOC 
estimation by battery voltage. The drawback of this method is 
that its revision is discontinuous and effects on the stability of 
power system control is easily produced. The main 
disadvantage of the fuzzy and neural network methods is the 
unclear physical definition of the model. Moreover, these 
methods require a huge amount of training data and a suitable 
training algorithm. Many recent studies have focused on 
Kalman filter-based methods. Vasebi et al. [12], Hua et al. 
[13], Jiang et al. [14], Zhou et al. [15], and Piao et al. [16] 
used the extended Kalman filter in their methods. 
Santhanagopalan et al. [17], Zhang et al. [18], and He et al. 
[19] used the unscented Kalman filter in their methods. Choa 
et al. [20], Xiong et al. [21], and Sepasia et al. [22] adopted 
an adaptive Kalman filter in their methods. The Kalman filter 
method is a model-based estimation technique. Most studies 
on battery SOC estimation in the past five years are related to 
the Kalman filter method. This method, which is based on the 
corresponding relationship between SOC and open-circuit 
voltage (OCV), can realize real-time SOC correction. In 
practical applications, however, system noises and 
measurement errors are typically difficult to figure out. 

To solve the aforementioned problems in the existing 
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estimation method, we propose a novel model-based battery 
SOC estimation method that applies closed-loop state 
observer theory. The proposed estimation method uses a 
closed-loop feedback algorithm to estimate battery SOC in 
real time. The influence of system noises and measurement 
errors can be reduced by feeding back battery voltage. This 
method presents a clear physical definition and is easily 
applied in practical control systems. In addition, we present 
several typical driving cycle tests to prove that the proposed 
SOC estimation method can solve the problem on initial 
battery SOC being too difficult to specify in practical 
applications. 

 

II. STATE-SPACE MODEL OF THE BATTERY 
The battery used in this study is lithium iron phosphate 

with a capacity of 20 Ah. Given the complexity of the 
internal physical and chemical processes, an accurate 
physical model of lithium-ion battery is difficult to generate, 
which is unnecessary for control design. The equivalent 
circuit model method is widely employed in battery 
simulation. Thus, this method is adopted in the current study 
to model lithium-ion battery. The least square identification 
method is used to calculate model parameters. A three-order 
resistor–capacitor (RC) equivalent circuit model (Fig. 1) is 
used to simulate battery behavior. This model was developed 
based on the FreedomCar battery model of the Partnership for 
a New Generation of Vehicles, which is a cooperative 
research project between the United States government and 
the auto industry. Theory analyses and experiments were 
conducted in [2] to prove that the three-order RC model 
exhibits higher accuracy in simulating lithium-ion battery 
than the FreedomCar model. 

In Fig. 1, R0 denotes ohm resistance; R1 and R2 indicate 
polarized resistance; C0, C1, and C2 are the equivalent 
capacitors; Ubus is the terminal voltage; U0 is  the equivalent 
OCV of the battery (that is, Ubus = U0 after resting for over 3 
h); U1 is the terminal voltage of C1; and U2 is the terminal 
voltage of C2. 

According to the equivalent circuit model shown in Fig. 1, 
the following equations can be derived:  
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where Ib is the battery current; C0, C1, and C2 are the 
capacitance values of C0, C1, and C2, respectively; R0, R1, 
and R2 are the resistance values of R0, R1, and R2, 
respectively; and U0, U1, and U2 are the terminal voltages of 
C0, C1, and C2, respectively. 

According to the first three formulas in Eq. (1), the 
relationship between U0 and Ib can be expressed as follows: 

 

 

 
Fig. 1. Equivalent circuit model of lithium-ion battery. 
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where U0_init is the initial value of U0. U0 is the terminal 
voltage of C0. Depending on the equivalent circuit model 
of the battery, U0 is also equal to the corresponding OCV 
of the battery.  

The first three formulas in Eq. (1) can be Laplace 
transformed into transfer functions as follows: 
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If we define state vector [ ]0 1 2
T

bx U U U= , input vector 

[ ]b bu I= , and output vector [ ]b busy U= , then the state-space 

equation of the battery mathematical model can be obtained 
as follows: 
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Eqs. (4) and (5) can be expressed as follows: 
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III. PARAMETER ESTIMATION OF THE BATTERY 
STATE-SPACE MODEL 

We use the least square identification method to estimate 
the parameters of the battery state-space model, namely C0, 
C1, C2, R0, R1, and R2 in Eq. (6). By using the parameter 
estimation toolbox of MATLAB software, parameter 
estimation can be easily conducted in a computer. The test 
data for battery voltage and current are introduced as sample 
data to start parameter estimation. Data are gathered from a 
practical vehicle driving test using a hybrid electric vehicle 
equipped with a lithium-ion battery pack. A CAN-bus 
development tool called CANape (Vector Informatik, 
Stuttgart, Germany) is used in the test to acquire data and 
calibrate the control parameters. The sample data used in 
parameter estimation are shown in Figs. 2 and 3. Given that 
we use the test data from the practical vehicle driving test as 
sample data for parameter estimation, the estimated results 
are  applicable in practice. 

