Zero-Voltage and Zero-Current Switching Interleaved Two-Switch Forward Converter

Enhui Chu ${ }^{\dagger}$, Jianqun Bao*, Qi Song*, Yang Zhang*, Haolin Xie ${ }^{*}$, Zhifang Chen ${ }^{*}$, and Yue Zhou*
${ }^{\dagger},{ }^{*}$ College of Information Science and Engineering, Northeast University, Liaoning, China

Abstract

In this paper, a novel zero-voltage and zero-current switching (ZVZCS) interleaved two switch forward converter is proposed. By using a coupled-inductor-type smoothing filter, a snubber capacitor, the parallel capacitance of the leading switches and the transformer parasitic inductance, the proposed converter can realize soft-switching for the main power switches. This converter can effectively reduce the primary circulating current loss by using the coupled inductor and the snubber capacitor. Furthermore, this converter can reduce the reverse recovery loss, parasitic ringing and transient voltage stress in the secondary rectifier diodes caused by the leakage inductors of the transformer and the coupled inductance. The operation principle and steady state characteristics of the converter are analyzed according to the equivalent circuits in different operation modes. The practical effectiveness of the proposed converter was is illustrated by simulation and experimental results via a $500 \mathrm{~W}, 100 \mathrm{kHz}$ prototype using the power MOSFET.

Key words: Interleaved, Passive auxiliary resonant circuit, Two switch forward converter, Zero-current-switching (ZCS), Zero-voltage-switching (ZVS)

I. INTRODUCTION

With the development of power electronics technology, soft switching technology plays an important role in high frequency processes of PWM converters. Under the same condition, the soft switching converters can work at higher switching frequency compared to the hard switching converters. Meanwhile, soft switching technology can improve the operating reliability of switches, reduce the sizes of converters, suppress excessive $d i / d t$ and $d v / d t$, reduce power losses and enhance efficiency. Moreover, it can effectively cut down electromagnetic interference (EMI) and system noise [1], [2].

The forward converter is a widely used isolated DC/DC converter, especially in low and medium power applications [3]-[10]. Since the requirements of topological standardization in system integration are higher and higher, a series of forward converters has been presented. Two-switch forward converters [11]-[19] reduce the voltage stress on switches and creates development conditions for high-input-voltage forward

[^0]converters. The active clamp forward converters [14]-[18] solve the problem of high turn-off voltage spikes at the switches of forward converters. However, these two types of converters both increase the number of switches without increasing the transmission power. Although the active clamp circuit can create the ZVS turn-on condition for the main and auxiliary switches, the efficiency of the converter is restricted as a result of increasing the resonant circuit losses and circulating losses. Interleaved two-switch forward converters [20]-[24] reduce the output filter current ripple and the filter elements size. Moreover, they improve the power density and the fault tolerance of the converter. However, the interleaved structure cannot solve the problem of high turn-off voltage spikes at the switches.

Paper [25] proposed an interleaved two-switch forward converter with a coupled inductance. By employing a coupled output inductor, parallel capacitor of the switch and transformer leakage inductors, the converter in [25] can realize soft switching for all of the switches, reduce the circulating current, and achieve high efficiency. However, in order to rapidly decrease the primary current to zero, it has to increase the turn-ratio of the coupled inductor. In this case, the voltage stress and parasitic ringing in the freewheeling and rectification diodes are increased. For the purpose of
suppressing the parasitic ringing, the saturable reactors connected in series with the secondary windings are essential [26]. However, the use of the saturable reactors produces an additional loss and heat in the saturable core.

Accordingly, based on the converter proposed in [25], aiming at the DC converters used in aviation secondary power supplies, this paper proposed a novel interleaved two-switch forward converter that employs a coupled inductor and a snubber capacitance. The proposed converter has the following advantages. (1) By using a simple auxiliary circuit, the proposed converter can realize soft-switching for all of the power switches. In addition, this topology improves the reset speed of the primary current. Therefore, the circulating current loss is further reduced. (2) By increasing the ratio of the coupled inductor, the ZCS control of the lagging switches can be more easily realized. In addition, the proposed converter can effectively reduce the reverse recovery loss, the parasitic ringing and voltage stress in the secondary rectification diodes. (3) The circulating current of the auxiliary circuit can be self-adjusted according to the load, which is helpful for improving efficiency under a light load. Consequently, the converter can maintain a high efficiency over a wide load range.

II. Circuit Topology and Operation PRINCIPLE

A. Circuit Topology

Fig. 1 shows the topology structure of the proposed ZVZCS ITSF converter with a coupled inductance and a snubber capacitor. E is the input dc voltage source. The switches S_{1} and S_{4}, the transformer T_{2}, the diodes D_{2} and D_{4} and the rectifier diode D_{6} constitute one of the forward converters. The switches S_{2} and S_{3}, the transformer T_{1}, the diodes D_{1} and D_{3} and the rectifier diode D_{5} constitute the other forward converter. The passive snubber capacitors $C_{1}\left(C_{2}\right)$ parallel with $S_{1}\left(S_{2}\right)$. $L_{s 1}\left(L_{s 2}\right)$ is the secondary equivalent leakage inductance of the transformer $T_{1}\left(T_{2}\right) . L_{m 1}\left(L_{m 2}\right)$ is the magnetizing inductance of the transformer $T_{1}\left(T_{2}\right) . L_{d 1}$ and $L_{d 2}$ compose the coupled output inductor. The secondary auxiliary circuit consists of the snubber capacitor C_{s}, the auxiliary diodes $D_{s 1}$ and $D_{s 2}$, the freewheeling diode D_{f} and the coupled output inductor. C_{o} is the output filter capacitor. R_{o} is the load.

B. Operation Principle

Working waveforms and operation stages of the proposed converter are illustrated in Fig. 2 and Fig. 3, respectively. As shown in Fig. 2, $v_{g 1} \sim v_{g 4}$ are driving waveforms of $S_{1} \sim S_{4}$, respectively. Moreover, $S_{1}\left(S_{4}\right)$ and $S_{2}\left(S_{3}\right)$ are driven complementary with a dead-time $t_{d} . S_{4}\left(S_{3}\right)$ turns off after S_{1} $\left(S_{2}\right)$ with a delay-time $t_{\delta} . T_{s}$ is one switching period. $t_{o n}$ is the conduction time of the switches. The converter output duty

Fig. 1. Proposed ZVZCS ITSF converter.

Fig. 2. Working waveforms of the proposed converter.
ratio is $D=\left(t_{\text {on }}-t_{\delta}\right) / T_{h}$, where $T_{h}=T_{s} / 2$.
In order to simplify the analysis, several assumptions are made as follows.
(1) All of the switches, diodes, capacitors and inductors are ideal devices.
(2) The passive snubber capacitors in parallel with the switches are expressed as $C_{1}=C_{2}=C$.
(3) N_{p} and N_{s} are the turns of the transformer primary and secondary, respectively. In addition, the transformer turn ratio is $N_{T}=N_{p} / N_{s}$. The roll line resistance of the transformer is neglected.
(4) The magnetizing inductances are expressed as $L_{m 1}=$
$L_{m 2}=L_{m}$, which are large enough to keep the magnetizing current constant during the charging or discharging periods of C_{1} or C_{2}.
(5) The coupled output inductors $L_{d 1}$ and $L_{d 2}$ are tightly coupled with each other. n_{1} and n_{2} are the turns of the coupled output inductors $L_{d 1}$ and $L_{d 2}$, respectively. In addition, the coupled inductor turn ratio is $m=n_{2} / n_{1}$. Furthermore, $L_{d 1}$ is large enough and the current through $L_{d 1}$ is continuous.
(6) The output capacitor C_{o} is large enough to be considered as a voltage source V_{o}.

Before t_{0}, referring to Fig. $1, S_{1}, S_{4}$ and D_{6} are in the on state. Meanwhile, S_{2} and S_{3} are in the off state, and $D_{1} \sim D_{5}$, $D_{s 1}, D_{s 2}$ and D_{f} are reverse biased. The voltages across C_{1} and C_{2} are zero and E, respectively. In addition, the voltage across the snubber capacitor is $V_{C s \text {-max. }}$. The dc source transfers energy to the load through the transformer and the rectifier circuit. The magnetizing current $i_{L m 2}$ increases in a linear way. $i_{L m 2}$ satisfies $i_{u}=i_{L m 2}+i_{T 2}$, where $i_{T 2}$ is the current through the primary winding of the transformer T_{2}. The ten converter working stages are analyzed as follows.

