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Abstract 

 
Mismatch between switching frequency and circuit parameters often occurs in industrial applications, which would lead to 

instability phenomena. The bifurcation behavior of V2 controlled buck converter is investigated as the pulse width modulation period 
is varied. Nonlinear behavior is analyzed based on the monodromy matrix of the system. We observed that the stable period-1 orbit 
was first transformed to the period-2 bifurcation, which subsequently changed to chaos. The mechanism of the series of period-2 
bifurcations shows that the characteristic eigenvalue of the monodromy matrix passes through the unit circle along the negative real 
axis. Resonant parametric perturbation technique has been applied to prevent the onset of instability. Meanwhile, the extended 
stability region of the converter is obtained. Simulation and experimental prototypes are built, and the corresponding results verify 
the theoretical analysis. 
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I. INTRODUCTION 
The V2 controlled buck converter has been extensively used 

because of its advantages of rapid load transient response and 
easy implementation [1]-[4]. The exact small signal model of 
the system and the design guidelines have been presented in [5]. 
The mathematical model of the compensated V2 controlled 
buck converter has been derived in [6], which verified the 
stability characteristics of the regulator. A quasi-V2 adaptive 
on-time controller for the buck converter has been proposed in 
[7], which can provide stable operation with small equivalent 
series resistance of the output capacitor. With the addition of an 
inductor current ramp estimator, an enhanced V2-type constant 
on-time controller, which is used to manipulate the buck 
converter, has been proposed in [8] to suppress unstable 
behavior. However, the abovementioned studies mainly focus 
on technology improvements instead of nonlinear dynamics 
analysis. 

Power regulators are inherently nonlinear circuits with 
extensive instability phenomena. Therefore, a range of 
bifurcation behaviors have been observed, such as flip 
bifurcation [9], Hopf bifurcation [10], border collision [11], 

quasi-periodicity [12], and chaos [13]. 
In [14], the authors reported that subharmonic oscillations 

occur if the duty cycle is greater than 0.5. Slope compensation 
technology is applied to solve the problem. The describing 
function model of the V2 constant on-time controlled buck 
converter was built in [1]. The subharmonic oscillation point is 
also predicted successfully. The averaged model based on the 
Krylov–Bogoliubov–Mitropolsky ripple estimation technique 
was built in [15], and ripple oscillation instability is solved 
based on the presented fixed compensation ramp method. In 
[16], the subharmonic oscillations of V2 and V2IC controlled 
buck converters were analyzed as the varied output voltages 
resulted in the alteration of the duty cycle. In [17], the authors 
studied the instability characteristics of the converter based on 
the Floquet method as the feedback factor varied and stabilized 
the entire system with the application of sinusoidal 
compensation. 

However, none of the abovementioned works investigated 
the mechanism of bifurcation and chaos of the system as the 
switching frequency varies. Typically, along with variation in 
the switching frequency, the dynamics of the converter show a 
series of bifurcations. Thus, whether the object will exhibit a 
similar phenomenon is still unknown. 

Generally speaking, instability phenomena, such as 
bifurcation, subharmonic oscillation, and intermittent 
oscillation, are detrimental to industrial electronics. Efforts 
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have been made to suppress unstable behavior in electronic 
circuits. Control of chaos was first conceived in [18] by 
injecting temporal parameter perturbations into the system to 
force the trajectory to approach the preset stable periodic orbit. 
A newly developed sliding mode controller with a 
time-varying manifold dynamic to compensate for the 
external excitation in chaotic systems was proposed in 
[19]. The resonant parametric perturbation methods in [20] 
and [21] have been applied to control chaos in power 
converters. In [22], a conventional feedback controller was 
designed to drive the chaotic Duffing equation to one of 
its inherent multiperiodic orbits. The features of these 
methods involve the use of an extra state feedback or parameter 
disturbance to force the unstable periodic orbit back to the 
stable period-1 limit cycle. 

Undoubtedly, instability phenomena exist in the buck 
converter under V2 manipulation. The extensive 
application of these circuits enables people to have a deep 
understanding of the essence of the phenomenon. Such 
knowledge could be used to improve the performance of 
these circuits as well as determine new fields of 
applications. In this study, the existence of bifurcation and 
chaos is described by calculating the monodromy matrix 
of the entire switching period. The mechanism of 
bifurcation and chaos control is described as well as the 
extended stable region of the stabilized system. 