A comparison between the model simulation and the test is 
conducted and illustrated in Figs. 4 and 5 to verify the 
performance of the battery state-space model and the 
parameter estimation results. The test data for battery current 
and initial OCV are inputted into the battery model during the 
simulation. The battery voltages in the simulation and test are 
compared. First, we compare the results of the battery model 
simulation and battery pulse discharge test (Fig. 4). The 
discharge current is 60 A, the discharge time is 20 s, and the 
recovery time is approximately 60 s  in the pulse discharge 
test. Fig. 4 shows that the average error of the simulation is 
lower than 0.1 V, its maximum error is lower than 0.5 V, and 
the average margin of the simulation error is lower than 0.2%. 
Second, we compare the results of the simulation and 
practical vehicle driving test (Fig. 5). The average error of the 
simulation is lower than 0.65 V, its maximum error is lower 
than 5 V, and the average margin of the simulation error is 
lower than 1.5%. The comparison between the results of the 
model simulations and the tests proves that the three-order 
battery model exhibits good accuracy. Although this model 
offers degrees of freedom in a nonlinear characteristic, 
immunity from noise and interference during SOC estimation 
remains a problem. Thus, we propose a multi-state 
closed-loop method to reduce the influence of noise and 
interference during SOC estimation. This method is discussed 
in the next section. 

 
Fig. 2. Test results for battery current in the 1 h driving test. 
 

 
Fig. 3. Test results for battery voltage in the 1h vehicle driving 
test. 
 

 
Fig. 4. Comparison between the results of the simulation and the 
pulse discharge test. 

   
Fig. 5. Comparison between the results of the simulation and the 
practical vehicle driving test. 
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IV. BATTERY SOC ESTIMATION 

A. Designing the Multi-State Closed-Loop Observer 
Fig. 6 shows the relationship between the OCV and SOC 

of lithium-ion battery, which is obtained by using the battery 
test bench in [2]. Several single cells are selected from the 
battery pack as test objects in the test. Fig. 6 shows that when 
the battery works within the SOC range of 10% to 90% (the 
general operating range of a battery for vehicle application), a 
nonlinear corresponding relationship exists between battery 
OCV and SOC. This relationship is consistent for different 
single cells of the battery. In addition, the tested single cells 
are selected randomly and used for different lengths of time. 
Therefore, we can estimate battery OCV based initially on the 
battery mathematical model. Battery SOC can be 
consequently obtained from the corresponding relationship of 
OCV and SOC. In actual operation, however, estimation 
accuracy is affected by modeling errors, measuring errors, 
and random interferences. A closed-loop state observer is 
designed to solve this problem. This observer is based on the 
developed state-space model of lithium-ion battery that can 
eliminate the effects of errors and interferences by feeding 
back the model estimation error. Thus, this SOC estimation 
method is theoretically reasonable and feasible.  

Fig. 7 shows the schematic of the developed battery 
state-space model. Fig. 8 shows the schematic of the 
closed-loop state observer designed in this study. Figs. 7 and 
8 shows that ∑0 is used to represent the studied battery. A, B, 
C, and D are the state matrices defined in Eq. (5). G is the 
gain matrix of the state observer. The battery state-space 
model calculates battery state and output through an 
open-loop technique as shown in Fig. 7. The closed-loop state 
observer estimates battery state and output via a closed-loop 
technique as shown in Fig. 8. When the states calculated by 
the battery model are unequal to real battery states, a 
deviation exists between battery model output (namely, the 
estimated battery voltage) and real battery voltage. The state 
observer feeds back this deviation to the battery model with 
gain matrix G to correct the estimated state vector x̂ . With a 
moderate gain matrix G, the correction can make the 
estimated states approach the actual states of the battery with 
moderate speed and reasonable accuracy.  