Stage $1\left[t_{0} \sim t_{1}\right]\left[\right.$ see Fig. 3(a)]: At t_{0}, S_{1} ZVS turns off. In addtion, the energy stored in C_{2} starts transferring to $C_{1} . C_{1}$ is charged while C_{2} is discharged. $L_{d 1}$ and $L_{m 2}$ are large enough so that $i_{D 6}$ and $i_{L m 2}$ are considered to be constant during this stage. The voltage across C_{1} increases linearly as:

$$
\begin{equation*}
v_{C 1}(t)=\frac{i_{L m 2}\left(t_{0}\right)+i_{D 6}\left(t_{0}\right) / N_{T}}{2 C}\left(t-t_{0}\right) \tag{1}
\end{equation*}
$$

The voltage across C_{2} decreases linearly as:

$$
\begin{equation*}
v_{C 2}(t)=E-v_{C 1}(t) \tag{2}
\end{equation*}
$$

Where $i_{\text {Lm2 } 2}\left(t_{0}\right)$ is the maximum current value of the magnetizing inductance $L_{m 2}$. During this stage, both the primary voltage of the transformer T_{2} and the voltage v_{d} rectified by D_{6} decrease linearly. v_{d} is expressed as:

$$
\begin{equation*}
v_{d}(t)=\frac{E-v_{C 1}(t)}{N_{T}} \tag{3}
\end{equation*}
$$

The voltage of the coupled inductor $L_{d 2}$ decreases linearly with a decrease of $v_{d .} v_{L d 2}$ is expressed as:

$$
\begin{equation*}
v_{L d 2}(t)=m\left[v_{d}(t)-V_{o}\right] \tag{4}
\end{equation*}
$$

When $v_{d}=V_{C s-m a x}-v_{L d 2}, D_{s 2}$ turns on and Stage 1 ends. At t_{1}, the voltage across C_{1} is expressed as:

$$
\begin{equation*}
v_{C_{1}}\left(t_{1}\right)=E-N_{T}\left[\frac{V_{C s-\max }+m V_{o}}{1+m}\right] \tag{5}
\end{equation*}
$$

Stage $2\left[t_{1} \sim t_{2}\right]\left[\right.$ see Fig. 3(b)]: At $t_{1}, D_{s 2}$ turns on and the load current begins flowing through $D_{s 2}$. Since C_{s} is large enough, $i_{L m 2}$ and $v_{C s}$ remain constant during this stage. v_{d} is clamped at $\left(V_{C s \text {-max }}+m V_{o}\right) /(1+m)$. The voltage $v_{C 1}$ across C_{1} and the current $i_{D 6}$ through D_{6} are expressed as:

$$
\begin{gather*}
v_{C 1}(t)=v_{C_{1}}\left(t_{1}\right)+\left[i_{D_{6}}\left(t_{1}\right)+N_{T} i_{L_{m 2}}\left(t_{1}\right)\right] \sqrt{\frac{L_{s}}{2 C}} \sin \left[\frac{t-t_{1}}{\sqrt{2 N_{T}{ }^{2} L_{s} C}}\right] \tag{6}\\
i_{D 6}(t)=\left[N_{T} i_{L_{m 2}}\left(t_{1}\right)+i_{D_{6}}\left(t_{1}\right)\right] \cos \left[\frac{t-t_{1}}{\sqrt{2 N_{T}{ }^{2} L_{s} C}}\right]-N_{T} i_{L_{m 2}}\left(t_{1}\right) \tag{7}
\end{gather*}
$$

Where $i_{L m 2}\left(t_{1}\right)=i_{L m 2}\left(t_{0}\right), i_{D 6}\left(t_{1}\right)=i_{D 6}\left(t_{0}\right)$.
In order to realize the turn-on condition for $D_{s 2}$ and to provide a reliable discharge circuit for C_{s}, it should be ensured that $\left(V_{C s \text {-max }}+m V_{o}\right) /(1+m)<E / N_{T}$.

At $t_{2}, v_{C 1}$ rises to $E, v_{C 2}$ and the transformer primary voltage drop to zero. D_{2} turns on. Stage 2 ends.

Stage $3\left[t_{2} \sim t_{3}\right]$ [see Fig. 3(c)]: At t_{2}, D_{2} turns on, and the voltage across S_{2} is clamped at zero. The magnetizing current $i_{\text {Lm2 }}$ continues to be constant. C_{s} resonates with the transformer secondary leakage inductance $L_{s}, v_{C s}$ and $i_{C s}$ are expressed as:

$$
\begin{align*}
& v_{C_{s}}(t)=\left[V_{C s-\max }+m V_{o}\right] \cos \left(\frac{t-t_{2}}{\sqrt{(1+m)^{2} C_{s} L_{s}}}\right)-m V_{o} \tag{8}\\
& i_{C_{s}}(t)=\left[\frac{V_{C s-\max }+m V_{o}}{1+m}\right] \sqrt{\frac{C_{s}}{L_{s}}} \sin \left(\frac{t-t_{2}}{\sqrt{(1+m)^{2} C_{s} L_{s}}}\right) \tag{9}
\end{align*}
$$

Due to the effect of the snubber capacitance C_{s} and the transformer secondary leakage inductance L_{s}, the current $i_{D 6}$ through D_{6} decreases as:

$$
\begin{equation*}
i_{D_{6}}(t)=i_{D_{6}}\left(t_{2}\right)-\left(V_{C s-\max }+m V_{o}\right) \sqrt{\frac{C_{s}}{L_{s}}} \sin \left(\frac{t-t_{2}}{\sqrt{(1+m)^{2} C_{s} L_{s}}}\right) \tag{10}
\end{equation*}
$$

Where $i_{L m 2}\left(t_{2}\right)=i_{L m 2}\left(t_{0}\right)$.
At $t_{3}, v_{C s}$ decreases to zero. $D_{s 2}$ turns off, and D_{f} turns on, and stage 3 ends. The duration of this stage is expressed as:

$$
\begin{equation*}
t_{23}=\sqrt{(1+m)^{2} L_{s} C_{s}} \arccos \left[\frac{m V_{o}}{V_{C s-\max }+m V_{o}}\right] \tag{11}
\end{equation*}
$$

Stage $4\left[t_{3} \sim t_{4}\right]$ [see Fig. 3(d)]: At $t_{3}, D_{s 2}$ turns off, and D_{f} turns on. The load current starts flowing through D_{f}. The magnetizing current $i_{L m 2}$ continues to be constant. The current $i_{D 6}$ through D_{6} decrease linearly by the force of v_{d}, and its expression is:

$$
\begin{equation*}
i_{D_{6}}(t)=i_{D_{6}}\left(t_{3}\right)-\frac{m V_{o}}{1+m} \frac{1}{L_{s}}\left(t-t_{3}\right) \tag{12}
\end{equation*}
$$

The primary current i_{u} decrease in a linear way as:

$$
\begin{equation*}
i_{u}(t)=i_{L m 2}\left(t_{3}\right)+\frac{i_{D 6}(t)}{N_{T}} \tag{13}
\end{equation*}
$$

Where $i_{L m 2}\left(t_{3}\right)=i_{L m 2}\left(t_{0}\right)$.
When $i_{D 6}$ decreases to zero at t_{4}, i_{u} decreases to the magnetizing current $i_{L m}$. D_{6} turns off naturally, and stage 4 ends. The duration of this stage is expressed as:

Fig. 3. Equivalent circuits of the operation stages. (a) Stage 1 [$\left.t_{0}-t_{1}\right]$. (b) Stage $2\left[t_{1}-t_{2}\right]$. (c) Stage 3 [$\left.t_{2}-t_{3}\right]$. (d) Stage 4 [$\left.t_{3}-t_{4}\right]$. (e) Stage 5 $\left[t_{4}-t_{5}\right]$. (f) Stage $6\left[t_{5}-t_{6}\right]$. (g) Stage $7\left[t_{6}-t_{7}\right]$. (h) Stage $8\left[t_{7}-t_{8}\right]$. (i) Stage $9\left[t_{8}-t_{9}\right]$. (j) Stage $10\left[t_{9}-t_{10}\right]$.

$$
\begin{equation*}
t_{34}=\frac{1+m}{m V_{o}} L_{s} i_{D 6}\left(t_{3}\right) \tag{14}
\end{equation*}
$$

Stage $5\left[t_{4} \sim t_{5}\right]$ [see Fig. 3(e)]: At t_{4}, D_{6} turns off. The primary current i_{u}, which is equals to the magnetizing current $i_{L m}$, flows through S_{4} and D_{2} for circulating. At the same time, the load current I_{o} flows through $D_{f,} L_{d 1}$ and $L_{d 2}$ for freewheeling. Because $i_{L m}$ is very small, only a few circulating current losses are produced. If S_{4} turns off during the circulating period, near ZCS turn-off for S_{4} is achieved due to the existence of the magnetizing current $i_{L m 2}$.

Stage $6\left[t_{5} \sim t_{6}\right]\left[\right.$ see Fig. 3(f)]: At t_{5}, S_{4} turns off, and D_{4} turns on. The magnetizing current $i_{L m 2}$ feeds back energy to the dc voltage source through D_{2} and D_{4}. The transformer T_{2} enters the magnetic reset process. $i_{L m 2}$ decreases linearly as:

$$
\begin{equation*}
i_{L_{m 2}}(t)=i_{L_{m 2}}\left(t_{5}\right)-\frac{E}{L_{m}}\left(t-t_{5}\right) \tag{15}
\end{equation*}
$$

Where $i_{L m 2}\left(t_{5}\right)=i_{L m 2}\left(t_{0}\right)$.
At t_{6}, S_{3} turns on, and stage 6 ends. Due to the effect of $L_{s 1}$, the current through S_{3} gradually increases from zero, and S_{3} can achieve ZCS turn-on.