The paper is organized as follows: The mathematical model 
of the V2 controlled buck regulator is described in Section II. 
The derived monodromy matrix of the closed-loop converter is 
analyzed in Section III. The mechanism of period-2 bifurcation 
and chaos exhibited by the system is investigated in Section IV. 
In Section V, the resonant parametric perturbation technique is 
applied to suppress the instability. The simulation and 
experimental results for the verification are given in Section VI, 
and conclusions are drawn in Section VII. 
 

II. MATHEMATICAL MODEL OF THE CONVERTER 
The circuit diagram of the V2 controlled buck converter is 

shown in Fig. 1(a), and steady-state waveforms for the 
continuous conduction mode are shown in Fig. 1(b), where Ur, 
RE, and G1 are the reference voltage, Equivalent Series 
Resistance (ESR) of the output capacitor, and feedback 
amplification factor, respectively. Given that the capacitance is 
large, voltage uC is essentially constant, and the output voltage 
is expressed as follows: 

.O L E Cu i R u= D +              (1) 
The mathematical model of the V2 switching technique 

can be expressed as follows: 
0.O Au U- =        (2) 

Substituting Eq. (2) and 

 
(a) 

 
(b) 

Fig. 1. V2 controlled buck converter. (a) Schematic circuit diagram 
of the system. (b) Illustrated steady-state waveforms. 
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into Eq. (1) obtains 

1

1

0
1

r
C L E

U Gu i R
G
×

- + D =
+

   (4) 

and 

1

1

0.
1

r
O

U Gu
G
×

- =
+

         (5) 

The value of RE is small. Therefore, 1 1G ?  leads to 

C O Au u U» » . The relationships between uO, Ur, and G1 in Eq. 
(5) are shown in Fig. 2. 

Supposing the system begins a new operating period at the 
time instant of t = nT, the switch turns on and the trajectories of 
the state variable x = [iL, uC]T run in subsystem [A1, B1]. When 
the switch is turned off at t = nT + dT, the converter runs in 
subsystem [A2, B2]. Afterward, the state variable x crosses the 
switch-off state and then turns back to x(nT). At the moment 
when the switch is turned off, the switching surface h2 is 
expressed by Eq. (2). Given that the capacity of C is large, uC is  
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TABLE I 
SYSTEM MATRICES OF V2 CONTROLLED BUCK CONVERTER 

State matrices
 Output 

matrices
 S
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kept almost constant at the switching frequency. As iO = uO/R ≈ 
uC/R, the switching surface, where uO is considered the 
controlled object, can be rewritten from Eq. (2) as follows: 

1
2

1

0.
1

r C
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U G uh u i R
G R

æ ö= - + - =ç ÷+ è ø
  (6) 

The state matrices of the subsystems that belong to the 
converter are shown in Table I. 

The system state vectors can be expressed as follows: 

( )

( )

1 1 1 ,
0

E L C
in

E
in

L C

E

RR i Ru
UL R R

U L
Ri u

C R R

+é ù- é ùê ú+ ê úê ú= + = +
ê úê ú-
ê úê ú ë û+ë û

f A x B  (7) 

( )

( )

2 2 2 .

E L C

E
in

L C

E

RR i Ru
L R R

U
Ri u

C R R

+é ù-ê ú+ê ú= + =
ê ú-
ê ú+ë û

f A x B   (8) 

With respect to a current conduction mode buck 
converter, the iterated equation of the switching point can 
be expressed as follows [23]: 

( ) ( ) ( )
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where d is the duty cycle and d′ = 1 − d. 
Numerically solving the previously presented equations 

using MATLAB with the Newton–Raphson method, the values 
of x and duty cycle d can be obtained for the periodic orbit. 
 

III. MONODROMY MATRIX 
The state variable trajectory of the closed-loop regulator 

forms a period-1 limit cycle in the phase space over a complete 
switching period. Based on theory of monodromy matrix [24], 
[25], if the Floquet multipliers of the monodromy matrix are all 
within the unit circle, then the system is stable. If the maximum 
Floquet multiplier equals 1, then bifurcation occurs; otherwise, 
it is unstable. 

Based on Eq. (6), the normal vector and derivative of hn2 
with respect to time t are expressed as follows: 

TABLE II 
CIRCUIT PARAMETERS OF V2 CONTROLLED BUCK CONVERTER 

Parameters Values Parameters Values 
Uin 12 V L 200 µH 
G1 20 C 2,200 µF 
d [0, 1] Ur 5 V 
RE 0.03 Ω R 3 Ω 
G2 1   
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0.hD =    (11) 
Substituting Eqs. (7) and (8) into Eq. (10) obtains 
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Based on Eqs. (10), (11), (12), and (13), the saltation matrix 

can be expressed as follows: 

[ ]2 1

1

.
T

T h
-

= +
+ D

f f n
S I

n f
  (14) 