The state equation of the closed-loop state observer is 
expressed as follows based on Fig. 8: 
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We define the state error vector as follows: 
ˆx x x= -% .                 (8) 

The state error equation is obtained and expressed as  

 
Fig. 6. Corresponding relationship between battery OCV and 
SOC. 

 

Fig. 7. Schematic of the battery state-space model. 

ŷ

x̂

 
Fig. 8. Schematic of the closed-loop state observer. 
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Eq. (9) is a homogeneous differential equation of the state 
error vector ( x% ), the solution to which is as follows: 

( ) (0)A GC tx e x-=% % .             (10) 
Eq. (10) shows that (0)x%  is the initial value of the state 

error vector ( x% ). If (0)x% = 0, then state error vector x%  is 

equal to zero, that is, the estimated state vector x̂  is equal 

to the actual state for the entire period. If (0)x% ≠0, then 

state error vector x%  approaches zero as long as all 
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eigenvalues of the matrix (A-GC) have negative real parts. In 
particular, state vector x̂  estimated by the state observer 
gradually approaches the actual states. The approaching 
speed is dependent on the eigenvalue configuration of the 
matrix (A-GC). According to the principle of modern control 
theory, the following equation is derived as long as the 
battery model is observable and all eigenvalues of the matrix 
(A-GC) have negative real parts: 

ˆlim [ ] 0
t

x x x
®¥

= - =% .              (11) 

The theoretical analysis shows that the designed 
closed-loop state observer solves the problems of modeling 
errors, measuring errors, and random interferences by feeding 
back the estimation error. Moreover, it effectively solves the 
problem of initial battery OCV being difficult to measure in 
practical operations. Estimating battery SOC by using the 
designed state observer is theoretically feasible. 

B. Designing the Gain Matrix of the Closed-Loop 
Observer 

A key issue in designing the gain matrix of the state 
observer is to make the estimated battery OCV approach the 
actual OCV at a moderate speed. We use the pole placement 
method in this study. The gain matrix of the state observer is 
designed by analyzing the step responses of the state observer 
and the charging/discharging limitation of the battery in the 
application. Fig. 9 shows the step responses of the state 
observer under different pole placements. The 
step-responding curves when the poles of the system shift left 
by 0.001, 0.01, and 0.1 are illustrated in Fig. 9. Pole 
placement can affect the convergence speed of state U0 (that 
is, U0 denotes the equivalent OCV of the battery based on Eq. 
2). When the pole is placed close to the coordinate origin, the 
feedback gain matrix G is small and state convergence speed 
is slow, and vice versa. A huge G may result in overshooting 
(the third curve in Fig. 9), which is an unexpected result. By 
contrast, a small G results in a long convergence time (the 
first curve in Fig. 9), which has no practical value in battery 
estimation. When G is set at a moderate value (the second 
curve in Fig. 9), overshooting does not occur and 
convergence speed is moderate. 
 

V. EXPERIMENTAL VERIFICATION AND ANALYSIS 

A practical vehicle driving test is performed to verify the 
designed SOC estimation method. Fig. 10 shows the test 
system diagram. The studied battery pack is part of the fuel 
cell of a hybrid vehicle power train. The battery management 
system and vehicle management system are connected by 
CAN-bus. The monitoring computer with the CAN-bus 
development tool CANape is used to download programs, 
acquire data, and calibrate control parameters. We program 
the estimation algorithm and embed it into the control system  

 
Fig. 9. Step responses of the observer under different pole 
placements. 
 

TABLE I 
DESIGNED GAIN MATRIX OF THE CLOSED-LOOP OBSERVER UNDER 

DIFFERENT POLE PLACEMENTS 
Pole Gain matrix 

P = P0 − 0.001 [0.0010 0.0010 0.0010] 
P = P0 − 0.01 [0.0120 0.0097 0.0082] 
P = P0 − 0.1 [0.3266 0.0735 −0.1002] 

 

 
Fig. 10. Test system diagram. 
 

  
Fig. 11. Schematic of the SOC estimation program. 
 
of the fuel cell-powered hybrid vehicle used in this study. Fig. 
11 shows the schematic of the SOC estimation program. Two 
types of typical vehicle driving cycles test, namely, the Urban 
Dynamometer Driving Schedule of America (UDDS) and the 
Economic Commission for Europe and Extra-urban Driving 
Cycle (ECE-EUDC), are performed to verify and evaluate the 
SOC estimation method presented in this study. Fig. 12 is the 
window interface of the data monitoring and parameter 
calibration processes in the test.  