Stage 7 [$\left.t_{6} \sim t_{7}\right]$ [see Fig. $3(\mathrm{~g})$]: At t_{6}, S_{3} and D_{5} turn on. D_{f} keeps conducting to clamp v_{d} at $m V_{o} /(1+m) . i_{L m 2}$ continues to decrease linearly as (15). The current $i_{D 5}$ through D_{5} and the magnetizing current $i_{L m 1}$ of the transformer T_{1} increase linearly from zero as (16) and (17), respectively.

$$
\begin{gather*}
i_{D_{5}}(t)=\frac{E-N_{T} V_{d}}{N_{T} L_{s}}\left(t-t_{6}\right) \tag{16}\\
i_{L m 1}(t)=\frac{E}{L_{m 1}}\left(t-t_{6}\right) \tag{17}
\end{gather*}
$$

The current i_{53} through S_{3} increases linearly from zero as:

$$
\begin{equation*}
i_{S_{3}}(t)=\left[\frac{E}{L_{m}}+\frac{E-N_{T} V_{d}}{N_{T}^{2} L_{s}}\right]\left(t-t_{6}\right) \tag{18}
\end{equation*}
$$

When $i_{u}(t)=i_{\operatorname{Lm2} 2}(t)-i_{S 3}(t)=0, D_{2}$ turns off. Due to the effect of D_{2} and $L_{m 1}, S_{2}$ achieves ZVZCS turn-on. When the current through D_{5} increases to the load current I_{o}, D_{f} turns off, and stage 7 ends. The duration of this stage is expressed as:

$$
\begin{equation*}
t_{67}=\frac{I_{o} N_{T} L_{s}}{\left(E-N_{T} \frac{m V_{o}}{1+m}\right)} \tag{19}
\end{equation*}
$$

Stage $8\left[t_{7} \sim t_{8}\right]$ [see Fig. 3(h)]: At t_{7}, D_{f} turns off. The dc source transfers energy to the load through the transformer T_{1}, D_{5} and $L_{d 1}$. $D_{s 1}$ turns on. The leakage inductance L_{s} of the transformer and the snubber capacitor C_{s} begin to resonate. The voltage across C_{s} increases from zero. $v_{C s}$ and $i_{C s}$ are expressed as:

$$
\begin{equation*}
v_{C_{s}}(t)=(1+m)\left(\frac{E}{N_{T}}-V_{o}\right)\left(1-\cos \frac{t-t_{7}}{\sqrt{(1+m)^{2} L_{s} C_{s}}}\right) \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
i_{C_{s}}(t)=\left(\frac{E}{N_{T}}-V_{o}\right) \sqrt{\frac{C_{s}}{L_{s}}} \sin \left[\frac{t-t_{7}}{\sqrt{(1+m)^{2} L_{s} C_{s}}}\right] \tag{21}
\end{equation*}
$$

At the moment of $1 / 2$ a resonant period, $v_{C s}$ is charged to the maximum value $V_{C s \text {-max. }}$. The secondary transient overvoltage is clamped at $V_{o}+V_{C s-m a x} /(1+m)$, and $i_{C s}$ decreases to zero. $D_{s 1}$ softly turns off, and stage 8 ends. $V_{C s-m a x}$ is expressed as:

$$
\begin{equation*}
V_{C s-\max }=2(1+m)\left(\frac{E}{N_{T}}-V_{o}\right) \tag{22}
\end{equation*}
$$

The duration of this stage is expressed as:

$$
\begin{equation*}
t_{78}=\pi \sqrt{(1+m)^{2} L_{s} C_{s}} \tag{23}
\end{equation*}
$$

Stage 9 [t8 $\left.\sim t_{9}\right]\left[\right.$ see Fig. 3(i)]: At $t_{8}, D_{s 1}$ turns off. $i_{L m 2}$ continues to decrease as (15). At $t_{9}, i_{L m 2}$ decreases to zero, and D_{4} turns off. The transformer T_{2} completes its magnetic reset, and stage 9 ends.

Stage $10\left[t_{9} \sim t_{10}\right]$ [see Fig. 3(j)]: At t_{9}, D_{4} turns off. All of the energy stored in the transformer T_{2} is completely delivered to the dc source. In addition, the dc source supplies energy to the load through T_{1}. Due to the effect of $E, i_{L m 1}$ continues to increase linearly as (17).

At t_{10}, S_{2} turns off. Half of the working stages of a switching period are completed. Due to the symmetrical configuration of the proposed converter, the analysis of the second half of the working stages is omitted.

C. Operation Principle at Light Load

At heavy load, the snubber capacitor voltage $v_{C s}$ is completely discharged to zero through the resonant process with the leakage inductance of the transformer during stage 3. However, at light load, the snubber capacitor has not yet been reduced to zero, while the current $i_{D 6}$ through D_{6} has been decreased to zero. In this case, the duration of stage 3 is expressed as:

$$
\begin{equation*}
t_{23}=\sqrt{(1+m)^{2} L_{s} C_{s}} \arcsin \left[\sqrt{\frac{L_{s}}{C_{s}}} \frac{i_{D 6}\left(t_{0}\right)}{V_{C s-\max }+m V_{o}}\right] \tag{24}
\end{equation*}
$$

After the current $i_{D 6}$ through D_{6} decreases to zero, the snubber capacitor supplies the load. Under the effect of the load current $I_{o}, v_{C s}$ decreases linearly as:

$$
\begin{equation*}
v_{C s}(t)=v_{C s}\left(t_{3}\right)-\frac{I_{o}}{C_{s}}\left(t-t_{3}\right) \tag{25}
\end{equation*}
$$

Where $v_{C s}\left(t_{3}\right)$ can be obtained by (8) and (24).
The snubber capacitor is discharged until t_{7}. Then C_{s} begins to be resonantly charged. The difference between the maximum and minimum values of the snubber capacitor voltage $v_{C s}$ is obtained by integrating the load current:

$$
\begin{equation*}
v_{C s-\max }-v_{C s-\min }=\frac{1}{C_{s}} \int_{t_{1}}^{t_{7}} i_{C s}(t) d t \approx \frac{I_{o}}{C_{s}}(1-D) \frac{T_{s}}{2} \tag{26}
\end{equation*}
$$

Fig. 4. Waveforms of rectified voltage and filter current.
According to (26), at light load, the resonant charging current of the snubber capacitor in (21) changes as follows:

$$
\begin{align*}
i_{C \mathrm{~s}}(t) & =\frac{\left(v_{C s-\max }-v_{C s-\min }\right)}{1+m} \sqrt{\frac{C_{s}}{L_{s}}} \sin \frac{\left(t-t_{7}\right)}{\sqrt{(1+m)^{2} L_{s} C_{s}}} \\
& \approx \frac{(1-D)}{(1+m)} \frac{T_{s}}{2} \frac{I_{o}}{C_{s}} \sqrt{\frac{C_{s}}{L_{s}}} \sin \frac{\left(t-t_{7}\right)}{\sqrt{(1+m)^{2} L_{s} C_{h}}} \tag{27}
\end{align*}
$$

According to (27), it can be observed that, under light load, the charging current of the snubber capacitor varies with the change of the load current. This means that the secondary circulating current is self-adjusted in accordance with the load condition.

III. Steady-State Characteristics of the CONVERTER

A. The Maximum Current Stress on Switches

Fig. 4 shows waveforms of the rectified voltage v_{d} and output filter current $i_{L d 1}$ of the proposed converter and the output filter current $i_{L t 1}$ of the converter proposed in [25]. $\Delta I_{L d 1}$ and $\Delta I_{L d 1-r e}$ are the linear increment and resonant increment of the output filter current $i_{L d 1}$ in the proposed converter. I_{o} is the output load current. Due to the very short commutation time of the current flowing through $D_{5}\left(D_{6}\right), D_{s 2}$ and D_{f}, the current $i_{L d 1}$ of $L_{d 1}$ satisfies the following equations:

$$
\left\{\begin{array}{l}
n_{1} i_{L d 1}\left(t_{1}\right)=\left(n_{1}+n_{2}\right) i_{L d 1}\left(t_{4}\right) \tag{28}\\
\left(n_{1}+n_{2}\right) i_{L d 1}\left(t_{6}\right)=n_{1} i_{L d 1}\left(t_{7}\right)
\end{array}\right.
$$

Because the average value of $i_{L d 1}$ of $L_{d 1}$ is equal to the load current I_{o}, the following equation is satisfied:

$$
\begin{align*}
I_{o} & =\frac{1}{T_{h}} \int_{0}^{T_{h}} i_{L d 1}(t) d t \\
& =\Delta I_{d}+\frac{1}{2} D\left(2 i_{L d 1}\left(t_{1}\right)-\Delta I_{L d 1}\right)+\frac{(1-D)\left(2 i_{L d 1}\left(t_{1}\right)-\Delta I_{L d 1}\right)}{2(1+m)} \tag{29}
\end{align*}
$$

From (29), $i_{D 6}\left(t_{0}\right)$ is approximately equal to:

$$
\begin{equation*}
i_{D 6}\left(t_{0}\right) \approx i_{L d 1}\left(t_{1}\right)=\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}+\frac{\Delta I_{L d 1}}{2} \tag{30}
\end{equation*}
$$

The linear increment $\Delta I_{L d 1}$ is expressed as:

$$
\begin{equation*}
\Delta I_{L d 1}=i_{L d 1}\left(t_{1}\right)-i_{L d 1}\left(t_{7}\right)=\frac{(1-D) V_{o} T_{h}}{(1+m) L_{d 1}} \tag{31}
\end{equation*}
$$