Evidently, the following inequality is true: 

2 1 0.T T´ >n f n f         (15) 
Therefore, only one Filippov solution for the switching 

surface of the system is obtained [26], and the monodromy 
matrix over one switching period can be expressed as follows: 

2 1 1 .off on off on= F F = F FM S S S     (16) 

 

IV. MECHANISM OF THE NONLINEAR BEHAVIOR 
The converter is stable and the maximum Floquet multiplier 

is less than 1 if the switching frequency f is high. With 
decreasing f, one of the Floquet multipliers goes beyond the 
unit circle through the negative real line, which marks the onset 
of instability through a period-2 bifurcation. If f decreases 
continuously, then the state trajectory of the system will 
continue to double until it becomes chaotic. 

The selected parameters for the system are shown in Table II. 
The output voltage uO = 4.76 V was obtained by using Eq. (5). 
The equilibrium points of subsystems S1 and S2 are E1(4, 12) 
and E2(0, 0), respectively. Calculating Eq. (9) obtains the 
Floquet multipliers of monodromy matrix M, whose evolution 
diagram is shown in Fig. 3. To predict the critical value of the 
bifurcation point and the type, we assume that the absolute 
value of the maximum Floquet multiplier is 1, that is, 

max 1.Ml =   (17) 
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Fig. 3. Evolution diagram of the maximum Floquet multiplier. 
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Fig. 4. Stable period-1 waveforms and the switching surface. (a) 
Phase diagram of iL–uO. (b) Output voltage and switching 
surface. 
 

Substituting Eq. (16) into Eq. (17) results in f = 18.4 kHz. 
Thus, the eigenvalues are −1.000 and 0.422, respectively. One 
of the Floquet multipliers is located at the cross point between 
the unit circle and the negative real line, which predicts the 
onset of period-2 bifurcation. 
 
A. Period-1 

The closed-loop converter exhibits a periodic steady state at f 
= 25 kHz, as shown in Fig. 4. 

Considering the effect of RE on the filter capacitor, uC 
approximates but is not equal to uO. The state variable that we 
selected for use in this study is x = [iL, uC]T. 

The stable period-1 waveforms are shown in Figs. 4(a) and 
4(b). At the beginning of a period, the switch S turns on and the 
system runs in subsystem S1 starting from point A. Given 

( )Li A

( )Cu V
1C

1D

C

2D

2C
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( )t s

( )Ou V

Ou

2nh

 
(b) 

Fig. 5. Period-2 waveforms and the switching surface. (a) Phase 
diagram of iL–uO. (b) Output voltage and switching surface. 

 
that point A does not locate exactly on the periodic orbit of 
subsystem S1, the system will gradually approach the limit 
cycle that encompasses equilibrium point E1(4, 12) along the 
trajectory of ACB, which is the stable periodic orbit of 
subsystem S1. After a time interval t = dT, the trajectory 
reaches the switching surface h2, namely, point B. As a result, 
the system switches to subsystem S2 and approaches the 
equilibrium point E2(0, 0) starting from point B. The system 
trajectory is shown as BDA. 
 
B. Period-2 Bifurcation 

The period-2 bifurcation of the system with switching 
frequency at 17 kHz is shown in Fig. 5. Supposing switch tube 
S turns on at the beginning of the operating period, the 
converter runs in subsystem S1 and the starting point is C1. At 
this time subinterval, the running trajectory is shown as the 
curve of C1–D1. As soon as the state trajectory reaches the 
switching surface h2 at the time instant t = d1T, the switch tube 
S turns off and the converter switches to subsystem S2. The 
running trajectory is shown as the curve of D1–C2. At time 
instant t = T, a period is over and the switch S turns on again, 
with the trajectory approaching C2 instead of C1. At this time, 
the running trajectory is shown as the curve of C2–D2. At the 
time instant t = T + d2T, the state trajectory arrives at the 
switching surface h2, the switch turns off, and the converter 
switches to and runs in subsystem S2. The running trajectory is 
shown as the curve of D2–C1. When t = 2T, the system  
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(b) 

Fig. 6. Period-4 waveforms and the switching surface. (a) Phase 
diagram of iL–uO. (b) Output voltage and switching surface. 
 
trajectory goes back to point C1 and then approaches the next 
period. Repeating these processes constantly forms the 
period-2 oscillation. 