Battery current and voltage data are gathered during the 
driving cycle test and used as input data of the SOC 
estimation program as shown in Figs. 13 and 14. A 
comparison between the SOC estimated by the state observer 
and the value calculated by coulomb counting under each 
driving cycle is illustrated in Figs. 15 and 16. Although the 
SOC calculated by the coulomb counting method is not  
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Fig. 12. Interface of data monitoring and parameter calibration 
processes. 

 

 
Fig. 13. Results for battery current and voltage under the UDDS 
test. 

 
entirely accurate, it approximates “true” battery SOC in a 
relatively short time. For example, battery current is 
measured in this study by using a standard device with a 
measurement accuracy of ±0.5 A. The maximum SOC error 
calculated by current integration is lower than 1% in 
approximately 20 min. Therefore, these comparisons validate 
the designed SOC estimation method.  

We suppose that the initial OCV of the state observer is 
unequal to the OCV of real battery to certify the converging 
speed of the estimated SOC in the experiment. This 
supposition is consistent with battery characteristics because 
the actual initial OCV can be measured in practice only if the 
battery is allowed to stew for approximately 3 h. To perform 
certification comparison, we leave the tested vehicle stewing 
for 3 h, measure the actual initial OCV, and consider it as the 
initial value of coulomb counting before each driving cycle  

 
Fig. 14. Results for battery current and voltage under the 
ECE-EUDC test. 

 

 
Fig. 15. Comparison among battery SOC values using the 
coulomb counting, state observer, and Kalman filter methods 
under the UDDS cycle. 

 

 
Fig. 16. Comparison among battery SOC values using the 
coulomb counting, state observer, and Kalman filter methods 
under the ECE-EUDC cycle. 

 
test. Figs. 15 to 16 show that even if different initial OCV 
errors are supposed in each driving cycle test, the estimated 
SOC can converge rapidly to the counted SOC within 
approximately 200 s, which is consistent with the preceding  
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Fig. 17. Estimation error by the state observer under the UDDS 
cycle. 
 

 
Fig. 18. Estimation error by the state observer under the 
ECE-EUDC cycle. 
 

 
Fig. 19. Average estimation error by the state observer under the 
UDDS cycle. 
 

 
Fig. 20. Average estimation error by the state observer under the 
ECE-EUDC cycle. 
 
step-response analysis (the second curve in Fig. 9). The 
figures also show that the proposed state observer method is 
better than the Kalman filter method in terms of estimation 

accuracy. The SOC estimation errors of the proposed 
estimation method under each driving cycle test are shown in 
Figs. 17 to 18. The average SOC estimation errors of the 
proposed estimation method under each driving cycle test are 
shown in Figs. 19 to 20. Figs. 16 to 20 show that if the 
supposed initial error is excluded, that is, counting from 200 s, 
the maximum deviation between the estimated and counted 
SOC values is 1.74% under the UDDS cycle and 1.77% 
under the ECE-EUDC cycle. Similarly, the average deviation 
under each driving cycle is 0.37% under the UDDS cycle and 
0.43% under the ECE-EUDC cycle. In addition, we can 
determine from the tests that maximum deviation occurs 
under maximum current condition, which is consistent with 
the modeling error. 
 

VI.  CONCLUSIONS 

1) The state-space mathematical model of lithium-ion battery 
is developed based on a three-order equivalent circuit 
model. A comparison between the results of the model 
simulations and the tests prove that the battery state-space 
model is accurate and suitable for SOC estimation. 

2) A novel battery SOC estimation algorithm based on the 
state-space model is proposed by applying multi-state 
closed-loop observer theory. This method provides clear 
physical definitions and can be easily applied in practical 
control systems. Theory analyses and experiments prove 
that the algorithm exhibits sufficiently high accuracy for 
battery SOC estimation. 

3) Unlike the coulomb counting SOC estimation method, the 
proposed SOC estimation method has two benefits. First, it 
effectively solves the problem of the initial battery SOC 
being too difficult to specify in practical applications. 
Second, it can eliminate the integral accumulation error via 
a multi-state feedback algorithm. 

4) Although the proposed method does not give special 
consideration to the influences of system noise and 
measuring errors, it can reduce the influence of unmodeled 
factors and random interferences by feeding back 
deviations between the estimated and measured battery 
voltages. 

5) Environmental temperature and battery age are factors that 
can gradually change the parameters of the battery model. 
We should take measures, such as the online model 
parameter estimation method, to solve such problems in a 
follow-up study. 
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