$i_{L d 1}\left(t_{7}\right)$ is expressed as:

$$
\begin{equation*}
i_{L d 1}\left(t_{7}\right)=\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}-\frac{\Delta I_{L d 1}}{2} \tag{32}
\end{equation*}
$$

ΔI_{d} is expressed as:

$$
\begin{equation*}
\Delta I_{d}=\frac{m}{T_{h}} \int_{t_{7}}^{t_{8}} i_{C s}(t) d t=\frac{2 m(1+m)\left(\frac{E}{N_{T}}-V_{o}\right) C_{s}}{T_{h}} \tag{33}
\end{equation*}
$$

The resonant increment $\Delta I_{\text {Ld1-re }}$ of the output filter current $i_{L d 1}$ is expressed as:

$$
\begin{equation*}
\Delta I_{L d 1-r e}=\left(\frac{E}{N_{T}}-V_{o}\right)\left(\frac{\pi \sqrt{L_{s} C_{s}}}{2 L_{d 1}}+m \sqrt{\frac{C_{s}}{L_{s}}}\right) \tag{34}
\end{equation*}
$$

According to Fig. 4, the following equations can be satisfied:

$$
\left\{\begin{array}{l}
\Delta I_{d 1}=i_{L t 1}\left(t_{1}\right)-i_{L d 1}\left(t_{1}\right) \tag{35}\\
\Delta I_{d 2}=i_{L t 1}\left(t_{4}\right)-i_{L d 1}\left(t_{4}\right) \\
\Delta I_{d}=D \Delta I_{d 1}+(1-D) \Delta I_{d 2}
\end{array}\right.
$$

According to (33) and (35), $\Delta I_{d 1}$ and $\Delta I_{d 2}$ are expressed as:

$$
\left\{\begin{align*}
\Delta I_{d 1} & =\frac{\Delta I_{d}}{1-(1-D) \frac{m}{1+m}} \tag{36}\\
\Delta I_{d 2} & =\frac{\Delta I_{d}}{1+m-(1-D) m}
\end{align*}\right.
$$

From Fig. 4, it can be observed that:
(1) When $\Delta I_{L d 1-r e} \leq \Delta I_{L d 1}$, the maximum current $I_{S P}$ of the switches $S_{1} \sim S_{4}$ appears at the turn-off instant of the switches S_{1} or S_{2} :

$$
\begin{equation*}
I_{S P}=i_{L m 2}\left(t_{0}\right)+i_{D 6}\left(t_{0}\right) / N_{T} \tag{37}
\end{equation*}
$$

Where $i_{L m 2}\left(t_{0}\right)$ can be obtained by (38).

$$
\begin{equation*}
i_{L m 2}\left(t_{0}\right)=\frac{E D T_{h}}{L_{m 2}} \tag{38}
\end{equation*}
$$

According to (30), (37) and (38), $I_{S P}$ can be derived by:

$$
\begin{equation*}
I_{S P}=\frac{E D T_{h}}{L_{m 2}}+\frac{1}{N_{T}}\left[\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}+\frac{\Delta I_{L d 1}}{2}\right] \tag{39}
\end{equation*}
$$

In this case, the current ripple $\Delta I_{L P}$ is expressed as:

Fig. 5. Current stress on switches under different coupled inductor turn ratios m and snubber capacitors $C_{s}\left(I_{o}=10 \mathrm{~A}\right)$.

$$
\begin{align*}
\Delta I_{L P} & =\Delta I_{L d 1}+i_{L d 1}\left(t_{7}\right)-i_{L d 1}\left(t_{6}\right) \\
& =\Delta I_{L d 1}+\frac{m}{1+m}\left[\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}-\frac{\Delta I_{L d 1}}{2}\right] \tag{40}
\end{align*}
$$

(2) When $\Delta I_{L d 1-r e}>\Delta I_{L d 1}$, the maximum current $I_{S P-r e}$ of the switches $S_{1} \sim S_{4}$ appears at the moment of $1 / 2$ of a resonance period during stage 8 :

$$
\begin{equation*}
I_{S P-r e}=\frac{1}{N_{T}}\left[i_{L d 1}\left(t_{7}\right)+\Delta I_{L d 1-r e}\right] \tag{41}
\end{equation*}
$$

Where $i_{L d 1}\left(t_{7}\right)$ and $\Delta I_{L d 1-r e}$ can be obtained by (32) and (34), respectively.

In this case, the current ripple $\Delta I_{L P}$ is expressed as:

$$
\begin{align*}
\Delta I_{L P} & =\Delta I_{L d 1-r e}+i_{L d 1}\left(t_{7}\right)-i_{L d 1}\left(t_{6}\right) \\
& =\Delta I_{L d 1-r e}+\frac{m}{1+m}\left[\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}-\frac{\Delta I_{L d 1}}{2}\right] \tag{42}
\end{align*}
$$

According to the above analysis, when $\Delta I_{L d 1-r e} \leq \Delta I_{L d 1}+\Delta I_{d 1}$, the maximum current stress on the switches of the proposed converter is less than or equal to that of the converter proposed in [25]. However, when $\Delta I_{L d 1-r e}>\Delta I_{L d 1}+\Delta I_{d 1}$, the maximum current stress on the switches of the proposed converter is higher than that of the converter proposed in [25].

Fig. 5 shows the effects of different coupled inductor turn ratios m and snubber capacitances C_{s} on $\Delta I_{L d 1-r e}, \Delta I_{L d 1}$ and $\Delta I_{d 1}$ under $I_{o}=10 \mathrm{~A}$. As shown in Fig. 5, when C_{s} and m increase, $\Delta I_{L d 1-r e}$ and $\Delta I_{d 1}$ increase. $\Delta I_{L d 1}$ decreases with m increase. Selecting reasonable values of C_{s} and m can make the maximum current stress of the proposed converter smaller than that of the converter in [25].

B. Output Voltage Characteristics

The output voltage V_{o} is equal to the average value of the

Fig. 6. Output voltage characteristics under the open-loop control strategy ($E=260 \mathrm{~V}, I_{o}=10 \mathrm{~A}, C_{s}=6.8 \mathrm{nF}$). (a) Two-dimensional plot. (b) Three-dimensional plot.
voltage v_{d}, which is rectified by the transformer secondary rectifier circuit. According to the waveform of v_{d} depicted in Fig. 4, V_{o} is given by (43).

$$
\begin{align*}
& V_{o}=\frac{1}{T_{h}} \int_{0}^{T_{h}} v_{d}(t) d t \\
& \approx \frac{E}{N_{T}} D+\frac{\sqrt{L_{s} C_{s}}}{T_{h}} \sqrt{\left(V_{C s-\max }+2 m V_{o}\right) V_{C s-\max }} \\
& +\frac{m V_{o}}{1+m}\left(1-D-\frac{\sqrt{(1+m)^{2} L_{s} C_{s}} \arccos \left[\frac{m V_{o}}{V_{C s-\max }+m V_{o}}\right]}{T_{h}}\right) \tag{43}\\
& -\frac{I_{o} L_{s}}{T_{h}}
\end{align*}
$$

In (43), the last part is the voltage drop caused by the transformer leakage inductance L_{s}. Since L_{s} is small enough, the last part can be neglected. Therefore, (43) can be changed as:

$$
\begin{align*}
& V_{o} \approx \frac{E}{N_{T}} D+\frac{\sqrt{L_{s} C_{s}}}{T_{h}} \sqrt{\left(V_{C s-\max }+2 m V_{o}\right) V_{C s-\max }} \tag{44}\\
& +\frac{m V_{o}}{1+m}\left(1-D-\frac{1}{T_{h}} \sqrt{(1+m)^{2} L_{s} C_{s}} \arccos \left[\frac{m V_{o}}{V_{C s-\max }+m V_{o}}\right]\right)
\end{align*}
$$

Fig. 6 shows the effects of different coupled inductor turn ratios m on the output voltage characteristics under the
following conditions of the open-loop control strategy, input voltage $E=260 \mathrm{~V}$, load current $I_{o}=10 \mathrm{~A}$ and snubber capacitor $C_{s}=0.01 \mu \mathrm{~F}$. As shown in Fig. 6, when compared to the traditional ZVS ITSF converter, the linear relationship between the output voltage and the duty cycle D gets worse with the increasing of the coupled inductor turn ratio m. Therefore, the complexity of the closed-loop control strategy increases. When $m<0.3$, the output voltage increases almost linearly with respect to duty cycle D increases. In addition, it is beneficial for closed-loop control.