From the previously discussed analysis, we can conclude 
that, the steady-state solutions of subsystems S1 and S2 remain 
unchanged when switching frequency f changes. However, 
with the value of f decreasing, the distance between the 
switching equilibrium point x(dT) and the switching surface h2 
increases. As a result, the trajectory of subsystem S1 starting 
from point C1 takes a longer time interval, t = d1T, to reach the 
switching surface h2 in the first period, which causes the 
system trajectory to pass point D1 and reach point C2 during 
time (1 − d1)T when switch S turns off. Then, the second period, 
starting from point C2, begins. Consequently, the system 
trajectory returns to starting point C1 after two periods 2T. 
 
C. Period-4 Bifurcation and Chaos 

When f = 11.5 kHz, the period-4 bifurcation occurs in the 
system, as shown in Fig. 6. The mechanism of period-4 
bifurcation is similar to period-2 bifurcation and is not 
discussed here. 

As the switching frequency f continues to decrease, period-2 
bifurcation correspondingly occurs until chaos is achieved. The 
phase diagram is shown in Fig. 7, with switching frequency 
equal to 9.5 kHz and uC is aperiodic. Many collision points 
exist between the state trajectory of the system and switching  
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(b) 

Fig. 7. Chaos waveforms and the switching surface. (a) Phase 
diagram of iL–uO. (b) Output voltage and switching surface. 

 
surface h2. This mechanism can be interpreted as follows: 
Given that the system trajectory sets off from subsystem S1, it 
collides with the switching interface after some time, thereby 
enabling the system to enter subsystem S2. Considering the 
effect of the periodic pulse signal, the system goes back to 
subsystem S1. However, the collision points between the state 
trajectory of the system and switching surface differ with time. 
As such, if we consider the collision point as the initial value, 
an infinite number of trajectories run in the subsystem and 
approach the equilibrium point of S2 gradually, which generates 
chaos and oscillation in the system. 
 

V. STABILIZATION CONTROL 
The resonant parametric perturbation method is applied to 

control the aforementioned chaotic system and expand the 
stability boundary [20]. A sinusoidal signal Ue with the same 
frequency as driving signal f is added to Ur. The sinusoidal 
signal Ue takes the form asin(2πft). After compensation, the 
reference voltage can be expressed as follows: 

( )sin 2 .re r e rU U U U a ftp= + = +      (18) 

 
A. Analysis of the Steady-State Error 

Adding the reference voltage signal changes the expression 
of the switching surface h2 in the system, thereby changing the 
duty cycle d. The duty cycle of the system before and after 
sinusoidal voltage compensation is denoted as d and d% , 
respectively. The change ratio ∆d of the duty cycle is 
calculated as follows: 
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TABLE III 
STABILITY BOUNDARY WHEN max 1Mel =  

f amin 
17.5 kHz 2.503e−4 
15.5 kHz 1.455e−3 

12.5 kHz 1.918e−2 

9.5 kHz 7.839e−2 
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Fig. 8. Region of stability of the period-1 orbit in the a–f 
parameter space. 

 
( ) ( )sin 2

.re r in

r in r r

aU U U a ft
d

U U U U
p-

D = = £  (19) 

As the value of a is small, apparently, it could have the 
possibility ∆d ≈ 0. As such, after adding the sinusoidal 
compensation voltage Ue, the duty cycle of the system, the 
output voltage, and inductor current hardly vary. Thus, no 
significant changes were observed for the steady-state error of 
the system. 
 

B. Monodromy Matrix 
With the resonant parametric perturbation added to the 

system, the switching surface transforms to 

( ) 1

1

sin 2
0.

1
r C

e C L E

U a ft G uh u i R
G R
p+é ù æ öë û= - + - =ç ÷+ è ø

 (20) 
The derivative of the switching surface and the saltation 

matrix are shown as follows: 
( )1

1

2 cos 2
,

1
e

e

a fG fd T
h

G
p p

D = -
+

 (21) 

( )
1 ,

e

T
off on e

e T
e on e d T

h
-

= +
+ D

f f n
S I

n f
 (22) 

where [ ]1 T
e E ER R R= -n . 

The transmission matrices are denoted as 1 eA d T
eon eF =  and 

( )2 1 eA d T
eoff e -F = . The monodromy matrix is expressed as 

follows: 

1 .e eoff e eon= F FM S   (23) 

The minimum boundary of amin is shown in Table III and Fig. 
8 based on Eq. (23). 

TABLE IV 
FLOQUET MULTIPLIER AT 9.5 kHzf =  

a λMe Max|λMe| State 

0.078 
−1.0897, 
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Fig. 9. Phase diagram after stabilization control at f = 9.5 kHz. (a) 
Stable period-1 at a = 0.08. (b) Period-2 bifurcation at a = 0.078. 
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Fig. 10. Waveforms of output voltage. (a) Transient responses of 
the output voltage. (b) Output voltage uO and switching surfaces 
he and hn2. 
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Fig. 11. Circuit diagram of V2 controlled buck converter. 
 