IV. Conditions to Achieve Soft-Switching

A. ZVS Condition for the Switches S_{1} and S_{2}

t_{r} is the duration from S_{1} turning off to the voltage of C_{1} rising to E. If the dead-time t_{d} meets $t_{r} \leq t_{d} \leq T_{h}$, the switches S_{1} and S_{2} realize ZVS turn-on. According to (1), (5) and (6), t_{r} (see Fig. 2) is:

$$
\begin{align*}
& t_{r}=\frac{2 C\left[E-N_{T}\left(\frac{v_{C s-\max }+m V_{o}}{1+m}\right)\right]}{i_{L m 2}\left(t_{0}\right)+i_{D 6}\left(t_{0}\right) / N_{T}} \\
& +\sqrt{2 N_{T}^{2} L_{s} C} \arcsin \sqrt{\frac{2 C}{L_{s}}} \frac{N_{T}\left(\frac{v_{C s-\max }+m V_{o}}{1+m}\right)}{N_{T} i_{L m 2}\left(t_{0}\right)+i_{D 6}\left(t_{0}\right)} \tag{45}
\end{align*}
$$

From (45), to guarantee that S_{1} and S_{2} can achieve ZVS, the minimum load current is obtained as:

$$
\begin{equation*}
I_{o-\min } \geq \sqrt{\frac{2 C}{L_{s}}} N_{T}\left(\frac{v_{C s-\max }+m V_{o}}{1+m}\right) \tag{46}
\end{equation*}
$$

Based on the above analysis, the parallel capacitors C_{1} and C_{2} can limit the turn-off voltage rise rates of S_{1} and S_{2}, respectively. The turn-off voltage rise rate and the turn-off loss decrease as the parallel capacitance increases. However, a large parallel capacitance limits the ZVS range of S_{1} and S_{2}. Thus, it is a trade-off between the turn-off switching losses and ZVS range of the switches S_{1} and S_{2} in the design for parallel capacitance.

B. ZCS Condition for the Switches S_{3} and S_{4}

In order to achieve ZCS for the switches S_{3} and S_{4}, the primary current must be reset to the magnetizing current before the switches S_{3} or S_{4} turn off. Thus, the reset time must meet the following constraint:

$$
\begin{equation*}
t_{\text {reset }}+t_{r}<t_{\delta}<(1-D) T_{h} \tag{47}
\end{equation*}
$$

$t_{\text {reset }}$ is the duration of the $i_{D 6}$ decrease to zero under the effect of the coupled inductance and the snubber capacitance C_{s}. According to (11) and (14), $t_{\text {reset }}$ can be derived as:

Fig. 7. Reset times $t_{\text {reset }}$ under different coupled inductor turn ratios and snubber capacitors. (a) Two-dimensional plot. (b) Threedimensional plot.

$$
\begin{align*}
& t_{\text {reset }}=\sqrt{(1+m)^{2} L_{s} C_{s}} \arccos \left[\frac{m V_{o}}{V_{C s-\max }+m V_{o}}\right] \tag{48}\\
& +\frac{1+m}{m V_{o}} L_{s}\left(i_{D 6}\left(t_{2}\right)-\sqrt{\frac{C_{s}}{L_{s}} V_{C s-\max }\left(V_{C s-\max }+2 m V_{o}\right)}\right)
\end{align*}
$$

Fig. 7 shows the characteristic of the reset time in the proposed converter and that of the converter in [25] under different coupled inductor turn ratios m and snubber capacitors C_{s}. As shown in Fig. 7, when compared with the converter in [25], the proposed converter effectively reduce the primary current reset time.

Fig. 8 illustrates the effects of the load current on the primary current reset time. Fig. 8(a) shows the variations of the primary reset times in the proposed converter and the converter in [25] with load current. In Fig. 8(a), t_{A} is the reset time of the converter in [25], while t_{B} is the reset time of the proposed converter. Their difference is $\Delta t=t_{A}-t_{B}$. When compared with t_{A}, the decrease ratio of t_{B} is $\theta=\Delta t / t_{A}$. Fig. 8(b) shows the relationship between the load current and the

Fig. 8. Effects of different loads on the primary current reset time $t_{\text {resete }}$. (a) Primary current reset time. (b) Decrease ratio of the reset time.

TABLE I
Voltage and Current Stress on the Main Components of Three Kinds of ITSF Converters

	Paper [22]	Paper [25]	The proposed ZVZCS ITSF converter	
Voltage stress				
Power switches	E	E	E	
Rectifier diodes	$2 E / N_{T}$	$2 E / N_{T}$	$3 E / N_{T}$	
Freewheeling diodes	E / N_{T}	$E / N_{T}+V_{L L 2}$	$2(1+m)(E / N$	$\left.{ }_{o}\right)+V_{o}$
Current stress			$\Delta I_{L d 1-r e} \leq \Delta I_{L d 1}$	$\Delta I_{L d 1-r e}>\Delta I_{L d 1}$
Power switches	$\frac{E D T_{h}}{L_{m}}+\frac{1}{N_{T}}\left(I_{o}+\frac{\Delta I_{L}}{2}\right)$	$\frac{E D T_{h}}{L_{m}}+\frac{1}{N_{T}}\left[\frac{I_{o}}{1-\left(1-D_{o}\right) N_{L}}+\frac{\Delta I_{L t 1}}{2}\right]$	$\frac{E D T_{h}}{L_{m 2}}+\frac{1}{N_{T}}\left[\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}+\frac{\Delta I_{L d 1}}{2}\right]$	$\begin{aligned} & \frac{1}{N_{T}}\left[\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}-\frac{\Delta I_{L d 1}}{2}+\right. \\ & \left.\left(\frac{E}{N_{T}}-V_{o}\right)\left(\frac{\pi \sqrt{L_{s} C_{s}}}{2 L_{d 1}}+m \sqrt{\frac{C_{s}}{L_{s}}}\right)\right] \end{aligned}$
Rectifier diodes	$I_{o}+\frac{\Delta I_{L}}{2}$	$\frac{I_{o}}{1-\left(1-D_{o}\right) N_{L}}+\frac{\Delta I_{L t 1}}{2}$	$\frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}+\frac{\Delta I_{L d 1}}{2}$	$\begin{aligned} & \frac{I_{o}-\Delta I_{d}}{1-(1-D) \frac{m}{1+m}}-\frac{\Delta I_{L d 1}}{2}+ \\ & \left(\frac{E}{N_{T}}-V_{o}\right)\left(\frac{\pi \sqrt{L_{s} C_{s}}}{2 L_{d 1}}+m \sqrt{\frac{C_{s}}{L_{s}}}\right) \end{aligned}$

decrease ratio θ. As shown in Fig. 8(b), when the load current decreases, the value of θ increases. This means that, under a light load, the decrease ratio of the primary current reset time is raised when the load current is reduced. This characteristic is beneficial to improve the efficiency of the converter under a light load.

C. Comparison of the Voltage and Current Stress on the

 Main Components among Different ConvertersTable I shows the voltage and current stress on main components of the proposed converter, the conventional ZVS ITSF converter [22] and the ZVZCS ITSF converter using a coupled inductor [25].

The following conclusions can be drawn from Table I. (1) When $\Delta I_{L d 1-r e} \leq \Delta I_{L d 1}$, the current stresses on switches and rectifier diodes of the proposed converter are lower than those of the ZVZCS ITSF converter in paper [25]. (2) The voltage stresses on the power switches of the three converters are identical. The voltage stresses on the rectifier diodes and
freewheeling diodes in the proposed converter are higher than those of the conventional ZVS converter in [22] and the ZVZCS ITSF converter in [25].

D. Maximum Effective Duty Cycle $D_{\text {eff-max }}$

Due to the existence of the transformer leakage inductance, at t_{6}, although the switches Q_{2} and S_{3} are both conducting, the primary current of the converter is not enough to provide the load current. During the period of $\left[t_{6}, t_{7}\right]$, the rectifier diode and the freewheeling diodes are both conducting, and the secondary voltage of the transformer is clamped at $m V_{o} /(1+m)$. In this case, the voltages of $\left[t_{6}, t_{7}\right]$ are lost in the secondary. The ratio of this duration and T_{h} is $D_{\text {loss }}$. It is expressed as:

$$
\begin{equation*}
D_{\text {loss }}=\frac{t_{67}}{T_{h}}=\frac{I_{o} N_{T} L_{s}}{T_{h}\left(E-N_{T} \frac{m V_{o}}{1+m}\right)} \tag{49}
\end{equation*}
$$

Considering the ZCS realizing condition of the lagging
switches and the duty cycle loss, the expression of the maximum effective duty cycle $D_{\text {eff-max }}$ is:

$$
\begin{equation*}
D_{\text {eff }-\max }=1-D_{\text {reset }}-D_{\text {loss }} \tag{50}
\end{equation*}
$$

Where $D_{\text {resel }}=t_{\text {reset }} / T_{h}$. $t_{\text {reset }}$ can be obtained by (48).

E. Parallel Capacitance, Coupled Ratio and Snubber Capacitance Design and Coupled Inductance Values Calculation

1) Parallel Capacitance Design: The parallel capacitance should satisfy the following two rules.
(1) The turn-off voltage rise rate of the leading switches should be lower than the given value of q. This value is set to $q=5 \mathrm{~V} / \mathrm{ns}$ in this paper. According to (1):

$$
\begin{equation*}
\frac{d v_{C}(t)}{d t}=\frac{I_{o-\max }}{2 N_{T} C}<q \tag{51}
\end{equation*}
$$

Where, $I_{o-\max }=10 \mathrm{~A}, N_{T}=3.5$. From (51), C should satisfy $C>285 \mathrm{pF}$.
(2) Two parallel capacitances can complete energy conversion during the dead time $t_{d}=0.5 \mu \mathrm{~s}$, even under the condition of the lightest load. According to (45):

$$
\begin{equation*}
t_{r} \approx \frac{2 C N_{T} E}{I_{o-\min }}<t_{d} \tag{52}
\end{equation*}
$$

Where, $I_{o-\text { min }}=2 \mathrm{~A}, N_{T}=3.5, E=260 \mathrm{~V}$. From (52), C should satisfy $C<549 \mathrm{pF}$.

In summary, the range of the parallel capacitance is 285 pF $<C<549 \mathrm{pF}$. A 300 pF capacitance, which includes the parasitic capacitor in the switch, is taken to parallel with the leading switches.
2) Coupled Ratio and Snubber Capacitance Design and Coupled Inductance Values Calculation: According to the previous theoretical analysis, to effectively minimize the loss produced by the primary current during the reset period, the faster the primary current is reset, the better the effect becomes. However, the coupled ratio m and snubber capacitance C_{s} increase. The current stress of the power switches and rectifier diodes increase accordingly.

Under the following conditions, input voltage $E=260 \mathrm{~V}$, output voltage $V_{o}=50 \mathrm{~V}$, turn ratio of the transformer $N_{T}=3.5$ and rated load current $I_{o}=10 \mathrm{~A}$, the effects of different coupled ratios m and snubber capacitances C_{s} on the reset time $t_{\text {reset }}$ and the maximum current $I_{S P}$ are shown in Fig. 9 and Fig. 10, respectively. From Fig. 9 and Fig. 10, it can be observed that with an increase in the coupled ratio and the snubber capacitor, the contribution for resetting the primary current is no more obvious than before. However, the current stress on the power switches and the rectifier diodes is increased. Moreover, the output voltage characteristic becomes worse.

Therefore, the design of the coupled ratio m and the snubber capacitance C_{s} should satisfy the following two rules.
(1) m and C_{s} should make the lagging switches realize ZCS

Fig. 9. Effects of different coupled inductor turn ratios m and snubber capacitors C_{s} on the primary current reset time $t_{\text {reset }}$.

Fig. 10. Current stress of the power switches under different coupled ratios m and snubber capacitances C_{s}.
turn-off even under the condition of $D_{\text {eff-max. }}$.
(2) In order to satisfy the requirements of the converter on the current ripple $\Delta I_{L P}$ of the output filter inductor, $\Delta I_{L P}$ should be less than a given value.

For the sake of rule (1), according to (48) and (50), the primary current reset time $t_{\text {reset }}$ should satisfy the inequality:

$$
\begin{align*}
t_{\text {reset }} & =\sqrt{(1+m)^{2} L_{s} C_{s}} \arccos \left[\frac{m V_{o}}{V_{C s-\max }+m V_{o}}\right] \\
& +\frac{1+m}{m V_{o}} L_{s}\left(i_{D 6}\left(t_{2}\right)-\sqrt{\frac{C_{s}}{L_{s}} V_{C s-\max }\left(V_{C s-\max }+2 m V_{o}\right)}\right) \tag{53}\\
& \leq\left(1-D_{\text {eff }-\max }-D_{\text {loss }}\right) T_{h}
\end{align*}
$$

In order to correspond to rule (2), (40) should satisfy:

$$
\begin{align*}
& \Delta I_{L P}=\frac{(1-D) V_{o} T_{h}}{(1+m) L_{d 1}} \tag{54}\\
& +\frac{m}{1+m}\left[\frac{2 m(1+m)\left(\frac{E}{N_{T}}-V_{o}\right) C_{s}}{\left.I_{o}-\frac{T_{h}}{1-(1-D) \frac{m}{1+m}}-\frac{0.5(1-D) V_{o} T_{h}}{(1+m) L_{d 1}}\right]}\right. \\
& \leq p \times I_{o}
\end{align*}
$$

Where p is the ripple rate of the current through the filter inductance $L_{d 1}$.

From (31), $L_{d 1}$ is:

$$
\begin{equation*}
L_{d 1}=\frac{(1-D) V_{o} T_{h}}{(1+m) \Delta I_{L d 1}} \tag{55}
\end{equation*}
$$

Since the coupled inductor shares a single core, the inductor $L_{d 2}$ of the coupled inductor is:

$$
\begin{equation*}
L_{d 2}=\left(\frac{n_{2}}{n_{1}}\right)^{2} L_{d 1}=m^{2} L_{d 1} \tag{56}
\end{equation*}
$$

For example, assuming a rated output voltage of $V_{o}=50 \mathrm{~V}$, the rated output current $I_{o}=10 \mathrm{~A}, f_{s}=100 \mathrm{kHz}, p=0.2, N_{T}=3.5$, $L_{s}=0.3 \mu \mathrm{H}$. Taking $D_{\text {eff-max }}=0.8, D_{\text {loss }}=0.1$. From (53):

$$
\begin{align*}
& \sqrt{(1+m)^{2} 0.3 C_{s}} \arccos \left[\frac{50 m}{48.57+98.57 m}\right] \\
& +0.3 \times \frac{1+m}{50 m}\left(10-\sqrt{48.57(1+m) \frac{C_{s}}{0.3}(48.57+148.57 m)}\right) \tag{57}\\
& \leq 0.5
\end{align*}
$$

From Fig. 9 and Fig. 10, it can be observed that, when the coupled ratio $m \geq 0.1$ and the snubber capacitor $C_{s} \geq 6 n \mathrm{~F}$, the contribution for resetting the primary current is not very obvious. Nevertheless, when $m \geq 0.15$, the current stresses of the rectifier diodes and the power switches increase a lot. Therefore, the best parameters for the coupled ratio m are between 0.1 and 0.15 . In this paper, $m=0.1$ is chosen. Then, according to (57), the snubber capacitor should satisfy $C_{s} \geq 0.7 n \mathrm{~F}$. In this paper, $C_{s}=6.8 n \mathrm{~F}$ is chosen.

According to (48) and (49), $D_{\text {resee }} \approx 0.037$ and $D_{\text {loss }} \approx 0.009$ can be calculated, respectively. In this case, $D_{\text {loss }}+D_{\text {reset }}+D_{\text {eff-max }} \approx 0.846<1$. As a result, $C_{s}=6.8 n \mathrm{~F}$ and $m=0.1$ can satisfy the demand.

In order to make the current stress of the switches in the proposed converter less than that of the converter in [25], the proposed converter needs to satisfy $\Delta I_{L d 1-r e} \leq \Delta I_{L d 11}$. According to (31) and (34), the coupled inductor $L_{d 1}$ needs to satisfy the following inequality:

$$
\begin{equation*}
L_{d 1} \leq \sqrt{\frac{L_{s}}{C_{s}}} \frac{(1-D) V_{o} T_{h}}{m(1+m)\left(\frac{E}{N_{T}}-V_{o}\right)}-\frac{\pi L_{s}}{2 m} \approx 154 \mu H \tag{58}
\end{equation*}
$$

Since the linear increment $\Delta I_{L d 1}$ increases with a decrease of the coupling inductance, the current ripple also increases. Thus, $\Delta I_{L d 1}$ is set at $\Delta I_{L d 1} \leq 0.1 I_{o}$. According to (55), the following inequality is obtained:

$$
\begin{equation*}
L_{d 1} \geq \frac{(1-D) V_{o} T_{h}}{0.1(1+m) I_{o}} \approx 55 \mu H \tag{59}
\end{equation*}
$$

According to (58) and (59), the range of the coupled inductor $L_{d 1}$ is $55 \mu \mathrm{H} \leq L_{d 1} \leq 154 \mu \mathrm{H}$. In this paper, $L_{d 1}=120 \mu \mathrm{H}$ is chosen. From (56), $L_{d 2}=1.2 \mu \mathrm{H}$. According to (40), $\Delta I_{L P}=1.36<p I_{o}$. Therefore, the set values of $L_{d 1}$ and $L_{d 2}$ satisfy the demand.

TABLE II
Components and Parameters in the Prototype

Components	Parameters
E (Input voltage)	260 V
V_{o} (Output voltage)	50 V
f (Switching frequency)	100 kHZ
t_{d} (Dead time)	$0.5 \mu \mathrm{~s}$
$S_{1} \sim S_{4}$ (Switches)	IPW65R065C7(650V, 33A)
D_{3}, D_{4} (Primary diodes)	DMUR3060WT (600V, 30A)
D_{5}, D_{6} (Rectifier diodes)	DMUR3060WT (600V, 30A)
$D_{f}, D_{s 1}, D_{s 2}$ (Freewheeling and	DMUR1540 (400V, 15A)
\quad auxiliary diodes)	
N_{T} (Transformer turn ratio)	$3.5: 1$
L_{m} (Transformer magnetizing	3 mH
\quad inductor)	
$L_{s}($ Transformer secondary leakage	$0.3 \mu \mathrm{H}$
\quad inductance)	
m (Coupled inductor turn ratio)	0.1
$L_{d 1}, L_{d 2}$ (Coupled inductance)	$120 \mu \mathrm{H}, 1.2 \mu \mathrm{H}$
C_{1}, C_{2} (Parallel capacitance)	300 pF
C_{s} (Snubber capacitance)	6.8 nF
C_{o} (Output capacitance)	$560 \mu \mathrm{~F}$

Fig. 11. Photo of the prototype converter.