     
(a)    (b)        (c) 

     
(d)    (e)        (f) 

Fig. 12. Experimental waveforms of V2 controlled buck converter. (a) The waveforms of period-1 when f = 25 kHz. (b) Period-2 bifurcation 
when f = 17 kHz. (c) Period-4 bifurcation when f = 11.5 kHz. (d) Chaos when f = 9.5 kHz. (e) Controlling chaos to period-2 bifurcation 
when a = 0.078. (f) Controlling chaos to stable period-1 when a = 0.08. 
 

To verify the stable region shown in Fig. 8, the simulation 
results around the boundary conditions are given as follows: 
Based on Fig. 8, the stable boundary at f = 9.5 kHz is a = 
0.07839. At the time instant t = 0.08 s, two sinusoidal 
compensation voltages, Ue = 0.078sin(2πft) and Ue = 

0.08sin(2πft), are added to Ur. The values of the switching 
point and characteristic multiplier are shown in Table IV. The 
phase diagrams of the two simulations are shown in Fig. 9. The 
system is stabilized to period-2 bifurcation at a = 0.078 and 
enters the stable period-1 trajectory at a = 0.08. The transient 
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responses of the output voltage and switching surface are 
shown in Fig. 10. 
C. Mechanism of Chaos Control 

Before and after perturbation is applied, the switching 
surfaces shown in Fig. 9(b) are expressed as follows: 

1
2

1

0,
1

C r
n C L E

u U Gh u i R
R G

æ ö= + - - =ç ÷ +è ø
 (24) 

( ) 1

1

sin 2
0.

1
rC

e C L E

U a ft Guh u i R
R G

p+é ùæ ö ë û= + - - =ç ÷ +è ø
  (25)

  
Compensation enables the output voltage of the converter uO 

to intersect point P (which belongs to he) instead of point Q, 
which shortens the distance between the equilibrium point 
x(deT) and the switching surface h2, which decreases the duty 
cycle of the system. The converter was forced back to stable 
period-1 orbit. 

  

VI. EXPERIMENTAL DETAILS 
The experimental circuit diagram shown in Fig. 11 is set up 

based on Fig. 1. In the experiment, the IRF640 type MOSFET 
and MBR3045PT are selected as the power switch and diode, 
respectively. The pulse signal and the sine compensation 
voltage signal are generated by a dual output function signal 
generator. We use LM358 and LM393 as the amplifier and 
comparator, respectively. The RS flip-flop consists of CD4001, 
whereas the drive circuit is equipped with the TLP250 and is 
supplied by an independent +12 power source. 

In the converter, the ESR of the output capacitor 
significantly influences the instability behavior of the 
regulator. To facilitate integration, the ESR is shown in Fig. 1. 
However, in industrial application, the ESR will not actually 
be implemented. As a result, uC and uO are equal to each 
other. 

The experimental waveforms of the closed-loop system are 
shown in Figs. 12(a) to 12(f). After sinusoidal signal 
compensation, Ue = 0.078sin(2πft) and Ue = 0.08sin(2πft) are 
added to the reference voltage Ur. Then, the system will be 
stabilized to the period-2 bifurcation or the stable state of 
period-1. Considering the parasitic parameters and 
measurement errors, the experiment results slightly deviate 
from the simulation. In particular, when the compensation 
voltage Ue = 0.8sin(2πft) is injected to the system, period-2 
bifurcation was achieved instead of the stable state of period-1. 
By contrast, the system achieves the stable state of period-1 
when Ue = 0.2sin(2πft) is applied to the experiment. However, 
the state deviation is small and the analytical method is proven 
to be effective. 

 

VII. CONCLUSIONS 
The switching frequency of the converter is an important 

design objective in the power supply field. An improper 

switching frequency would render the system unstable, which 
is often encountered by engineers. A detailed analysis of a 
buck converter manipulated using the V2 technique with 
variations in the operating period is conducted based on the 
resulting monodromy matrix. The switching frequency taken as 
the bifurcation parameter reveals some interesting nonlinear 
phenomena in the converter. With the decrease in f, the series 
of period-2 bifurcation up to the chaotic state is observed. The 
mechanism of bifurcation and chaos is analyzed in detail in this 
study. To suppress the instability behavior, the so-called 
resonant parametric perturbation technique is applied, which 
helps control the chaos phenomenon. The extended stable 
region of the stabilized system is obtained, which is proven to 
be true by the simulation and experimental results. 
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