V. Simulation and Experimental Results

In order to verify the validity of the aforementioned analysis, a $500 \mathrm{~W}, 100 \mathrm{kHz}$ prototype has been built. The specifications of the prototype converter are given in Table II. A photo of the prototype converter is shown in Fig. 11.

A. Waveform Evaluations

Fig. 12 and Fig. 13 show voltage and current waveforms of the leading switch S_{1} and the lagging switch S_{4} under a heavy load ($I_{o}=10 \mathrm{~A}$) and a light load ($I_{o}=2 \mathrm{~A}$), under $E=260 \mathrm{~V}$, $V_{o}=50 \mathrm{~V}$ (Fig. 12(a) is a waveform of S_{1} under a heavy load. Fig. 12(b) is a waveform of S_{1} under a light load. Fig. 13(a) is a waveform of S_{4} under a heavy load. Fig. 13(b) is a waveform of S_{4} under a light load). From the obtained experimental results, it can be observed that waveforms of the

(a)

(b)

Fig. 12. Voltage and current waveforms of the leading switch S_{1} ($E=260 \mathrm{~V}, f=100 \mathrm{kHz}, V_{o}=50 \mathrm{~V}, t_{d}=0.5 \mu \mathrm{~s}$). (a) S_{1} under a heavy load $\left(I_{o}=10 \mathrm{~A}\right)$. (b) S_{1} under a light load $\left(I_{o}=2 \mathrm{~A}\right)$.

Fig. 13. Voltage and current waveforms of the lagging switch S_{4} ($E=260 \mathrm{~V}, f=100 \mathrm{kHz}, V_{o}=50 \mathrm{~V}, t_{d}=0.5 \mu \mathrm{~s}$). (a) S_{4} under a heavy load $\left(I_{o}=10 \mathrm{~A}\right)$. (b) S_{4} under a light load $\left(I_{o}=2 \mathrm{~A}\right)$.

Fig. 14. Voltage and current waveforms of the snubber capacitor $C_{s}\left(E=260 \mathrm{~V}, V_{o}=50 \mathrm{~V}, f=100 \mathrm{kHz}\right)$. (a) C_{s} under a heavy load $\left(I_{o}=10 \mathrm{~A}\right)$. (b) C_{s} under a light load $\left(I_{o}=2 \mathrm{~A}\right)$.
power switches do not have the voltage or current spikes. In a wide load range, S_{1} turns off with pseudo-ZVS and turns on with ZVZCS. S_{4} turns off with near ZCS and turns on with pseudo-ZCS.

Fig. 14 shows voltage and current waveforms of the snubber capacitor under a heavy load ($I_{o}=10 \mathrm{~A}$) and a light load ($I_{o}=2 \mathrm{~A}$), under $E=260 \mathrm{~V}, V_{o}=50 \mathrm{~V}$ (Fig. 14(a) is a waveform of C_{s} under a heavy load. Fig. 14(b) is a waveform of C_{s} under a light load). As shown in Fig. 14, the snubber capacitor is charged to the maximum value $v_{C s-\text { max }}$ during the supplying period, and it is discharged to supply the load during the resetting period. From Fig. 14(a), it can be observed that the snubber capacitance is completely discharged under a heavy load. However, Fig. 14(b) shows that the snubber capacitor is not completely discharged under a light load. Meanwhile, from Fig. 14(a) and (b), the charging current under a light load is obviously less than that under a heavy load, which means that the circulating current of the auxiliary circuit is self-adjusted to the load condition. Hence, the circulating current losses of the auxiliary circuit are reduced.

Fig. 15 shows current waveforms of the coupled filter inductor in the proposed converter and the converter of [25], under $E=260 \mathrm{~V}, V_{o}=50 \mathrm{~V}, I_{o}=10 \mathrm{~A}, m=0.1, C_{s}=6.8 n \mathrm{~F}$. From Fig. 15, it can be observed that the converter in [25] has a serious parasitic ringing in the output filter inductor, which is

Fig. 15. The current waveforms of the coupled filter inductor $\left(E=260 \mathrm{~V}, f=100 \mathrm{kHz}, V_{o}=50 \mathrm{~V}, I_{o}=10 \mathrm{~A}\right)$.

Fig. 16. Waveforms of the rectifier voltage $v_{d}(E=260 \mathrm{~V}$, $f=100 \mathrm{kHz}, V_{o}=50 \mathrm{~V}, I_{o}=10 \mathrm{~A}$).

Fig. 17. Transient dynamic response of the proposed converter under output load step changes ($V_{o}=50 \mathrm{~V}$).
produced by resonance among the transformer leakage inductance, the coupled inductor leakage inductance and the stray capacitors of the freewheeling diode and rectifier diode. However, as shown in Fig. 15, the proposed converter effectively suppresses parasitic ringing. This is because the proposed converter absorbs energy, which is then stored in the leakage inductances of transformer and coupled inductor, by the charging process of the snubber capacitance.
Fig. 16 compares waveforms of the rectifier voltage v_{d} in the proposed converter and the converter in [25]. From Fig. 16 , it can be observed that by using the reverse voltage of the coupled inductor and the charging voltage of the snubber capacitance, the proposed converter can effectively suppress the transient over-voltage and parasitic ringing in the secondary side of the transformer.

B. Dynamic Response Characteristic Evaluation

Fig. 17 shows the dynamic response of the output voltage for the proposed converter when the output load is switched under an output voltage of $V_{o}=50 \mathrm{~V}$. Fig. 17(a) shows the output voltage response characteristic when the load is switched from a light load $\left(I_{o}=2 \mathrm{~A}\right)$ to a heavy load $\left(I_{o}=10 \mathrm{~A}\right)$ and from a heavy load to a light load in the steady state. From Fig. 17(a), it can be seen that the voltage amplitude fluctuates within $\pm 0.8 \mathrm{~V}$ and that the recovery time is within 1.2 ms . Fig. 17 (b) shows the output voltage response characteristic when the load is quickly switched. From Fig. 17(b), it can be seen that the voltage amplitude fluctuates within $\pm 0.6 \mathrm{~V}$ when the load is quickly switched. From Fig. 17, it can be seen that the proposed converter has good steady state and dynamic response characteristics.

C. Efficiency Evaluation

Fig. 18 shows the distribution of the theoretical calculated losses in the proposed converter, the ZVS converter in [22] and the ZVZCS converter in [25], under a rated output power of $P_{o}=500 \mathrm{~W}$. As shown in Fig. 18, the losses of the proposed converter produced by the switches Q_{1} / Q_{2}, the switches S_{3} / S_{4}, the rectifier diodes D_{5} / D_{6}, the freewheeling diode D_{f}, and the auxiliary diode $D_{s 1}$ and $D_{s 2}$ are, $0.48 \mathrm{~W}, 0.31 \mathrm{~W}, 10.34 \mathrm{~W}$, $2.28 \mathrm{~W}, 0.08 \mathrm{~W}$ and 0.16 W , respectively. When compared with the ZVZCS converter in [25], the loss saved by the leading switches Q_{1} / Q_{2}, the lagging switches S_{3} / S_{4}, the rectifier diodes D_{5} / D_{6} and freewheeling diode D_{f} are, 0.17 W , $0.32 \mathrm{~W}, 2.84 \mathrm{~W}$ and 0.70 W , respectively. The losses increased by the auxiliary diodes $D_{s 1}$ and $D_{s 2}$ are, 0.08 W and 0.16 W , respectively. In total, the losses are decreased by 3.79 W . When compared with the ZVS converter in [22], the losses saved by the leading switches Q_{1} / Q_{2}, the lagging switches S_{3} / S_{4} and the rectifier diodes D_{5} / D_{6} are, $0.73 \mathrm{~W}, 0.37 \mathrm{~W}$ and 8.96 W , respectively. The losses increased by the freewheeling diode D_{f}, and the auxiliary diodes $D_{s 1}$ and $D_{s 2}$ are 2.28 W , 0.08 W and 0.16 W , respectively. In total, the losses are

Fig. 18. Power loss analysis.

Fig. 19. Experiment efficiency curves.
decreased by 7.54 W .
Fig. 19 illustrates actual power efficiency curves of the proposed converter and the ZVZCS converter in [25]. As shown in Fig. 19, in the full load range, the efficiency of the proposed converter is higher than that of the converter in [25]. In addition, the improved efficiency is more obvious with decreases in the load. The actual efficiency of the proposed converter can reach 95.2% at the rated load (500W). When compared with the ZVZCS converter in [25], the efficiency improved by nearly 1.2%. The actual power efficiency of the proposed converter is 94% under a light load (100W). When compared with the ZVZCS converter in [25], the efficiency is improved by nearly 3.2%.

VI. CONCLUSION

In this paper, a ZVZCS interleaved two-switch forward converter using a simple passive auxiliary resonant circuit is presented. Moreover, this paper has analyzed the operation principle, steady state characteristics and soft-switching conditions of the proposed converter. According to a theoretical analysis and experimental research, the following conclusions can be summarized.
(1) The leading switches realize ZVS turn-off and ZVZCS
turn-on. The lagging switches achieve ZCS turn-on and near ZCS turn-off.
(2) By increasing the turn-ratio of the coupled inductor, the proposed converter can accelerate the speed of resetting the primary current. Thus, this converter can achieve ZCS control in lagging switches more easily.
(3) The proposed converter can overcome the effects of the reverse recovery loss, the voltage stress and the parasitic ringing in the rectifier diodes. Therefore, the topology can be extended to heavy load applications.
(4) The circulating current of the auxiliary circuit can be automatically adjusted with the load, which is helpful for improving efficiency under a light load. Thus, this converter can maintain high power conversion efficiency in the full load range.

References

[1] X. N. He, B. W. Williams, K. Sheng, S. J. Finney, and Z. M. Qian, "A composite soft switching circuit for power inverters," APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), Vol.2, pp. 1272-1278, 1999.
[2] F. M. Ibanez, J. M. Echeverria, D. Astigarraga, and L. Fontan, "Soft-switching forward DC-DC converter using a continuous current mode for electric vehicle applications," IET Power Electronics, Vol. 8, No. 10, pp. 1978-1986, Sep. 2015.
[3] Y. H. Xi, P. K. Jain, Y. F. Liu, and R. Orr, "A self core reset and zero voltage switching forward converter topology," IEEE Trans. Power Electron., Vol. 15, No. 6, pp. 11921203, Nov. 2000.
[4] F. D. Tan, "The forward converter: from the classic to the contemporary," in Proc. IEEE APEC Conf., Vol. 2, pp. 857-863, 2002.
[5] E. S. da Silva, E. A. A. Coelho, L. C. de Freitas, J. B. Vieira, and V. J. Farias, "A soft-single-switched forward converter with low stresses and two derived structures," IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 388-395, Mar. 2004.
[6] B. R. Lin, S. C. Tsay, and C. S. Yang, "Analysis and implementation of ZVS forward converter with centrecoupled rectifier," IEE Proceedings-Electric Power Applications, Vol. 153, No. 5, pp. 642-652, Sep. 2006.
[7] M. Jinno, P. Y. Chen, and K. C. Lin, "An efficient active LC snubber for forward converters," IEEE Trans. Power Electron., Vol. 24, No. 6, pp. 1522-1531, Jun. 2009.
[8] E. Adib and H. Farzanehfard, "Analysis and design of a zero-current switching forward converter with simple auxiliary circuit," IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 144-150, Jan. 2012.
[9] J. Y. Lin, W. Z. Tzeng, C. Y. Lin, C. F. Wang, and P. J. Liu, "Active-clamping forward converter with non-linear step-down conversion," IET Power Electron., Vol. 8, No. 1, pp. 112-119, Jan. 2015.
[10] G. Waltrich and I. Barbi, "Modelling, control and realisation
of the single-ended forward converter with resonant reset at the secondary side," IET Power Electronics, Vol. 8, No. 11, pp. 2097-2106, Nov. 2015.
[11] J. P. Xu, X. H. Cao, and Q. C Luo, "An improved twotransistor forward converter," in Proc. IEEE PEDS Conf., Vol. 1, pp. 225-228, 1999.
[12] M. Chen, D. H. Xu, and M. Matsui, "Study on magnetizing inductance of high frequency transformer in the twotransistor forward converter," in Proc. IEEE PCC Conf., Vol. 2, pp. 597-602, 2002.
[13] Y. L. Gu, Z. Y. Lu, Z. M. Qian, X. M. Gu, and L. J. Hang, "A novel ZVS resonant reset dual switch forward DC-DC converter," IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 96-103, Jan. 2007.
[14] Y. K. Lo, T. S. Kao, and J. Y. Lin, "Analysis and design of an interleaved active-clamping forward converter," IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 2323-2332, Aug. 2007.
[15] B. R. Lin and H. K. Chiang, "Analysis and implementation of a soft switching interleaved forward converter with current doubler rectifier," IET Electric Power Appl., Vol. 1, No. 5, pp. 697-704, Sep. 2007.
[16] K. B. Park, C. E. Kim, G. W. Moon, and M. J. Youn, "Three-switch active-clamp forward converter with low switch voltage stress and wide ZVS range for high-inputvoltage applications," IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 889-898, Apr. 2010.
[17] K. B. Park, G. W. Moon, and M. J. Youn, "Two-switch active-clamp forward converter with one clamp diode and delayed turnoff gate signal," IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4768-4772, Oct. 2011.
[18] A. Coban and I. Cadirci, "Active clamped two-switch forward converter with a soft switched synchronous rectifier," IET Power Electron., Vol. 4, No. 8, pp. 908-918, Sep. 2011.
[19] K. Soltanzadeh, M. Dehghani, and H. Khalilian, "Analysis, design and implementation of an improved two-switch zero-current zero-voltage pulse-width modulation forward converter," IET Power Electron., Vol. 7, No. 4, pp. 10161023, Apr. 2014.
[20] M. T. Zhang, M. M. Jvanovic, and F. C. Lee, "Analysis and evaluation of interleaving techniques in forward converters," IEEE Trans. Power Electron., Vol. 13, No. 4, pp. 690-698, Jul. 1998.
[21] Y. F.Chen and L. G. He, "An interleaved series-parallel combination of two-transistor forward converters," in Proc. IEEE ICIEA Conf., pp. 1-5, 2006.
[22] H. S. Kim, H. W. Seong, K. B. Park, H. S. Youn, G. W. Moon, and M. J. Youn, "Zero-voltage-switching interleaved two-switch forward converter with phase-shift control," in Proc. IEEE Energy Conversion Congress and Exposition, pp. 3727-3732, 2010.
[23] H. Feng, D. H. Xu, and M. Matsui, "A novel ZVT circuit for interleaving two-transistor forward converter," in Proc. IEEE APEC Conf., Vol. 2, pp. 754-759, 2000.
[24] D. de Souza Oliveira Jr., C. E. de Alencar e Silva, R. P. Torrico-Bascope, F. L. Tofoli, C. A. Bissochi Jr., J. B. Vieira Jr., V. J. Farias, and L. C. de Freitas, "Analysis, design, and experimentation of a double forward converter with soft switching characteristics for all switches," IEEE Trans. Power Electron., Vol. 26, No. 8, pp. 2137-2148,

Aug. 2011.
[25] S. Hamada and M. Nakaoka, "A novel zero-voltage and zero-current switching PWM DC-DC converter with reduced conduction losses," IEEE Trans. Power Electron., Vol. 17, No. 3, pp. 413-419, May 2002.
[26] S. Hamada and M. Nakaoka, "Analysis and design of a saturable reactor assisted soft-switching full-bridge DC-DC converter," IEEE Trans. Power Electron., Vol. 9, No. 3, pp. 309-317, May 1994.

Enhui Chu received his M.S. degree in Automation from Northeastern University, Shenyang, China, in 1993; and his Ph.D. degree in Electrical Engineering from Yamaguchi University, Yamaguchi, Japan, in 2002. From 1997 to 1999, he was a Visiting Scholar and a Researcher at Yamaguchi University. From 2003 to 2006, he was a researcher in Yutaka Electric Mfg. Co., Ltd. of the Nippon Steel and Sumitomo Metal Corporation, Konan, Japan. Since 2006, he has been with the College of Information Science and Engineering, Northeastern University, Shenyang, China, where he is presently working as a Professor. His current research interests include power converters, medical electronics, autoelectronics, soft-switching techniques, and the application of soft-switching techniques in renewable energy power conversion systems.

Jianqun Bao received her B.S. degree in Electrical Engineering and Automation from Northeastern University, Shenyang, China, in 2017, where she is presently working towards her M.S. degree in Electrical Engineering. Her current research interests include PWM DC/DC converters and soft-switching technology.

Qi Song received his B.S. degree from the Zhengzhou University of Light Industry, Zhengzhou, China, in 2017. He is presently working towards his M.S. degree in Electrical Engineering at Northeastern University, Shenyang, China. His current research interests include PWM DC/DC converters and softswitching technology.

Yang Zhang received his B.S. degree in Electrical Engineering and Automation at the North China University of Science and Technology, Tangshan, China, in 2017. He is presently working towards his M.S. degree in Electrical Engineering at Northeastern University, Shenyang, China. His current research interests include PWM DC/DC converters and soft-switching technology.

Haolin Xie received his B.S. degree in Automation from Northeastern University, Shenyang, China, in 2017, where he is presently working towards his M.S. degree in Electrical Engineering. His current research interests include high-performance inverters and soft-switching techniques.

Zhifang Chen received his B.S. degree in Electrical Engineering and Automation from Northeastern University, Shenyang, China, in 2018, where he is presently working towards his M.S. degree in Electrical Engineering. His current research interests include highperformance inverters and soft-switching techniques.

Yue Zhou received his B.S. degree in Electrical Engineering and Automation from the Jiangsu University of Science and Technology, Zhenjiang, China, in 2018. He is presently working towards his M.S. degree in Electrical Engineering at Northeastern University, Shenyang, China. His current research interests include high-performance inverters and soft-switching techniques.

[^0]: Manuscript received Mar. 2, 2019; accepted Jun. 27, 2019
 Recommended for publication by Associate Editor Chun-An Cheng.
 ${ }^{\dagger}$ Corresponding Author: chuenhui@mail.neu.edu.cn
 Tel: +86-24-8368-9605, Fax: +86-24-8368-9605, Northeast University
 *College of Inform. Science and Eng., Northeast University, China

